经济数学-微积分试卷(2007年-2008年第一学期)_经济数学
- 格式:doc
- 大小:267.00 KB
- 文档页数:9
经济数学-微积分模拟试题-按模块分类一、单项选择题(每小题3分,)分,)1.下列各函数对中,(下列各函数对中,( D )中的两个函数相等.)中的两个函数相等.A. x x g x x f ==)(,)()(2B. 1)(,11)(2+=--=x x g x x x f C. x x g x x f ln 2)(,ln )(2== D. 1)(,cos sin )(22=+=x g x x x f2.已知1sin )(-=xx x f ,当(,当( A )时,)(x f 为无穷小量.为无穷小量.A. 0®xB. 1®xC. -¥®xD. +¥®x 3. ò¥+13d 1x x ( C ).). A. 0 B. 21- C. 21D. ¥+1.下列函数中为奇函数的是(下列函数中为奇函数的是( ).B (A) x x y sin = (B) x x y -=3 (C) xxy -+=ee (D) x x y +=222.下列结论正确的是(下列结论正确的是( ).).C C(A) 若0)(0=¢x f ,则0x 必是)(x f 的极值点的极值点(B) 使)(x f ¢不存在的点0x ,一定是)(x f 的极值点的极值点(C) 0x 是)(x f 的极值点,且)(0x f ¢存在,则必有0)(0=¢x f (D) 0x 是)(x f 的极值点,则0x 必是)(x f 的驻点的驻点 3.下列等式成立的是(下列等式成立的是( ).D (A) x x xd d 1= (B) )1d(d ln x x x =(C) )d(e d e x x x --= (D) )d(cos d sin x x x =- 1.若函数xxx f -=1)(, ,1)(x x g +=则=-)]2([g f ( ).A A .-2 B .-1 C .-1.5 D .1.5 2.曲线11+=x y 在点(0, 1)处的切线斜率为()处的切线斜率为( ).). B B A .21 B .21- C .3)1(21+x D .3)1(21+-x3.下列积分值为0的是(的是( ).). C A .òpp -d sin x x x B .ò-+11-d 2e e x xxC .ò--11-d 2e e x xx D .ò-+p px x x d )(cos 1.函数()1lg +=x xy的定义域是(的定义域是( ).). D A .1->xB .0¹xC .0>xD .1->x 且0¹x 2.当+¥®x 时,下列变量为无穷小量的是(时,下列变量为无穷小量的是( )D A .)1ln(x +B . 12+x x C .21e x - D . x x sin3. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ). B A .)(d )(x F x x f xa =ò B .)()(d )(a F x F x x f xa -=òC .)()(d )(a f b f x x F b a-=ò D .)()(d )(a F b F x x f ba-=¢ò二、填空题(每小题3分,)分,)6.若函数x x f +=11)(,则=-+h x f h x f )()( .)1)(11h x x +++-( 7.已知ïîïíì=¹--=1111)(2x ax x x x f ,若)(x f 在),(¥+-¥内连续,则=a .2 8.若)(x f ¢存在且连续,则ò=¢])(d [x f .)(x f ¢6.函数)1ln(42+-=x x y 的定义域是的定义域是 .]2,1(-7.曲线1)(2+=x x f 在)2,1(处的切线斜率是处的切线斜率是 .21 8.函数x x f 2cos )(=的全体原函数是的全体原函数是 .c x +2sin 216.如果函数)(x f y =对任意x 1, x 2,当x 1 < x 2时,有时,有 ,则称)(x f y =是单调减少的单调减少的.. 6. )()(21x f x f >7.已知xxx f tan 1)(-=,当,当 时,)(x f 为无穷小量.7. 0®x8.若c x F x x f +=ò)(d )(,则x f x x)d e (e--ò= . 8. c F x+--)e (6.设21010)(xx x f -+=,则函数的图形关于,则函数的图形关于 对称.6.y 轴 7.已知ïîïíì=¹--=1111)(2x ax x x x f ,若f x ()在x =1处连续,则=a . 7. 2. 28.设边际收入函数为R ¢(q ) = 2 + 3q ,且R (0) = 0,则平均收入函数为,则平均收入函数为.8. q q R 232)(+=三、微积分计算题(每小题10分,共20分)分) 11.设2sin 2cos x y x-=,求y ¢. 解;2cos 22ln 22sin x x y x x --=¢ 12. òe1d ln x x x .解:4141414121d 21ln 21d ln 222e 112e1+=+-=-=òòe e e x x x x x x x e11.设xx y 32e ln -+=,求y ¢.解:由导数运算法则和复合函数求导法则得解:由导数运算法则和复合函数求导法则得)e()(ln 32¢+¢=¢-x x yx xx 33e ln 2--=12.计算òe1d ln x x x .