高二数学练习(十二)期末测试卷(2003-12-17)
- 格式:doc
- 大小:151.50 KB
- 文档页数:6
高二数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图是用模拟方法估计圆周率π值的程序框图,P 表示估计结果,则图中空白框内应填入A .P =B .P =C .P =D .P =2.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,则第999次出现正面朝上的概率是( ) A .B .C .D .3.设等差数列的前n 项和为,若,,则当取最小值时,n 等于( )A .6B .7C .8D .54.若某双曲线的焦点在轴上,且实轴长、虚轴长、焦距成等差数列,则该双曲线的渐近线方程为( ) A .B .C .D .5.在中,内角,,所对的边分别是a,b,c.若,,则的面积是()A.3 B. C. D.6.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9,已知这组数据的平均数为10,方差为2,则的值为()A.1 B.2 C.3 D.47.已知为抛物线上一个动点,为圆上一个动点,那么点到点的距离与点到抛物线的准线距离之和的最小值是()A. B. C. D.8.设则的值为()A. B. C. D.9.如图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是()A. B. C. D.10.函数的图像 ( )A.关于原点成中心对称B.关于y轴成轴对称C.关于点成中心对称D.关于直线成轴对称11.设向量,,,则实数的值是()A. B. C. D.12.圆的圆心到直线的距离为1,则()A.B.C.D.213.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B 在等高处的截面积不恒相等,根据祖暅原理可知,q是p的()。
高二数学期末考试题及答案Learn standards and apply them. June 22, 2023一、选择题:本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.1.若抛物线y 2=2px 的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 A .-2B .2C .-4D .42.理已知向量a =3,5,-1,b =2,2,3,c =4,-1,-3,则向量2a -3b +4c 的坐标为A .16,0,-23B .28,0,-23C .16,-4,-1D .0,0,9文曲线y =4x -x 2上两点A 4,0,B 2,4,若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标为A .1,3B .3,3C .6,-12D .2,43.过点0,1作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有A .1条B .2条C .3条D .4条4.已知双曲线222112x y a -=的离心率2,则该双曲线的实轴长为 A .2 B .4C .23D .435.在极坐标系下,已知圆C 的方程为=2cos θ,则下列各点中,在圆C 上的是A .1,-3πB .1,6πC .2,34πD 2,54π6.将曲线y =sin3x 变为y =2sin x 的伸缩变换是A .312x x y y '=⎧⎪⎨'=⎪⎩B .312x xy y '=⎧⎪⎨'=⎪⎩C .32x x y y '=⎧⎨'=⎩D .32x xy y'=⎧⎨'=⎩7.在方程sin cos 2x y θθ=⎧⎨=⎩为参数表示的曲线上的一个点的坐标是A .2,-7B .1,0C .12,12D .13,238.极坐标方程=2sin 和参数方程231x ty t =+⎧⎨=--⎩t 为参数所表示的图形分别为A .圆,圆B .圆,直线C .直线,直线D .直线,圆9.理若向量a =1,,2,b =2,-1,2,a 、b 夹角的余弦值为89,则=A .2B .-2C .-2或255D .2或-255文曲线y =e x +x 在点0,1处的切线方程为 A .y =2x +1 B .y =2x -1 C .y =x +1 D .y =-x +110.理已知点P 1的球坐标是P 14,2π,53π,P 2的柱坐标是P 22,6π,1,则|P 1P 2|=A .21B .29C .30D .42文已知点P 在曲线fx =x 4-x 上,曲线在点P 处的切线垂直于直线x +3y =0,则点P 的坐标为A .0,0B .1,1C .0,1D .1,011.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若点M 在以AB 为直径的圆的内部,则此双曲线的离心率e 的取值范围为A .32,+∞B .1,32C .2,+∞D .1,212.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△MPF 的面积为A .5B .10C .20D 15二、填空题:本大题共4小题,每小题4分,共16分.请将答案填在试卷的答题卡中.13.理已知空间四边形ABCD 中,G 是CD 的中点,则1()2AG AB AC -+=.文抛物线y =x 2+bx +c 在点1,2处的切线与其平行直线bx +y +c =0间的距离是 .14.在极坐标系中,设P 是直线l :cos θ+sin θ=4上任一点,Q 是圆C :2=4cos θ-3上任一点,则|PQ |的最小值是________.15.理与A -1,2,3,B 0,0,5两点距离相等的点Px ,y ,z 的坐标满足的条件为__________.文函数fx =ax 3-x 在R 上为减函数,则实数a 的取值范围是__________.16.如图,已知双曲线以长方形ABCD 的顶点A 、B 为左、右焦点,且双曲线过C 、D 两顶点.若AB =4,BC =3,则此双曲线的标准方程为_____________________.三、解答题:本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.17.本题满分12分双曲线与椭圆2212736x y +=有相同焦点,且经过点15,4,求其方程.18.