圆(一)
- 格式:docx
- 大小:70.29 KB
- 文档页数:6
3.1圆(一)1.理解圆、弧、弦等有关概念,学会圆、弧、弦等的表示方法.2.理解直径和半径的关系、点与圆的位置关系并能正确判断.3.通过学生动手、观察、比较、分析、概括等活动,培养学生的动手能力和解决问题的能力.4.通过对圆的进一步认识,加深对圆的完美性的体会,激发学生的学习热情.重点:弦和弧的概念、弧的表示方法、点与圆的位置关系.难点:点与圆的位置关系及判定.一、新课导入1.展示一些类似圆的形状的物体图片,例如,压力锅封圈、玉手镯……你觉得这些物体与哪种图形相类似呢?你能再举出一些例子吗?2.你知道圆是怎样定义的吗?怎样作出适合某种需要的圆?说明:通过展示图片,让学生感受圆是生活中大量存在的图形,从而激发学生的学习兴趣.二、新知学习活动1(一)自主探索:1.师生一起用圆规画一个圆,其圆心为点O.2.教师示范:取一根绳子,把它的一端用图钉固定在画板上,另一端系一支铅笔,然后拉紧绳子,并使它绕固定的一端旋转一周,这样就得到一个圆.(课本图3-1) 3.圆上的任意一点P(铅笔尖)到定点O(图钉)的距离相等吗?【解】相等(二)概念形成1.圆的定义:在同一平面内,线段OP 绕它固定的一个端点旋转一周(如图),另一端点P 所经过的封闭曲线叫做__圆__,定点O 叫做圆心,线段OP 叫做圆的__半径__.2.圆的表示方法:以点O 为圆心的圆,记做“⊙O”,读作“圆O”.3.弦的定义:连结圆上任意两点的__线段__叫做__弦__(如图中的AB ).经过圆心的弦叫做__直径__,显然,直径等于半径的__2__倍(如图所示).活动2 (一)做一做已知点O 和线段a(如图所示),请以O 为圆心,线段a 为半径作一个圆,并在圆上画出一条半径、一条直径和一条不是直径的弦.(二)概念形成1.弧的定义:圆上任意两点间的__部分__叫做__圆弧__,简称弧.2.半圆、劣弧、优弧的概念及表示方法:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做__半圆__.小于半圆的弧叫做__劣弧__,劣弧用符号“⌒”和弧两端的字母表示,右图中的劣弧BC 记作BC ︵,读作“弧BC ”;大于半圆的弧叫做__优弧__,优弧用符号“⌒”和三个字母表示(弧两端的字母和弧中间的字母),如图中的优弧BAC ,记作BAC ︵,读作“弧BAC ”.3.如图所示,你看到哪几条弦?哪几段弧?各如何表示?解:弦有三条:AB ,BC ,AC ,弧有六段:AB ︵,半圆ABC ,半圆AC ,BC ︵,BCA ︵,CAB ︵. 4.等圆:半径相等的两个圆能够完全重合,因此,把半径相等的两个圆叫做__等圆__,如图中的⊙O 1和⊙O 2是等圆.5.想一想:等圆的半径相等吗? 相等.6.补充:在同圆或等圆中,能够互相重合的弧叫做__等弧__. (三)议一议同一平面内的点与圆有几种位置关系?怎样确定点与圆的位置关系?请你与你的同伴议一议.结论:一般地,如果点P 是圆所在平面内的一点,d 表示点P 到圆心的距离,r 表示圆的半径,则有:d >r ⇔点在圆外;d =r ⇔点在圆上;d <r ⇔点在圆内.说明:通过合作学习,让学生明确点与圆的三种位置关系以及判定方法,从而培养合作意识和自主探究习惯.三、新知应用 典例探究:【例1】已知矩形ABCD的边AB=3,AD=4,如图所示.(1)以A为圆心,4为半径作⊙A,则点B,C,D与⊙A的位置关系如何?(2)若以点A为圆心作⊙A,使点B,C,D三点中至少有一点在圆内,且至少有一点在圆外,则⊙A的半径r的取值范围是多少?【分析】(1)点与圆的位置关系是两个图形的位置关系,只能观察、估计,而不能准确、具体地进行判断,所以通常转化为点到圆心的距离d与半径r之间的数量大小关系.(2)要使三点中至少有一点在圆内,且至少有一点在圆外,圆的半径应介于这三点到圆心的距离的最大值与最小值之间.【解】(1)∵AD=4=r,∴点D在⊙A上.∵AB=3<4,∴点B在⊙A内.∵AC=5>4,∴点C在⊙A外.(2)∵AC>AD>AB,∴3<r<5.说明:本例涉及点与圆的位置关系的判定,解题的关键是分析求出点B,C,D到点A的距离.通过本例可培养学生运用数学知识解决实际问题的能力,激发学生的兴趣.【例2】如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,求∠A的度数.【分析】因为同圆半径相等,所以当圆中有两条半径出现,就有等腰三角形出现,于是可利用等腰三角形的有关知识求解.