解:由定积分的分部积分法得解:由定积分的分部积分法得òò×-=e12e12e1d 12ln 2d ln xx x x x x x xe12242e x -=414e 2+=11.设xx y --+=1)1ln(1,求)0(y ¢. .11.解:因为.解:因为 2)1()]1ln(1[)1(11x x x xy --++---=¢ = 2)1()1ln(x x -- 所以所以 )0(y ¢= 2)01()01ln(--= 0 12.x x x d )2sin (ln +ò12.解:x x x d )2sin (ln +ò=òò+-)d(22sin 21d ln x x x x x=C x x x +--2cos 21)1(ln11.设)1ln(2++=x x y ,求)3(y ¢11.解.解 因为因为 )1(1122¢++++=¢x xx x y11)11(11222+=++++=x x x x x 7分所以所以 )3(y ¢=211)3(12=+ 10分12.计算.计算xxxd e 2121ò12.解.解 x xx d e 2121ò=21211211e e e)1(d e -=-=-òx xx10分五、应用题(20分)分)15.已知某产品的边际成本34)(-=¢q q C (万元/百台),q 为产量(百台),固定成本为18(万元),求⑴该产品的平均成本.⑵最低平均成本.(万元),求⑴该产品的平均成本.⑵最低平均成本.解: (1)1832d )34(d )(2+-=-=¢=òòq q q q q q C C平均成本函数平均成本函数 qq q q C C 1832)(+-==2182q C -=¢,令01822=-=¢qC ,解得唯一驻点6=x (百台)(百台) 因为平均成本存在最小值,且驻点唯一,所以,当产量为600台时,可使平均成本达到最低。
经济数学试题及答案大全一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3的零点个数为()。
A. 0B. 1C. 2D. 3答案:C2. 极限lim(x→0) (sin x)/x的值为()。
A. 1B. 0C. -1D. 2答案:A3. 以下哪个函数是奇函数()。
A. y = x^2B. y = x^3C. y = x^4D. y = ln(x)答案:B4. 以下哪个选项是二阶导数()。
A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B5. 以下哪个选项是定积分的基本性质()。
A. ∫[a,b] f(x)dx = ∫[a,c] f(x)dx + ∫[c,b] f(x)dxB. ∫[a,b] f(x)dx = ∫[b,a] f(x)dxC. ∫[a,b] f(x)dx = -∫[b,a] f(x)dxD. ∫[a,b] f(x)dx = ∫[a,b] f(-x)dx答案:A6. 以下哪个选项是多元函数的偏导数()。
A. ∂f/∂xB. ∂f/∂yC. ∂f/∂zD. ∂f/∂t答案:A7. 以下哪个选项是线性代数中的矩阵运算()。
A. 矩阵加法B. 矩阵乘法C. 矩阵转置D. 矩阵求逆答案:B8. 以下哪个选项是概率论中的随机变量()。
A. X = 5B. X = {1, 2, 3}C. X = [0, 1]D. X = {x | x ∈ R}答案:B9. 以下哪个选项是统计学中的参数估计()。
A. 点估计B. 区间估计C. 假设检验D. 方差分析答案:A10. 以下哪个选项是计量经济学中的回归分析()。
A. 简单线性回归B. 多元线性回归C. 时间序列分析D. 面板数据分析答案:A二、填空题(每题2分,共20分)11. 函数f(x)=x^3-3x的导数为_________。
答案:f'(x) = 3x^2 - 312. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 4x + 3)的值为_________。
经济数学--微积分期末测试第一学期期末考试试题 ( B )一.选择题(每小题只有一个正确答案,请把正确答案前的字母填入括号,每题2分,共30分)1. 函数⎪⎩⎪⎨⎧<<-≤-=43939)(22x x x x x f 的定义域是(A );(A) )4,3[- (B) )4,3(- (C) ]4,3(- (D) )4,4(-2. 函数214y x =-的渐近线有(A); 3(A )条(B )2条(C )1条(D )0条3. 设函数)1,0()1(log 2≠>++=a a x x y a ,则该函数是(A )(A) 奇函数 (B) 偶函数 (C) 非奇非偶函数 (D) 既奇又偶函数4. 下列函数中,与3y x =关于直线y x =对称的函数是(A );33()()()()A y B x C y x D x y ===-=-5.若()f x =,则点2x =是函数()f x 的(B);()A 左连续点 ()B 右连续点 ()C 驻点 ()D 极值点6. 已知点(1,3)是曲线23bx ax y +=的驻点,则b a ,的值是(B )(A ) 9,3=-=b a (B ) 9,6=-=b a (C ) 3,3=-=b a (D ) 3,6=-=b a7. 当0x →时,下列函数极限不存在的是(C );1sin 11()()sin()()tan 1xxA B x C D x xxe +8. 极限 =-→x x x 1ln lim 0(C );()1()0()1()A B C D -不存在9.下列函数中在[-3,3]上满足罗尔定理条件的是(C );2221()()()2()(3)A xB C x D x x -+10.