本题满分12分在直角坐标系xOy 中,直线l 的参数方程为:415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩t 为参数,若以O为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为=2cos θ+4π,求直线l 被曲线C 所截的弦长.19.本题满分12分已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M-3,m到焦点的距离为5,求抛物线的方程和m的值.20.本题满分12分文已知函数fx=x2x-a.1若fx在2,3上单调,求实数a的取值范围;2若fx在2,3上不单调,求实数a的取值范围.理本题满分12分如图,四棱锥P—ABCD的底面是矩形,PA⊥面ABCD,PA=219,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.1求EF的长;2证明:EF⊥PC.参考答案一、 选择题:本大题共12小题,每小题3分,共36分.内为文科答案二、填空题:本大题共4小题,每小题4分,共16分.13.理12BD 文32214.21-15.理2x -4y +4z =11 文a ≤0 16.x 2-23y =1 三、解答题:本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.17.本题满分12分解:椭圆2213627y x +=的焦点为0,3,c =3,………………………3分 设双曲线方程为222219y x a a-=-,…………………………………6分 ∵过点15,4,则22161519a a-=-,……………………………9分 得a 2=4或36,而a 2<9,∴a 2=4,………………………………11分双曲线方程为22145y x -=.………………………………………12分18.本题满分12分解:将方程415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩t 为参数化为普通方程得,3x +4y +1=0,………3分将方程2θ+4π化为普通方程得,x 2+y 2-x +y =0, ……………6分 它表示圆心为12,-12,半径为22的圆, …………………………9分则圆心到直线的距离d =110, …………………………………………10分 弦长为2211721005r d -=-=. …………………………………12分20.文本题满分12分解:由fx =x 3-ax 2得f ′x =3x 2-2ax =3xx -23a.…………3分 1若fx 在2,3上单调,则23a ≤0,或0<23a≤2,解得:a ≤3.…………6分∴实数a 的取值范围是-∞,3.…………8分 2若fx 在4,6上不单调,则有4<23a<6,解得:6<a <9.…………11分 ∴实数a 的取值范围是6,9.…………12分20.理本题满分12分解:1以A 为原点,AB ,AD ,AP 分别为x ,y ,z 轴建立直角坐标系,…………2分由条件知:AF =2,…………3分∴F 0,2,0,P 0,0,219,C 8,6,0.…4分从而E 4,3,19,∴EF =222(40)(32)(190)-+-+-=6.…………6分 2证明:EF =-4,-1,-19,PC =8,6,-219,…………8分 ∵EF PC ⋅=-4×8+-1×6+-19×-219=0,…………10分 ∴EF ⊥PC .…………12分第一课件网系列资料 .。
高二数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.设,,为整数(),若和被除得的余数相同,则称和对模同余,记作,已知,且,则的值可为( ). A .2011 B .2012 C .2009 D .2010 2.直线与圆的位置关系为A .相交B .相切C .相离D .不确定3.已知平面向量,,且,则( )A .B .C .D .4.设有一个回归方程为y=2-2.5x,则变量x 增加一个单位时( ) A .y 平均增加2.5个单位 B .y 平均增加2个单位 C .y 平均减少2.5个单位D .y 平均减少2个单位5. 下列关于残差的叙述正确的是( ) A .残差就是随机误差 B .残差就是方差 C .残差都是正数D .残差可用来判断模型拟合的效果 6.下列在曲线上的点是....7.已知向量,其中x>0.若,则x的值为()A.8 B.4 C.2 D.08.在(1-x)5-(1-x)6的展开式中,含x3的项的系数是()A.-30 B.5 C.-10 D.109.从的展开式中任取一项,则所取项为有理项的概率是()A. B. C. D.10.在棱长为1的正方体ABCD—中,M和N分别为和的中点,那么直线AM与CN所成角的余弦值是A. B. C. D.11.已知点是抛物线的焦点,是抛物线上的两点,,则线段的中点到轴的距离为()A. B. C. D.12.福利彩票“双色球”中红色球的号码由编号为01,02,…,33的33个个体组成,小明利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第7列和第8列数字开始由左到右依次选取两个数字,则选出来的第4个红色球的编号为 ()A. 24B. 06C. 20D. 1713.在中,角,,所对的边分别是,,,且,,,则()A. B. C.或 D.或14.化极坐标方程为直角坐标方程为()A.或B .C .或D .15.已知是角终边上一点,则的值等于( )A. B. C. D.16.设棱锥的底面是正方形,且,的面积为,则能够放入这个棱锥的最大球的半径为A. B. C. D.17.若,则下列不等式①;②③;④中,正确的不等式有().A.1个 B.2个 C.3个 D.4个18.设函数的导函数为,则最大值为()A.B.C.D.19.函数上既有极大值又有极小值,则的取值范围为A. B. C. D.20.在等比数列{an}中,Sn=k-()n,则实数k的值为()A. B.1 C. D.2二、填空题21.一只袋中装有大小相同的4只小球,其中2只白球,2只黑球,从中一次摸出2只球,则恰好是1只白球1只黑球的概率是▲ .22.设函数,则函数的最小正周期为__________,单调递增区间为__________.23.在平面直角坐标系中,椭圆的中心为原点,焦点在轴上,离心率为。