【解】连结OB.∵AB=OC,OB=OC,∴AB=OB,∴∠A=∠1.又∵OB=OE,∴∠2=∠E.又∵∠2=∠A+∠1=2∠A.∴∠E=2∠A.∴∠EOD=∠E+∠A=3∠A=84°.∴∠A=28°.说明:引导学生思考、交流的习惯,提高知识的应用能力.四、巩固新知尝试完成下面各题.1.下列说法中错误的是( D )A.直径是弦B.半圆是弧C.圆内最长的弦是直径 D.弧小于半圆2.下列说法:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④半径相等的两个圆是等圆.其中错误的有( A )A.1个B.2个C.3个D.4个3.在同一平面内,点P到圆上的点的最大距离为7,最小距离为1,则此圆的半径为__4或3__.4.如图,已知OA,OB为⊙O的半径,C,D分别为OA,OB的中点,求证:(1)∠A=∠B;(2)AE=BE.证明:(1)∵OA=OB,OC=OD=12OA,∠O=∠O,∴△OAD≌△OBC(SAS),∴∠A=∠B.(2)∵AC=BD=12OA,∠A=∠B,∠AEC=∠BED,∴△AEC≌△BED(AAS),∴AE=BE.五、课堂小结1.回顾所学的有关概念——圆、弦、弧(半圆、劣弧、优弧)、等圆.2.直径与弦的关系是直径是弦而弦不一定是直径.3.点与圆的三种位置关系.六、课后作业请完成本资料对应的课后作业部分内容.。
北师大版数学六年级上册第一单元圆《圆的认识(一)》教学设计2. 再画几个填圆心的位置不同而半径相同的圆3. 通过画圆反思圆心和半径的作用 同而半径相同的圆。
引导学生进行反思。
活动意图说明:引导学生思考:改变圆的位置,实际上是改变圆心的位置;变化圆的大小,实际上是变化圆的半径,使学生在理解概念之后,能够灵活运用。
环节五:巩固练习(指向目标1、2、3) 一、细心填写: 1、圆是平面上的一种( )图形,将一张圆形纸片至少对折( )次可以得到这个圆的圆心。
2、在同一个圆或相等的圆中,所有的半径长度都( );所有的直径长度都( )。
直径的长度是半径的( )。
3、画一个直径4厘米的圆,那么圆规两脚间的距离应该是( )厘米。
4、( )决定圆的大小;( )决定圆的位置。
5、在长8厘米,宽6厘米的长方形中画一个最大的圆,圆的半径( )厘米。
1.鼓励学生独立完成。
2.组织学生全班交流。
3.在学生展示汇报时,有困难的地方及时指导。
活动意图说明:在练习过程中巩固圆的认知,进一步提高分析问题解决问题的能力。
【作业设计】1.P3 1、2、3题完成在数学书上,第1题与同桌相互说一说2.判断圆有无数条直径,无数条半径,直径是半径的2倍。
( ) 【板书设计】圆的认识(一)【教后反思】第一单元圆《圆的认识(一)》学习任务单(作业设计)直径(d )无数条 圆心(O )决定圆的位置半径(r )无数条 半径(r )决定圆的大小学习内容圆的认识(一)(第1课时)学习目标1.学生认识圆,知道并能说出圆的各部分名称;掌握圆的特征,理解和掌握同一个圆里半径和直径的关系。
2.学生通过分组学习,动手操作,主动探索等活动,学生拥有用圆规画圆的作图能力,学生观察、分析、抽象等思维能力。
3.学生的操作能力及空间想象能力进一步提升,感受数学与生活密切相关。
学习资源多媒体课件,圆规,圆形纸片随堂记录学习过程环节一:问题情景导入2.一些小朋友像图中这样站立进行套圈游戏,比谁能套中小旗。
第6课时:《圆》(1)——圆的基本概念【知识点拨】 一、圆的定义1、圆的定义:在一个个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径。
2、圆的几何表示:以点O 为圆心的圆记作“⊙O”,读作“圆O”[例题1]1、确定一个圆的要素有两个,•即_______,•_______;•______•决定圆的位置,_______决定圆的大小.2、如图,点C 在以AB 为直径的半圆上,∠BAC =20°,则∠BOC 等于( ) A.20° B.30° C.40° D.50°3、如图所示,线段AD 过圆心O 交⊙O 于D ,C 两点,∠EOD =78°,AE 交⊙O 于B ,• 且AB =OC ,求∠A 的度数.D二、弦、弧等与圆有关的定义(1)弦:连接圆上任意两点的线段叫做弦。
(如图中的AB )(2)直径:经过圆心的弦叫做直径。
直径是最长的弦;直径等于半径的2倍。