若函数()f x 在点0x 处可导,则极限x x x f x x f xx ∆∆--∆+→2)2()2(lim000=(C );00001()4()()3()()2()()()2A f xB f xC f xD f x '''' 11. 0x →时,下列函数中,与x 不是等价无穷小量的函数是(C )(A) x tan (B) )1ln(x + (c) x x sin - (D) x sin12.下列极限中,极限值为e的是(D);11001()lim (1)()lim (1)()lim(1)()lim (1)xxxxx x x x A x B x C D x x+→∞→∞→→++++13. 若ln xy x =,则dy =(D ); 222ln 11ln ln 11ln ()()()()x x x xA B C dx D dx x x xx---- 14.函数2()f x x =,在区间[0,1]内,满足拉格朗日中值定理的条件,其中ξ=(D);1121()()()()4332A B C D 15.若函数()f x 在(,)-∞+∞内连续,则2()x f x dx '⎡⎤=⎣⎦⎰(D). 2222()[2()()]()2()()()()()()A xf x x f x dxB xf x x f xC x f x dxD x f x ''++二.计算题(每小题7分,共56分) 1.xex x y -+-=1121,求y '解:)11()1(1)()1(1122112'-+'-+-='+'-='--xex x x ex x y xx2112211222)1(1)1(1221x e x x e x xx xx--+-=--+--+-=-- 2分 7分2. 求极限 xx x 12)1(lim +∞>- 解:1lim )1(lim 012lim)1ln(lim)1ln(12222=====++++∞→∞→∞→∞→e ee ex x xx x xx x xx x x 3. 求曲线1204=+-y x x y 在1=x 对应的点处的切线方程.解:0x =时,代入方程得 1y =;方程两边对x 求导得 020*******3='++-'y y x yx y ,将01x y ==与代入,得011x y y =='=, 故所求的切线方程为1y x -=,即1y x =+4. 设函数221()1ax x f x x bx -≥⎧=⎨-<⎩ 在1x =处可导,求常数a 和b 解:由已知()f x 在1x =连续,且21111lim ()lim()1lim ()lim(2)2x x x x f x x b b f x ax a --++→→→→=-=-=-=- 可得3b a =- ①又因()f x 在1x =处可导,且221111232(1)lim lim lim 1211(2)2()lim 1x x x x x b a x a a f x x x ax a f x a x -+++-→→→+→--+-+-+'===+=----+'==-又得2a = 代入① 得1b =故21a b ==5. 求函数2ln(14)y x =+的上凸区间、下凸区间与拐点.解:222288(14)1,,0,14(14)2xx y y y x x x -'''''====±++令得2分5分7分3分6分 7分2分2分5分7分6. 求⎰dx xx tan解:⎰⎰⎰+-=-==c x x d x x d xx dx xx cos ln 2cos cos 12cos sin 2tan 7. 求 ⎰xdx e xsin解:⎰⎰⎰⎰-=-==x x x x x x xde x e xdx e x e xde xdx e cos sin cos sin sin sin⎰--=xdx e x e x e x x x sin cos sin 移项可得c e x x xdx e x x +-=⎰)cos (sin 21sin 8. 已知2xxe 是(2)f x 的一个原函数,求()2x x f e dx -⎰22222222222222(2)()2(12)()(1)()(1)22()(1)(1)2(1)22222[(1)()]2[(1)]2222(2)(4)2x x x x xux x xx xx x x xx xf x xe e xe e x x xf u e u f e x x x x f e dx e e dx e dx de x x xe e d e e c x e c x e c ----------'==+=+∴=+∴=+∴=+=+=-+=-++-=-+++=-++=-++⎰⎰⎰⎰⎰解:三.证明题(本题6分)设函数()f x 在区间[0,]c 上连续,其导数()f x '在(0,)c 内存在且单调减少,又(0)0f =,证明不等式:()()()f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c ≤≤≤+≤)2分7分6分7分6分7分2分4分7分5分7分2分证明:0a =时,(0)0f = ()()()()f a b f b f a f b ∴+==+0a > 时,在区间[0,]a 和[,]b a b +上,()f x 满足拉格朗日定理条件,1122()(0)()()((0,)()()()()()((,)f a f f a f a a af b a f b f b a f b f b a b b a b aξξξξ-'∴==∈+-+-'==∈++-有有又()f x 在[0,]c 上单调减少,而12ξξ<21()()f f ξξ''∴<即()()()f b a f b f a a a+-<故有 ()()()f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c ≤≤≤+≤)四.