高二数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知偶函数在区间单调增加,则满足的的取值范围是 ( ) A .B .C .D .2.在正方体中,异面直线与所成的角为( )A .B .C .D .3.( )过点,且在轴上截距是轴上截距的倍的直线方程为A .或B .或C .或D .或4.用数学归纳法证明“”()时,从 “”时,左边应增添的式子是 ( ) A . B .C .D .5.设成等比数列,其公比为2,则的值为( )A .B .C .D .1 6.复数等于( )A .-1B . 1C .iD .-i 7.设,则此函数在区间(0,1)内为( )A .单调递减,B .有增有减C .单调递增,D .不确定 8.设x ,y 满足,则的最大值是( )A.3 B.4 C.5 D.69.在锐角△ABC中,已知||=4,||=1,S△ABC=,则等于()A. B.13 C. D.1710.过点且与直线平行的直线方程是( )A. B. C. D.11.等差数列的前项和当首项和公差变化时,若是一个定值,则下列各数中为定值的是()A. B. C. D.12.已知,且,则()A. B. C. D.13.复数=()A.﹣i B.﹣1 C.i D.114.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是().A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度15.若直线经过点和,则直线的倾斜角为()A. B. C. D.不存在16.若,则的值为()A.1 B.20 C.35 D.717.下列说法正确的是()A.命题“若,则”的逆命题是“若,则”B.命题“若,则”的否命题是“若,则”C.已知,则“”是“”的充要条件D.已知,则“”是“”的充分条件18.集合,从A中随机取出一个元素,设ξ=m2,则Eξ=A. B. C. D.19.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()20.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( )A.12种 B.10种 C.9种 D.8种二、填空题21.若数列满足,则等于_____________.22.若复数是纯虚数,则= .23.观察下列各式:,,,,,…,则=__________.24.函数的图象恒过定点A,若点A在一次函数的图象上,其中则的最小值为25.椭圆的焦点是,为椭圆上一点,且是与的等差中项,则椭圆的方程为____________.26.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:为了检验“喜欢玩电脑游戏与认为作业多”是否有关系,根据表中数据,得到=4.84值,对照临界值表,有的把握认为“喜欢玩电脑游戏与认为作业多”之间有相关关系.27.关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是________.28.现有4个男生和3个女生作为7个不同学科的科代表人选,若要求体育科代表是男生且英语科代表是女生,则不同的安排方法的种数为_________(用数字作答).29.二进制数转换成十进制数是.30.点在两直线和之间的带状区域内(含边界),则的最小值为_____________.三、解答题31.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人的比例?说明理由.附:K2=32.如图,在直四棱柱中,底面四边形是直角梯形其中,,且.(Ⅰ)求证:直线平面;(Ⅱ)试求三棱锥-的体积.33.已知命题不等式的解集为,命题是减函数.若或为真命题,且为假命题,求实数的取值范围.34.求与椭圆有共同焦点,且过点的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率。
i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。
高二数学期末考试复习试题一、 选择题 :(本大题共12小题 ,每小题5分,共60分) 1.下列给出的赋值语句中正确的是( ).A .4M =B .M M =-C .3B A ==D .0x y += 2. 在如图所示的“茎叶图”表示的数据中,众数和中位数分别 ( ).A.23与26 B .31与26 C .24与30D .26与30 3.图l 是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为1A 、2A 、…、m A (如2A 表示身高(单位:cm )在[150,155)内的学生人数).图2是统计图l 中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是.9.8.7.6Ai B i C i D i <<<<,4. 将一个各个面上均涂有颜色的正方体锯成()33n n ≥个同样大小的小正方体,从这些小正方体中任取1个,则其中三面都涂有颜色的概率为( ) (A )31n (B )34n (C )38n (D )21n5.函数[]2()255f x x x x =--∈-,,,在定义域内任取一点0x ,使0()0f x ≤的概率是( ).A.110B.23C.310D.456.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A 、3个1 2 42 03 5 6 3 0 1 14 12球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A 的球,则在第二号盒子中任取一个球;若第一次取得标有字母B 的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为( ) A .0.59 B .0.54 C .0.8 D .0.157.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是1/70.根据这位负责人的话可以推断出参加面试的人数为( ) A .21B .35C .42D .708.某厂生产的零件外直径ξ~N (10,0.04),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.9cm 和9.3cm ,则可认为( ) A .上午生产情况正常,下午生产情况异常 B .上午生产情况异常,下午生产情况正常 C .上、下午生产情况均正常 D .上、下午生产情况均异常9. 310(1)(1)x x -+的展开式中,5x 的系数是( )A.297- B.252- C.297 D.20710.四棱锥的8条棱分别代表8种不同的化工产品,有公共点的两条棱所代表的化工产品在同一仓库中存放是危险的,没有公共点的棱所代表的化工产品在同一仓库中存放是安全的。