(3)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A ,B 为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用 两个字母表示)[例题2] 1、如图所示,图中_______是直径,_______为弦,以E 为端点的劣 弧有_____,以A 为端点的优弧有_______. 2、在以下所给的命题中,正确的个数为( ).①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④半径相 等的两个半圆是等弧;⑤长度相等的弧是等弧. A .1 B .2 C .3 D .4 3、下面四个判断中正确的是( ).A .过圆内一点的无数条弦中,有最长的弦,没有最短的弦;第2题图BA 第1题图B .过圆内一点的无数条弦中,有最短的弦,没有最长的弦;C .过圆内一点的无数条弦中,有且只有一条最长的弦,也有且只有一条最短的弦;D .过圆内一点的无数条弦中,既没有最长的弦,也没有最短的弦 4、下列语句中正确的个数是( ).①矩形的四边中点在同一个圆上;②菱形的四边中点在同一个圆上;③等腰梯形的四边中点在同一个圆上;④平行四边形的四边中点在同一个圆上 A .1 B .2 C .3 D .4三、垂径定理及其推论1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
小学数学六年级上册《圆的认识一》教案作为一位杰出的老师,时常会需要准备好教案,教案是教材及大纲与课堂教学的纽带和桥梁。
那么你有了解过教案吗?下面是小编整理的北师大版小学数学六年级上册《圆的认识(一)》教案三篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
北师大版小学数学六年级上册《圆的认识(一)》教案三篇1 教学目标:1、知识目标:掌握圆各部分名称以及圆的特征;会用圆规画圆。
2、能力目标:借助动手操作活动,培养学生运用所学知识解决实际问题的能力。
3、情感目标:渗透知识来源于实践、学习的目的在于应用的思想。
教学方法:导练法、迁移法、例证法教学准备:多媒体课件、圆规、直尺等教学过程:一、结合实际、谈话引入新课。
谈话引入:今天非常高兴能和同学们一起来学习、研究一个数学问题。
我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗?师:看来大家平时非留心观察。
课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗?师:把它们举起来,大家互相看一看。
回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)师:同学们观察得真仔细。
圆的边是弯曲的,跟以前学的长方形、正方形的边是不同的。
今天我们就来研究这种平面上的曲线图形。
(板书课题)生举例师强调——指物品的表面圆是没有棱角的,边是弯的;圆的边是一条曲线。
二、引导探究新知。
1、导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。
把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。
最后看看谁的收获多。
(1分钟)2、师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。
3、展示探究结果。
结合多媒体课件辅助,完整认识圆的特征(8分钟)谁来告诉老师,你有哪些新发现?那是什么原因呢?你怎样发现的?结合学生交流、汇报探究结果,及时引导梳理。
主要从圆的圆心、半径、直径、等方面来认识。
这里特别要注意通过板书帮助学生进行新知的有目的的整理。
圆周角和圆心角的关系 同步练习
一、填空题:
1.如图1,等边三角形ABC 的三个顶点都在⊙O 上,D 是AC 上任一点(不与A 、C 重合),则∠ADC 的度数是________.
(1) (2) (3)
2.如图2,四边形ABCD 的四个顶点都在⊙O 上,且AD∥BC,对角线AC 与BC 相交于点E,那么图中有_________对全等三角形;________对相似比不等于1的相似三角形.
3.已知,如图3,∠BAC 的对角∠BAD=100°,则∠BOC=_______度.
4.如图4,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=_______度.
(4) (5) (6)
5.如图5,AB 是⊙O 的直径, BC BD ,∠A=25°,则∠BOD 的度数为________.