应用题(本题8分)设生产t 个产品的边际成本为t t C 2100)(+=',其固定成本(即0=t 时的成本)为100元,产品单价规定为500=P 元,假定生产出的产品都能完全销售,求生产量为多少时利润最大?最大利润是多少?解:由已知,边际成本c t t dt t dt t C t C ++=+='=⎰⎰100)2100()()(2 由固定成本为100,可得100100)(02=--==t t t t C c于是有:成本函数:100100)(2++=t t t C 收入函数:t t R 500)(=利润函数:100400)100100(500)()()(22-+-=++-=-=t t t t t t C t R t L 由04002)(=+-='t t L ,得唯一驻点2000=t ,又由02)(<-=''t L ,可知,驻点0t 是极大值点,同时也是最大值点。
浙江工商大学章乃器学院2007 /2008 学年第一学期考试一试卷课程名称:微积分(上)考试方式:闭卷完成时限:120 分钟班级名称:学号:姓名:题号一二三四五六总分分值16162418206100得分阅卷人一、填空题(每题 2 分,共 16 分)1、已知 f (cos x)1cos x ,则 f f 0 222、lim ( x arctan 21arctanx)=x x x23、函数y x x 2x 1 的渐近线是4、设某商品的总收益函数在某需求量(即销量数)弹性=- 1。
2。
y = 2和y = 2 x–。
Q0处达到最大收益值,则此时需求对价格的。
5、设 f ( x)是可微函数,则d( df (x)) f ( x ) + C。
6、已知 f 'x dx x(e x1) C ,则 f x 1e x ( x1) x C,。
27、若x ln x x是 f (x) 的一个原函数,则e2 x f ' e x dx e x C。
8、设曲线y f ( x)在 x0处与y sin x相切(有同样的切线),则lim f (ax) f (bx) = a + b。
x0sin(a b) x二、单项选择(只有一个正确答案,每题 2 分共 16 分)1、当x 0 时,2x3x 2 与x 对比较是(B)的无量小。
A、等价B、同阶但不等价C、高阶D、低阶2、 若 f ' x 0 2,则 limtan 2 x( D)。
f x 0 2f x 0x 02xA 、 0B 、C 、1 D 、1443、已知f ( 1 )dxx 2C , 则f ( x)dx(D)。
xA 、2 CB 、2C 、2CD 、2 CxxCxx4、设 f ( x)在 [ a, b] 上连续 , 在 (a, b) 内f ' (x)0 , 且f ( a) f (b) 0 , 则方程f (x) 0在(a ,b ) 内 (B)。
A 、 无根B 、 只有一根C 、 最少有两根D 、 根的个数没法确立5、以下命题正确的选项是 (D) .。
第一章 函数一、填空题1.()x y 32log log =的定义域 。
2.523arcsin 3x x y -+-=的定义域 。
3.xx y +-=11的反函数 。
4.已知31122++=⎪⎭⎫ ⎝⎛+x x x x f ,则=)(x f 。
二、计算题1. 设⎪⎪⎩⎪⎪⎨⎧≥<=3x , 0 3 , sin )(ππϕx x x ,求()2,6-⎪⎭⎫ ⎝⎛ϕπϕ。
2. 指出下列函数的复合过程。
(1)e y 1= ; (2)x ey 3sin = ; (3)()[]12ln arcsin +=x y3. 设()⎩⎨⎧<≥=0, 10 , x x x x f (1)求()1-x f ; (2)求()()1-+x f x f ,(写出最终的结果)4. 某运输公司规定货物的吨公里运价为:在a 公里内,每公里k 元;超过a 公里,超过部分每公里54k 元,求运价m 和里程s 之间的函数关系,并作出此函数的图形。
5. 某商店年销售某种产品800件,均匀销售,分批进货。
若每批订货费为60元,每件每月库存费为0.2元,试列出库存费与进货费之和p 与批量x 之间的函数关系。
三、简单经济问题1. 某车间设计最大生产力为月生产100台机床,至少要完成40台方可保本,当生产x 台时的总成本函数()x x x c 102+=(百元),按市场规律,价格为x p 5250-=(x 为需求量),可以销售完,试写出月利润函数。
2. 某工厂生产某种产品年产量为x 台,每台售价为250元,当年产量在600台内时,可全部售出,当年产量超过600台时,经广告宣传后又可再多出售200台,每台平均广告费为20元,生产再多,本年就售不出去了。
试建立本年的销售收入R 与年产量x 的关系。
3. 当某商品价格为P 时,消费者对此商品的月需求量为D (P )= 12×103-200P.(1)画出需求函数的图形;(2)将月销售额(即消费者购买此商品的支出)表达为价格P 的函数(3)画出月销售额的图形,并解释其经济意义。
电大2006经济数学基础试题及答案完整版精品好资料-如有侵权请联系网站删除试卷代号2006中央广播电视大学2006~2007学年度第一学期“开放专科期末考试 经济数学基础 试题2007年1月 一、单项选择题(每小题3分,共15分) 1.函数242x y x -=-的定义域是( B )。