高二数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在复平面内,复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列命题正确的是 A .直线与直线c 所成角相等,则 B .直线与平面成相等角,则C .平面与平面均垂直,则D .直线均在平面外,且,,则3.已知是的内角,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知抛物线,过点向抛物线引两条切线,A 、B为切点,则线段AB 的长度是 ( )A .B .C .D .5.若的展开式中,各项系数的和与各项二项式系数的和之比为64,则 的值为( ) A . 4 B . 5 C . 6 D .76.复数满足,则的共轭复数的虚部是A .B .C .D .7.5人站成一排,甲、乙两人之间恰有1人的不同站法的种数为: A .18 B .24 C .36 D .488.已知全集,则正确表示集合和关系的韦恩(Venn)图是()9.直线,当变动时,所有直线都通过定点A.(0,0) B.(0,1) C.(3,1) D.(2,1)10.在三棱柱中,已知平面,此三棱柱各个顶点都在一个球面上,则球的体积为()A.B.C.D.11.下列命题中的真命题是 ( )A.,使得B.C.D.12.设椭圆C:的左焦点为(﹣2,0),离心率为,则C的标准方程为()A. B. C. D.13.在约束条件下,当3≤s≤5时,目标函数z=3x+2y的最大值的变化范围是()A. B.[7,8] C.[6,8] D.[7,15]14.命题“若∠C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.0 B.1 C.2 D.315.已知,则()A. B. C. D.16.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于( )A.2 B.18 C.2或18 D.1617.双曲线的离心率为 . 18.函数=+的定义域为( ).A . B.C .D .19. 观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( ) A .f (x ) B .-f (x ) C .g (x ) D .-g (x ) 20.已知双曲线(a >0,b >0)的离心率为,则椭圆的离心率为( )A .B .C .D .二、填空题21.如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题. ①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是22.给出下列各对函数:①,②,③,④,其中是同一函数的是______________(写出所有符合要求的函数序号) 23.若,,,则下列不等式: ①;②;③;④.其中成立的是________(写出所有正确命题的序号).24.设S n 是等差数列{a n }的前n 项和,若a 1>0,S 8=S 13,S k =0,则k 的值为 .25.(x ﹣2y )(x+y )8的展开式中,x 2y 7的系数为 .(用数字作答) 26.已知离散型随机变量的分布列如下表.若,,则_ _,0 1227.同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n 个图案中需用黑色瓷砖 块(用含n 的代数式表示)。
高中高二下学期数学期末测试卷高中高二下学期数学期末测试卷本文导航1、首页2、高二下学期数学期末测试卷答案-2 高中高二下学期数学期末测试卷答案[编辑推荐]xx为大家带来高中高二下学期数学期末测试卷答案,希望大家喜欢下文!一选择题1.B2.D3.C4.D5.A6.C7.A8.D9.A10.B二填空题11.,使得12.13.5314.(2)(3)15.三解答题16.解:由题意可知,抛物线的焦点在x轴,又由于过点,所以可设其方程为 =2所以所求的抛物线方程为所以所求双曲线的一个焦点为(1,0),所以c=1,所以,设所求的双曲线方程为而点在双曲线上,所以解得所以所求的双曲线方程为.17.解:p命题为真时, = 0,即a ,或a -1.①q命题为真时,2-a 1,即a 1或a -.②(1)p、q至少有一个是真命题,即上面两个范围的并集为a -或a .故p、q至少有一个为真命题时a的取值范围是.(2)p q是真命题且p q是假命题,有两种情况:p真q假时,故p q是真命题且p q是假命题时,a的取值范围为.18.解:(1)因为,令,解得或,所以函数的单调递减区间为(2)因为,且在上,所以为函数的单调递增区间,而,所以所以和分别是在区间上的最大值和最小值于是,所以,所以,即函数在区间上的最小值为本文导航1、首页2、高二下学期数学期末测试卷答案-2 19.解:(1)设点,则依题意有,整理得,由于,所以求得的曲线C的方程为.(2)由,消去得,解得x1=0,x2=分别为M,N的横坐标)由得,所以直线的方程或.20.解:(1)由函数f(x)图象过点(-1,-6),得m-n=-3,由f(x)=x3+mx2+nx-2,得f (x)=3x2+2mx+n,则g(x)=f (x)+6x=3x2+(2m+6)x+n;而g(x)图象关于y轴对称,所以-=0,所以m=-3,代入①得n=0.于是f (x)=3x2-6x=3x(x-2).由f (x) 0得x 2或x 0,故f(x)的单调递增区间是(- ,0),(2,+ );由f (x) 0得0故f(x)的单调递减区间是(0,2).(2)解:由在(-1,1)上恒成立,得a 3x2-6x对x (-1,1)恒成立.∵-121.解:(1)因为椭圆E:(a,b 0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即,则△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.考生们只要加油努力,就一定会有一片蓝天在等着大家。