6.如图6,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______. 二、选择题:
7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( ) A.50° B.100° C.130° D.200°
(7) (8) (9) (10)
D
D
C
B
A
O
B
A
D
D
C
B
A
8.如图8,A 、B 、C 、D 四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )
A.2对
B.3对
C.4对
D.5对
9.如图9,D 是AC 的中点,则图中与∠ABD 相等的角的个数是( )
A.4个
B.3个
C.2个
D.1个
10.如图10,∠AOB=100°,则∠A+∠B 等于( ) A.100° B.80° C.50° D.40°
11.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°
12.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( )
A.40°
B.50°
C.70°
D.110° 三、解答题:
13.如图,⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.
14.如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC 的长.
15.如图,AB 为半圆O 的直径,弦AD 、BC 相交于点P,若CD=3,AB=4,求tan∠BPD 的值.
B
A
16.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.
(1)P是CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.
(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.
17.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,
乙随后冲到B点,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素)
18.钳工车间用圆钢做方形螺母,现要做边长为a的方形螺母, 问下料时至少要用直径多大
的圆钢?
确定圆的条件练习
目标导航
1、通过经历不在同一直线上的三个点确定一个圆的探索,了解不在同一直线上的三个点确定一个圆,掌握过不在同一直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心,圆的内接三角形的概念,进一步体会解决数学问题的策略.
2、定理:不在同一直线上的三个点确定一个圆.定理中“不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有” .
3、通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也随之确定了.4.分析作圆的方法,实质是设法找圆心.过已知点作圆的问题,就是对圆心和半径的探讨.
基础过关
1.锐角三角形的外心在_______.如果一个三角形的外心在它的一边的中点上,则该三角形是______.如果一个三角形的外心在它的外部,则该三角形是_____.毛
2.边长为6cm的等边三角形的外接圆半径是________.
3.△ABC的三边为2,3,,设其外心为O,三条高的交点为H,则OH的长为_____.
4.三角形的外心是______的圆心,它是_______的交点,它到_______的距离相等.5.已知⊙O的直径为2,则⊙O的内接正三角形的边长为_______.
6.如图,MN所在的直线垂直平分线段AB,利用这样的工具,最
少使用________ 次就可以找到圆形工件的圆心.
7.下列条件,可以画出圆的是()
A.已知圆心B.已知半径
C.已知不在同一直线上的三点D.已知直径
8.三角形的外心是()
A.三条中线的交点B.三条边的中垂线的交点
C.三条高的交点D.三条角平分线的交点
9.下列命题不正确的是()
A.三点确定一个圆B.三角形的外接圆有且只有一个
C.经过一点有无数个圆D.经过两点有无数个圆
10.一个三角形的外心在它的内部,则这个三角形一定是()
A.等腰三角形B.直角三角形C.锐角三角形D.等边三角形11.等腰直角三角形的外接圆半径等于()
A.腰长B.腰长的倍C.底边的倍D.腰上的高
12.平面上不共线的四点,可以确定圆的个数为()
A.1个或3个B.3个或4个
C.1个或3个或4个D.1个或2个或3个或4个
13.如图,已知:线段AB和一点C(点C不在直线AB上),求作:⊙O,使它经过A、B、C三点.(要求:尺规作图,不写法,保留作图痕迹)
14.如图,A、B、C三点表示三个工厂,要建立一个供水站,使它到这三个工厂的距离相等,求作供水站的位置(不写作法,尺规作图,保留作图痕迹).
能力提升
15.如图,已知△ABC的一个外角∠CAM=120°,AD是∠CAM的平分线,且AD与△ABC 的外接圆交于F,连接FB、FC,且FC与AB交于E.
(1)判断△FBC的形状,并说明理由.
(2)请给出一个能反映AB、AC和FA的数量关系的一个等式,并说明你给出的等式成立.
16.要将如图所示的破圆轮残片复制完成,怎样确定这个圆轮残片的圆心和半径?(写出找圆心和半径的步骤).
17.已知:AB是⊙O中长为4的弦,P是⊙O上一动点,cos∠APB=,问是否存在以
A、P、B为顶点的面积最大的三角形?若不存在,试说明理由;若存在,求出这个三角形的面积.
聚沙成塔
如图,在钝角△ABC中,AD⊥BC,垂足为D点,且AD与DC的长度为x2-7x+12=0的两个根(AD<DC),⊙O为△ABC的外接圆,如果BD的长为6,求△ABC的外接圆⊙O 的面积.。