A .[2,)-+∞ [2,2)(2,)-+∞C .[,2)(2,)-∞--+∞D .[,2)(2,)-∞+∞2.若()cos4f x π=,则()()limx f x x f x x →∞+∆-=∆( A )A .0 B .22C .sin4π- D .sin4π 3.下列函数中,( D )是2sin x x 的函数原函数。
A .21cos 2x22cos xC .22cos x-D .21cos 2x -4.设A 是m n ⨯矩阵,B 是s t ⨯矩阵,且T AC B 有意义,则C 是( D )矩阵。
A .m t ⨯B .t m ⨯C .n s ⨯D .s n ⨯5.用消元法解方程组12323324102x x x x x x +-=⎧⎪+=⎨⎪-=⎩,得到解为( C )。
A .12312x x x =⎧⎪=⎨⎪=-⎩ B .123722x x x =-⎧⎪=⎨⎪=-⎩C .1231122x x x =-⎧⎪=⎨⎪=-⎩D .1231122x x x =-⎧⎪=-⎨⎪=-⎩二、填空题(每小题3分,共15分)6.已知生产某种产品的成本函数为C(q)=80+2q ,则当产量q=50单位时,该产品的平均成本为__3.6_________。
7.函数23()32x f x x x -=-+的间断点是__121,2x x ==_________。
8.11(cos 1)x x dx -+=⎰____2_______。
9.矩阵111201134-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的秩为= 2 。
10.若线性方程组⎩⎨⎧=+=-02121x x x x λ有非零解,则=λ -1 .三、微积分计算题(每小题l0分,共20分) 11.设1ln(1)1x y x+-=-,求(0)y '。
经济数学--微积分期末测试第一学期期末考试试题 ( B )一.选择题(每小题只有一个正确答案,请把正确答案前的字母填入括号,每题2分,共30分)1. 函数⎪⎩⎪⎨⎧<<-≤-=43939)(22x x x x x f 的定义域是(A );(A) )4,3[- (B) )4,3(- (C) ]4,3(- (D) )4,4(-2. 函数214y x =-的渐近线有(A); 3(A )条(B )2条(C )1条(D )0条3. 设函数)1,0()1(log 2≠>++=a a x x y a ,则该函数是(A )(A) 奇函数 (B) 偶函数 (C) 非奇非偶函数 (D) 既奇又偶函数4. 下列函数中,与3y x =关于直线y x =对称的函数是(A );33()()()()A y B x C y x D x y ===-=-5.若()f x =,则点2x =是函数()f x 的(B);()A 左连续点 ()B 右连续点 ()C 驻点 ()D 极值点6. 已知点(1,3)是曲线23bx ax y +=的驻点,则b a ,的值是(B )(A ) 9,3=-=b a (B ) 9,6=-=b a (C ) 3,3=-=b a (D ) 3,6=-=b a7. 当0x →时,下列函数极限不存在的是(C );1s i n11()()s i n()()t a n1x x A B x C D x x xe + 8. 极限 =-→x x x 1ln lim 0(C );()1()0()1()A B C D -不存在9.下列函数中在[-3,3]上满足罗尔定理条件的是(C );2221()()()2()(3)A xB C x D x x -+10.若函数()f x 在点0x 处可导,则极限x x x f x x f xx ∆∆--∆+→2)2()2(lim000=(C ); 00001()4()()3()()2()()()2A fx B f x C f xD f x '''' 11. 0x →时,下列函数中,与x 不是等价无穷小量的函数是(C )(A) x tan (B) )1ln(x + (c) x x sin - (D) x sin12.下列极限中,极限值为e的是(D);11001()lim (1)()lim (1)()lim(1)()lim (1)xxxxx x x x A x B x C D x x+→∞→∞→→++++13. 若ln xy x =,则dy =(D ); 222ln 11ln ln 11ln ()()()()x x x xA B C dx D dx x x xx---- 14.函数2()f x x =,在区间[0,1]内,满足拉格朗日中值定理的条件,其中ξ=(D);1121()()()()4332A B C D 15.若函数()f x 在(,)-∞+∞内连续,则2()x f x dx '⎡⎤=⎣⎦⎰(D). 2222()[2()()]()2()()()()()()A xf x x f x dxB xf x x f xC x f x dxD x f x ''++二.计算题(每小题7分,共56分) 1.xex x y -+-=1121,求y '解:)11()1(1)()1(1122112'-+'-+-='+'-='--xex x x ex x y xx2112211222)1(1)1(1221x e x x e x x x xx--+-=--+--+-=-- 2分 7分2. 求极限 xx x 12)1(lim +∞>- 解:1lim )1(lim 012lim)1ln(lim)1ln(12222=====++++∞→∞→∞→∞→e ee ex x xx x xx x xx x x 3. 求曲线1204=+-y x x y 在1=x 对应的点处的切线方程.