高二下学期理数期末考试试卷一、单选题1. 已知复数为虚数单位,是的共轭复数,则()A .B .C .D .2. 对于命题“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体()A . 各正三角形内的点B . 各正三角形的中心C . 各正三角形某高线上的点D . 各正三角形各边的中点3. 用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()A . a、b至少有一个不为0B . a、b至少有一个为0C . a、b全不为0D . a、b中只有一个为04. 设函数可导,则等于()A .B .C .D .5. 如图所示,阴影部分的面积为()A .B . 1C .D .6. 已知函数的导函数为,且满足,则()A .B . 1C . -1D .7. 函数的递增区间为()A .B .C .D .8. 已知(1+x)n的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为()A . 29B . 210C . 211D . 2129. 下面几种推理过程是演绎推理的是()A . 某校高三班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人B . 两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°C . 由平面三角形的性质,推测空间四边形的性质D . 在数列{an}中,a1=1,an=,由此归纳出{an}的通项公10. 函数在区间的图象大致为()A .B .C .D .11. 古有苏秦、张仪唇枪舌剑驰骋于乱世之秋,今看我一中学子论天、论地、指点江山。
现在高二某班需从甲、乙、丙、丁、戊五位同学中,选出四位同学组成重庆一中“口才季”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、二辩、三辩、四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同组队方式有()A . 14种B . 种C . 种D . 24种12. 已知定义在实数集上的函数满足,且的导数在上恒有,则不等式的解集为()A .B .C .D .二、填空题13. =________。
B .C .D .8.若 S = ⎰ 2 x 2dx , S = ⎰ 2 dx, S = ⎰ 2 e x d x ,则 S , S , S 的大小关系为( )1 x 1 1高二年级下学期期末考试数学试卷(考试时间:120 分钟;满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设 Z = 10i3 + i,则 Z 的共轭复数为( )A . -1 + 3iB . -1 - 3iC .1+ 3iD .1- 3i2.6 把椅子摆成一排,3 人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24v v v v3.已知 a = (1- t,2 t - 1,0), b = (2, t, t ), 则 b - a 的 最小值是( )A . 5B . 6C . 2D . 3uuuv uuuv uuuv v4.已知正三棱锥 P - ABC 的外接球 O 的半径为1 ,且满足OA + OB + OC = 0, 则正三棱锥的体积为()A .344 2 45.已知函数 f ( x ) = - x, 且a < b < 1,则 ( )e x A .f (a) = f (b )B . f (a) < f (b )C . f (a) > f (b )D . f (a),f (b )大小关系不能确定6.若随机变量 X ~ B(n, p ), 且 E( X ) = 6, D( X ) = 3,则P( X = 1) 的值为()A . 3 2-2B . 2-4C . 3 2-10D . 2-8作检验的产品件数为()A.6B.7C.8D.91123123A.S<S<S123B.S<S<S213C.S<S<S231D.S<S<S3211A . n + 1B . 2nC .D . n 2 + n + 112.设点 P 在曲线 y = e x 上,点 Q 在曲线 y = ln(2 x) 上,则 PQ 的最小值为()13.已知复数 z = (i 是虚数单位) ,则 z = __________;15.二项式 (x- )8的展开式中,x 2 y 2的系数为 __________; 16.已知 f (n ) = 1 + + + … + (n ∈ N * ), 经计算得f (4) > 2, f (8) > , f (16) > 3 ,f (32) > , 则有__________(填上合情推理得到的式子).17.已知曲线 C 的极坐标方程是 ρ = 2cos(θ + ) ,以极点为平面直角坐标系的原点,极轴为 x,9.平面内有 n 条直线,最多可将平面分成 f (n) 个区域,则 f (n) 的表达式为()n 2 + n + 2 210.设m 为正整数,( x + y)2m 展开式的二项式系数的最大值为 a ,( x + y)2m +1 展开式的二项式系数的最大值为 b .若13a = 7b ,则 m = ( )A .5B .6C .7D .811.已知一系列样本点 ( x , y ) (i = 1,2,3, … , n) 的回归直线方程为 y = 2 x + a, 若样本点 (r,1)与(1,s) ii的残差相同,则有( ) A . r = s B . s = 2r C . s = -2r + 3 D . s = 2r + 112A .1- ln2B . 2(1 - ln 2)C .1+ ln2D . 2(1 + ln2)二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)5i1 + 2i14.直线 2 ρcos θ = 1 与圆 ρ = 2cos θ 相交的弦长为__________;y y x1 1 1 52 3 n 272三、解答题(本大题共 6 小题,17 小题 10 分, 18-22 题每小题 12 分,共 70 分;解答应写出文字说明、证明过程或演算步骤)π 3轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线 l 的参数方程是⎧⎪ x = -1 - t, ⎨⎪⎩ y = 2 + 3t(t 是参数) 设点 P(-1,2) .(Ⅰ)将曲线 C 的极坐标方程化为直角坐标方程,将直线 l 的参数方程化为普通方程;(Ⅱ)设直线 l 与曲线 C 相交于 M , N 两点,求 PM PN 的值.已知从该班随机抽取1人为喜欢的概率是.(参考公式:K2=,其中n=a+b+c+d)20.已知数列{x}满足x=,xn+1=18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的2⨯2列联表:喜欢不喜欢合计男生18女生6合计6013(Ⅰ)请完成上面的2⨯2列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.参考临界值表:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.072 2.7063.841 5.024 6.6357.87910.828n(ad-bc)2(a+b)(c+d)(a+c)(b+d)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设a,a,a分别表123示甲,乙,丙3个盒中的球数.(Ⅰ)求a=2,a=1,a=0的概率;123(Ⅱ)记ξ=a+a,求随机变量ξ的概率分布列和数学期望.1211n121+xn,其中n∈N*.(Ⅰ)写出数列{x}的前6项;n(Ⅱ)猜想数列{x}的单调性,并证明你的结论.2na21 .如图,四棱锥 P - ABCD 中,底面 ABCD 是梯形, AD / / B C , AD > BC , ∠BAD = 900 ,P A ⊥ 底面ABCD, P A = AB, 点 E 是PB 的中点 .(Ⅰ)证明: PC ⊥ AE ;(Ⅱ)若 AB = 1, AD = 3, 且P A 与平面 PCD 所成角的大小为 450 ,求二面角 A - PD - C 的正弦值.22.已知函数 g ( x ) =x, f ( x ) = g ( x ) - ax .ln x(Ⅰ)求函数 g ( x ) 的单调区间;(Ⅱ)若函数 f ( x ) 在 (1, +∞)上是减函数,求实数 的最小值;(Ⅲ)若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a(a > 0) 成立,求实数 a 的取值范围.12 1 2( x - )2 + ( y + )2 = 1 ;⎪⎪ (Ⅱ) 直线 l 的参数方程化为标准形式为 ⎨ (m 是参数) ,①19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为 , , .下学期高二年级期末考试数学参考答案一、选择题题号答案1D 2D 3C 4A 5C 6C 7C 8B9C10B 11C 12B二、填空题13.514.315.7016. f (2n) >n + 22(n ≥ 2, n ∈ N * )三、解答题17 . 解 : ( Ⅰ ) 曲 线 C 的 极 坐 标 方 程 化 为 直 角 坐 标 方 程 为 : x 2 + y 2 = x - 3 y,即1 32 2直线 l 的参数方程化为普通方程为: 3x + y + 3 - 2 = 0 .⎧1 x = -1 - m ,2 ⎪ y = 2 +3 m ⎪⎩ 2将①式代入 x 2 + y 2 = x - 3 y ,得: m 2 + (2 3 + 3)m + 6 + 2 3 = 0 ,②由题意得方程②有两个不同的根,设 m , m 是方程②的两个根,由直线参数方程的几何意义知:1 2PM PN = m m = 6 + 2 3 .1218.解:(Ⅰ)列联表如下;喜欢 男生 14 女生 6 合计20 不喜欢18 22 40 合计 32 28 60(Ⅱ)根据列联表数据,得到 K 2 = 60(14⨯ 22 - 6 ⨯18)2 32 ⨯ 28 ⨯ 20 ⨯ 40≈ 3.348 > 2.706,所以有 90%的可靠性认为“喜欢与否和学生性别有关”.1 1 16 3 2p=p(a=2,a=1,a=0)=C1()2()=.3633683323628 3626323328p(a=3,a=0,a=0)=.8期望E(ξ)=0⨯+1⨯+2⨯+3⨯=.20.解:(Ⅰ)由x=,得x==;21+x3由x=,得x==;31+x5由x=,得x==;51+x8由x=,得x==;81+x13由x=8,得x==;131+x21(Ⅰ)由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,111123(Ⅱ)由题意知,ξ可能的取值是0,1,2,3.1p(ξ=0)=p(a=0,a=0,a=3)=,12311113 p(ξ=1)=p(a=0,a=1,a=2)+p(a=1,a=0,a=2)=C1()()2+C1()()2= 123123p(ξ=2)=p(a=2,a=0,a=1)+p(a=1,a=1,a=1)+p(a=0,a=2,a=1)123123123 11111113=C1()2()+A3()()()+C1()2()=3p(ξ=3)=p(a=0,a=3,a=0)+p(a=1,a=2,a=0)+p(a=2,a=1,a=0)+ 1231231231123故ξ的分布列为:ξ0123P13883818 1331388882112121213232315343518454113565(Ⅱ)由(Ⅰ)知x>x>x,猜想:数列{x}是递减数列.2462n下面用数学归纳法证明:①当n=1时,已证命题成立;(Ⅰ)证明: AE = ⎛ 0, b , b ⎫⎪ , PC = (c, b , - b ) , 所以 AE ⋅ PC = 0 ⨯ c + b ⋅ b + b ⋅ (-b ) = 0 , r 由 ⎪⎨ur uuur即 ⎪⎨ 令 z = 1 ,得 m = ⎛ 1 , 1 - c , 1⎫⎪ . ⎩ ⎩ 1 ⎛ c ⎫2 3 ⎝ 3 ⎭ ur AP r |②假设当 n = k 时命题成立,即 x > x2k 2k +2易知 x > 0 ,当 n = k + 1时,2k.x2k +2- x 2k +4=11 + x2k +1-11 + x2k +3==x- x2k +32k +1(1+ x)(1+ x)2k +12k +3x - x2k 2k +2(1+ x )(1+ x )(1+ x2k 2k +1 2k +2)(1+ x2k +3)> 0即 x2( k +1)> x2( k +1)+ 2.也就是说,当 n = k + 1时命题也成立.根据①②可知,猜想对任何正整数 n 都成立.21. 解:解法一(向量法):建立空间直角坐标系 A - xyz ,如图所示.