解:0x =时,代入方程得 1y =;方程两边对x 求导得 020*******3='++-'y y x yx y ,将01x y ==与代入,得011x y y =='=, 故所求的切线方程为1y x -=,即1y x =+4. 设函数221()1ax x f x x bx -≥⎧=⎨-<⎩ 在1x =处可导,求常数a 和b 解:由已知()f x 在1x =连续,且21111lim ()lim()1lim ()lim(2)2x x x x f x x b b f x ax a --++→→→→=-=-=-=- 可得3b a =- ①又因()f x 在1x =处可导,且221111232(1)lim lim lim 1211(2)2()lim 1x x x x x b a x a a f x x x ax a f x a x -+++-→→→+→--+-+-+'===+=----+'==-又得2a = 代入① 得1b =故21a b ==5. 求函数2ln(14)y x =+的上凸区间、下凸区间与拐点.解:222288(14)1,,0,14(14)2xx y y y x x x -'''''====±++令得2分5分7分3分6分 7分2分2分5分7分6. 求⎰dx xx tan解:⎰⎰⎰+-=-==c x x d x x d xx dx xx cos ln 2cos cos 12cos sin 2tan 7. 求 ⎰xdx e xsin解:⎰⎰⎰⎰-=-==x x x x x x xde x e xdx e x e xde xdx e cos sin cos sin sin sin⎰--=xdx e x e x e x x x sin cos sin 移项可得c e x x xdx e x x +-=⎰)cos (sin 21sin 8. 已知2xxe 是(2)f x 的一个原函数,求()2x x f e dx -⎰22222222222222(2)()2(12)()(1)()(1)22()(1)(1)2(1)22222[(1)()]2[(1)]2222(2)(4)2x xx x xux x xx xx x x xx xf x xe exee x x xf u e u f e x x x x f e dx e e dx e dx de x x xe e d e e c x e c x e c ----------'==+=+∴=+∴=+∴=+=+=-+=-++-=-+++=-++=-++⎰⎰⎰⎰⎰解:三.证明题(本题6分)设函数()f x 在区间[0,]c 上连续,其导数()f x '在(0,)c 内存在且单调减少,又(0)0f =,证明不等式:()()()f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c ≤≤≤+≤)2分7分6分6分7分2分4分7分5分7分2分证明:0a =时,(0)0f = ()()()f a b f b fa f b∴+==+时,在区间[0,]a 和[,]b a b +上,()f x 满足拉格朗日定理条件,1122()(0)()()((0,)()()()()()((,)f a f f a f a a af b a f b f b a f b f b a b b a b aξξξξ-'∴==∈+-+-'==∈++-有有又()f x 在[0,]c 上单调减少,而12ξξ<21()()f f ξξ''∴<即()()()f b a f b f a a a+-<故有 ()()(f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c ≤≤≤+≤)四.应用题(本题8分)设生产t 个产品的边际成本为t t C 2100)(+=',其固定成本(即0=t 时的成本)为100元,产品单价规定为500=P 元,假定生产出的产品都能完全销售,求生产量为多少时利润最大?最大利润是多少?解:由已知,边际成本c t t dt t dt t C t C ++=+='=⎰⎰100)2100()()(2由固定成本为100,可得100100)(02=--==t t t t C c于是有:成本函数:100100)(2++=t t t C 收入函数:t t R 500)(=利润函数:100400)100100(500)()()(22-+-=++-=-=t t t t t t C t R t L 由04002)(=+-='t t L ,得唯一驻点2000=t ,又由02)(<-=''t L ,可知,驻点0t 是极大值点,同时也是最大值点。
1经济数学基础综合练习及参考答案第一部分 微分学一、单项选择题 1.函数()1lg +=x xy 的定义域是(1->x 且0≠x). .2.若函数)(x f 的定义域是[0,1],则函数)2(xf 的定义域是(]0,(-∞ ).3.下列各函数对中,( x x x f 22cos sin )(+=,1)(=x g )中的两个函数相等.4.设11)(+=xx f ,则))((x f f =(11++xx).5.下列函数中为奇函数的是( 11ln+-=x x y).6.下列函数中,()1ln(-=x y )不是基本初等函数.7.下列结论中,( 奇函数的图形关于坐标原点对 )是正确的. 8. 当x →0时,下列变量中(xx 21+ )是无穷大量. 9. 已知1tan )(-=xxx f ,当( x →0 )时,)(x f 为无穷小量.10.函数sin ,0(),0xx f x xk x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( 1).11. 