根据题设,可设 D(a, 0, 0), B(0, b , 0), P(0, 0, b ), C (c, b , 0) ,uuuruuu⎝2 2 ⎭ uuur uuur22uuur uuur所以 AE ⊥ PC ,所以 PC ⊥ AE .uuur(Ⅱ)解:由已知,平面 P AD 的一个法向量为 AB = (0, 1, 0) .ur设平面 PCD 的法向量为 m = ( x , y , z) ,ur uuur⎧m ⋅ PC = 0,⎪m ⋅ PD = 0,⎧cx + y - z = 0,⎪ 3x + 0 ⋅ y - z = 0,ur⎝ 3 3 ⎭uuur而 AP = (0, 0, 1) ,依题意 P A 与平面 PCD 所成角的大小为 45︒ ,ur uuur所以 sin 45︒ = 2 = | m ⋅ uuuu ,即 2 | m || AP | 1 1 = 2+ 1 - ⎪ + 17,, 1⎪⎪ . 3 cos θ = ur uuur = PG ⋅ DF 3解得 BC = c = 3 - 2 ( BC = c = 3 + 2 舍去),所以ur ⎛ 1m = 3 ,⎝2 ⎫⎭设二面角 A - PD - C 的大小为 θ ,则ur uuur m ⋅ AB | m || AB | 2 31 2+ + 1 3 3= 3 , 3所以 sin θ = 6 ,所以二面角 A - PD - C 的正 3弦值为6 3 . 解法二(几何法): Ⅰ)证明:因为 P A ⊥ 平面 ABCD ,BC ⊂ 平面 ABCD ,所以 BC ⊥ P A .又由 ABCD 是梯形, AD ∥ BC , ∠BAD = 90︒ ,知 BC ⊥ AB ,而 AB I AP = A , AB ⊂ 平面 P AB , AP ⊂ 平面 P AB ,所以 BC ⊥ 平面 P AB .因为 AE ⊂ 平面 P AB ,所以 AE ⊥ BC .又 P A = AB ,点 E 是 PB 的中点,所以 AE ⊥ PB .因为 PB I BC = B , PB ⊂ 平面 PBC , BC ⊂ 平面 PBC ,所以 AE ⊥ 平面 PBC .因为 PC ⊂ 平面 PBC ,所以 AE ⊥ PC .(Ⅱ)解:如图 4 所示,过 A 作 AF ⊥ CD 于 F ,连接 PF ,因为 P A ⊥ 平面 ABCD , CD ⊂ 平面 ABCD ,所以 CD ⊥ P A ,则 CD ⊥ 平面 PAF ,于是平面 PAF ⊥ 平面 PCD ,它们的交线是 PF .过 A 作 AG ⊥ PF 于 G ,则 AG ⊥ 平面 PCD ,即 P A 在平面 PCD 上的射影是 PG ,所以 P A 与平面 PCD 所成的角是 ∠APF .由题意, ∠APF = 45︒ .在直角三角形 APF 中, P A = AF = 1 ,于是 AG = PG = FG = 2 .2在直角三角形 ADF 中, AD = 3 ,所以 DF = 2 .方法一:设二面角 A - PD - C 的大小为 θ ,则 cos θ = △S PDG △SAPD 2 = = 2=P A ⋅ AD 1⨯ 3 3⨯ 2,8x = ln x - 1,+ 2 = , 即 x = e 2时, f '( x ) max = - a .所以 - a ≤ 0, 于是a ≥, 故a 的最小值为 .=1+ a = . 4 4所以 sin θ = 6 ,所以二面角 A - PD - C 的正弦值为 6 .33方法二:过 G 作 GH ⊥ PD 于 H ,连接 AH ,由三垂线定理,得 AH ⊥ PD ,所以 ∠AHG 为二面角 A - PD - C 的平面角,在直角三角形 APD 中, PD = P A 2 + AD 2 = 2 , AH = P A ⋅ AD = 1⨯ 3 = 3 .PD2 22在直角三角形 AGH 中, sin ∠AHG = AG = 2 = 6 ,AH 33 2所以二面角 A - PD - C 的正弦值为 6 .322.解:由已知,函数 g ( x ) , f ( x ) 的定义域为 (0,1) U (1,+∞),且 f ( x ) =x- ax .ln x(Ⅰ)函数 g '( x ) = 1ln x - x ⋅(ln x)2 (ln x)2当 0 < x < e 且x ≠ 1时,g '( x ) < 0 ;当 x > e 时,g '( x ) > 0 .所以函数 g ( x ) 的单调减区间是 (0,1),(1,e), 增区间是(e , ∞) .(Ⅱ)因 f ( x ) 在 (1, +∞) 上为减函数,故 f '( x ) =所以当 x ∈ (1,+∞) 时, f '( x )max ≤ 0 .ln x - 1 (ln x)2- a ≤ 0 在 (1, +∞) 上恒成立.又 f '( x ) = ln x - 1 1 1 1 1 1- a = -( )2 + - a = -( - )2 + - a,(ln x) ln x ln x ln x 2 4故当1 1 1ln x 2 4 1 1 1 4 4 4(Ⅲ)命题“若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a 成立 ”等价于1212“当 x ∈ [e , e 2 ]时, 有f ( x ) min≤ f '( x )max + a ” .由(Ⅱ)知,当 x ∈ [e , e 2 ]时, 有f '( x )- a,∴ f '( x )max1min≤”.①当a≥时,由(Ⅱ)知,f(x)在[e,e2]上为减函数,=f(e)=-ae2≤,故a≥-②当0<a<时,由于f'(x)=-(-)2+-a在[e,e2]上为增函数,故f'(x)的值域为[f'(e),f'(e2)],即[-a,-a].,ln x -ax≤,x∈(e,e2).4->->-=,与0<a<综上,得a≥1问题等价于:“当x∈[e,e2]时,有f(x)1 41 4则f(x)min2e21112424e2. 1111 4ln x2414由f'(x)的单调性和值域知,∃唯一x∈(e,e2)使f'(x)=0,且满足:00当x∈(e,x)时,f'(x)<0,f(x)为减函数;当x∈(x,e2)时,f'(x)>0,f(x)为增函数;所以,f(x)min =f(x)=x001所以,a≥1ln x11111114x ln e24e2444矛盾,不合题意.1-24e2.1.已知集合 M = x x 2 < 2x + 3 , N = x x < 2 ,则 M ⋂ N = (){}3⎩- log 2 ( x + 1) f ( x ) = ⎨ “ 12 ,则可以利用方程 x = 求得 x ,高二年级第二学期期末考试数学试题一、选择题(每小题 5 分,共 50 分){ }A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式 e i x = cos x + i sin x ( i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。