函数⎩⎨⎧<-≥=0,10,1)(x x x f 在x = 0处(右连续 ).12.曲线11+=x y 在点(0, 1)处的切线斜率为( 21- ).13. 曲线x y sin =在点(0, 0)处的切线方程为(y =x ).14.若函数x x f =)1(,则)(x f '=(-21x ).15.若xx x f c o s )(=,则='')(x f ( x x x cos s i n 2-- ).16.下列函数在指定区间(,)-∞+∞上单调增加的是(e x).17.下列结论正确的有( x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0 ).18. 设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =(--pp32 ).二、填空题1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是[-5,2]2.函数xx x f --+=21)5ln()(的定义域是(-5, 2 )3.若函数52)1(2-+=+x x x f ,则=)(x f 62-x .4.设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f 43-.5.设21010)(x x x f -+=,则函数的图形关于 y 轴对称.6.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为3.6 .7.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = 45q – 0.25q 2 . 8. =+∞→xx x x sin lim1 .9.已知x x x f sin 1)(-=,当0→x 时,)(x f 为无穷小量.10. 已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内连续,则=a 2 .11. 函数1()1e xf x =-的间断点是0x =.12.函数)2)(1(1)(-+=x x x f 的连续区间是)1,(--∞),2(∞+.)1处的切线斜率是(1)0.5y '=14.函数y = x 2 + 1的单调增加区间为(0, +∞)15.已知x x f 2ln )(=,则[f =0 .16.函数y x =-312()的驻点是x =1.17.需求量q 对价格p 的函数为2e 100)(pp q -⨯=,则需求弹性为E p =2p-.18.已知需求函数为pq 32320-=,其中p 为价格,则需求弹性E p =10-p p.三、计算题(答案在后面)1.423lim222-+-→x x x x 2.231lim21+--→x x x x 3.x → 4.2343limsin(3)x x x x →-+- 52)1tan(lim 21-+-→x x x x 6.))32)(1()23()21(lim 625--++-∞→x x x x x x 7.已知y xxx cos 2-=,求)(x y ' . 8.已知)(x f x x x ln sin 2+=,求)(x f ' . 9.已知x y cos 25=,求)2π(y ';10.已知y =32ln x ,求y d . 11.设x y x5sin cos e +=,求y d .12.设xx y -+=2tan 3,求y d .13.已知2sin 2cos x y x -=,求)(x y ' .14.已知xx y 53e ln -+=,求)(x y ' . 15.由方程2e e )1ln(=++xy x y 确定y 是x 的隐函数,求)(x y '.16.由方程0e sin =+yx y 确定y 是x 的隐函数,求)(x y '.17.设函数)(x y y =由方程y x y e 1+=确定,求0d d =x xy.18.由方程x y x y =++e )cos(确定y是x 的隐函数,求y d .四、应用题(答案在后面) 1.设生产某种产品x个单位时的成本函数为:x x x C 625.0100)(2++=(万元),求:(1)当10=x 时的总成本、平均成本和边际成本;(2)当产量x为多少时,平均成本最小?2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,试求:(1)价格为多少时利润最大?(2)最大利润是多少? 4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少?5.某厂每天生产某种产品q件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少? 6.已知某厂生产q件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品? 三、极限与微分计算题(答案) 1.解423lim222-+-→x x x x =)2)(2()1)(2(lim2+---→x x x x x =)2(1lim2+-→x x x = 412.解:231lim21+--→x x x x =)1)(2)(1(1lim 1+---→x x x x x=21)1)(2(1lim1-=+-→x x x3.解l ix →0x → =xx x x x 2sin lim)11(lim 00→→++=2⨯2 = 44.