高二数学期末复习(四)
一.选择题
1.圆x 2+y 2+2x +6y +9=0与圆x 2+y 2-6x +2y +1=0的位置关系是 ( )
(A )相离 (B )相外切 (C )相交 (D )相内切
2.椭圆(1-m )x 2-my 2=1的长轴长是 ( )
(A )
m m --112 (B )m m --2 (C )m m 2 (D )m
m
--11
3.椭圆的两个焦点和中心把两准线间的距离四等分,则一焦点与短轴两端点连线的夹角是 (A )
4π (B )3π (C )2
π (D )32π ( )
4.“ab <0”是“方程ax 2+by 2=c 表示双曲线”的 ( )
(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )非充分非必要条件
5.设F 1, F 2是椭圆22
194
x y +=的两个焦点,P 在椭圆上,已知P , F 1, F 2是一个Rt △的三个顶点,且|P F 1|>|P F 2|,则|P F 1| : |P F 2|的值是 ( )
(A )
25或2 (B )27或23 (C )25或23 (D )2
7
或2 6.已知点F (41, 0),直线l : x =-4
1
,点B 是l 上的动点,若过B 垂直于y 轴的直线与线段BF 的垂直平分线相交
于点M ,则点M 的轨迹是 ( )
(A )双曲线 (B )椭圆 (C )圆 (D )抛物线
7.直线x -2y -3=0与圆x 2+y 2-4x +6y +4=0交于A , B 两点,C 为圆心,则△ABC 的面积是
(A )25 (B )45 (C (D ) ( )
8.以双曲线
22
1916
x y -=的右焦点为圆心,且与两条渐近线相切的圆的方程是 ( ) (A )(x +5)2+y 2=9 (B )(x +5)2+y 2=16 (C )(x -5)2+y 2=9 (D )(x -5)2+y 2=16
9.若椭圆
221x y m n +=(m >n >0)与双曲线22
1x y s t
-=(s >0, t >0)有相同的焦点F 1和F 2(m ≠s ),P 是两曲线的一个公共点,则|PF 1|·|PF 2|的值是 ( )
(A (B )m -s (C )2m s - (D )22
4
m s -
10.过P (1, 0)的直线l 与抛物线y 2=2x 交于两点M , N ,O 为原点,若k O M +k O N =1,则直线l 的方程是
( )
(A )2x -y -1=0 (B )2x +y +1=0 (C )2x -y -2=0 (D )2x +y -2=0
二.填空题:
11.若实数x , y 满足(x -2)2+y 2=1,则
y
的取值范围是 .
.
13.椭圆x 2+4y 2=16被直线y =x +1截得的弦长为 .
14.以抛物线y 2=4x 的焦点为圆心,且被抛物线的准线截得的弦长为2的圆的方程是 . 三.解答题:
15.已知圆的方程x 2+y 2=25,点A 为该圆上的动点,AB 与x 轴垂直,B 为垂足,点P 分有向线段BA 的比λ=
2
3
. (1) 求点P 的轨迹方程并化为标准方程形式; (2) 写出轨迹的焦点坐标和准线方程.
16.已知椭圆的中心在原点,焦点在x 轴上,连接它的四个顶点得到的四边形的面积是42,分别连接椭圆上一点(顶点除外)和椭圆的四个顶点,连得线段所在四条直线的斜率的乘积为4
1
,求这个椭圆的标准方程.
17.设抛物线y 2=2px (p >0)上各点到直线3x +4y +12=0的距离的最小值为1,求p 的值.
18.直线y=x+b与双曲线2x2-y2=2相交于A, B两点,若以AB为直径的圆过原点,求b的值.
19.已知椭圆的中心在原点,准线为x=±42,若过直线x-2y=0与椭圆的交点在x轴上的射影恰为椭圆的焦点,
(1)求椭圆的方程;
(2)求过左焦点F1且与直线x-2y=0平行的弦的长.
20.如图,已知F(0, 1),直线l: y=-2,圆C: x2+(y-3)2=1,
(1)若动点M到点F的距离比它到直线l的距离小1,求动点M的轨迹E的方程;
(2)过轨迹E上一点P作圆C的切线,当四边形P ACB的面积S 最小时,求点P的坐标及S的最小值。
参考答案
二.解答题: 11.[-
33, 3
3] 12.x 2+y 2±8x =0 13.
5
38
4 14.(x -1)2+y 2=
5 三.解答题
15.设点P (x , y )是轨迹上任意一点,点A 的坐标是(x 1, y 1), 点B 的坐标是(x 1, 0), ∵点P 分有向线段BA 的比λ=
2
3, ∴
⎝
⎛++=
=23
12301
1y y x x , ∴ ⎪⎩
⎪⎨⎧==y y x
x 3511, 又点A 在圆x 2+y 2
=25上, ∴ x 2
+925y 2
=25, 即
19
2522=+y x (y ≠0), 椭圆
192522=+y x 的焦点坐标是(-4, 0), (4, 0), 准线方程是x =±425. 16.设所求的方程为122
22=+b
y a x (a >b >0), 椭圆上一点为P (x 0, y 0),
则椭圆的四个顶点分别为(a , 0), (-a , 0), (0, b ), (0, -b ),
由已知四直线的斜率乘积为41
,得2
22
022020x b y a x y -⋅-=41, ∵ b 2x 02+a 2y 02=a 2b 2
, ∴
y 02=
22022)(a x a b -, x 02=2
2
022)
(b
y b a -, 代入得44a b =41
, 又由已知2ab =42, 及a >0, b >0, 得a =2, b =2,
∴ 椭圆 方程是2
42
2y x +=1. 17.设P (x 0, y 0)为抛物线y 2=2px 上任意一点,则P 到直线3x +4y +12=0的距离
S =|1243|00++y x , 将x 0=y 2
0代入得S=168)4(32
20p p p y -
++,
∵ S 的最小值是1, ∴ 8p -9162p >0(否则若8p -9
162p ≤0,得S 的最小值为0) 且当y 0=-34p
时,
|9
168|1032p p p =1, 解得p =821
.。