解 2343lim sin(3)x x x x →-+-=3(3)(1)lim sin(3)x x x x →---=333limlim(1)sin(3)x x x x x →→-⨯--= 25.解)1)(2()1tan(lim2)1tan(lim121-+-=-+-→→x x x x x x x x1)1tan(lim21lim11--⋅+=→→x x x x x 31131=⨯= 6.解))32)(1()23()21(lim 625--++-∞→x x x x x x =))32)(11()213()21(lim 625xx x x xx --++-∞→=2323)2(65-=⨯-7.解:2y '(x )=)cos 2('-xx x =2cos sin 2ln 2x xx x x --- =2cos sin 2ln 2x xx x x ++8.解xx x x f x x 1cos 2s i n 2ln 2)(++⋅=' 9.解 因为5ln 5sin 2)cos 2(5ln 5)5(cos 2cos 2cos 2x x x x x y -='='='所以5ln 25ln 52πsin 2)2π(2πcos2-=⋅-='y10.解 因为 )(ln )(ln 3231'='-x x y331ln 32)(ln 32xx x x ==- 所以x xx y d ln 32d 3=11.解 因为)(cos cos 5)(sin e4sin '+'='x x x y xx x x xsin cos 5cos e4sin -=所以x x x x y xd )sin cos 5cos e(d 4sin -=12.解 因为)(2ln 2)(cos 1332'-+'='-x x xy x2ln 2cos 3322x xx--=所以 x xx y x d )2ln 2cos 3(d 322--=13.解 )(cos )2(2sin )(22'-'-='x x x y x x2cos 22ln 2sin 2x x x x --=14.解:)5(e )(ln ln 3)(52'-+'='-x x x x y xx xx525e ln 3--=15.解 在方程等号两边对x 求导,得 )e ()e (])1ln([2'='+'+xy x y0)(e 1)1ln(='+++++'y x y xyx y xyxy xyy xyy x x e 1]e )1[ln(-+-='++故]e )1)[ln(1(e )1(xyxyx x x y x y y +++++-='16.解 对方程两边同时求导,得0e e cos ='++'y x y y yyyyy x y e)e (cos -='+)(x y '=yyx y e cos e +-.17.解:方程两边对x 求导,得 y x y yy '+='e eyy x y e1e-='当0=x 时,1=y所以,d d =x xye e 01e 11=⨯-=18.解 在方程等号两边对x 求导,得)()e (])[cos('='+'+x y x y1e ]1)[sin(='+'++-y y y x y)sin (1)]sin(e [y x y y x y++='+-)sin(e )sin(1y x y x y y +-++='故x y x y x y yd )sin(e )sin(1d +-++=四、应用题(答案)1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C5.1861025.010100)10(=+⨯+=, 116105.0)10(=+⨯='C(2)令25.0100)(2=+-='xx ,得20=x (20-=x 舍去)因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 qp =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q ()=1001102qq --(60q +2000)= 40q -1102q -2000 且'L q ()=(40q -1102q -2000')=40-0.2q令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.3.解 (1)C (p ) = 50000+100q = 50000+100(2000-4p ) =250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令)(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大.(2)最大利润1100025000030043002400)300(2=-⨯-⨯=L (元).4.解 (1)由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,(2)最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)5. 解 因为 C q ()=C q q ()=05369800.q q++(q >0)'C q ()=(.)05369800q q++'=0598002.-q令'C q ()=0,即0598002.-q =0,得q 1=140,q 2=-140(舍去).q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值. 所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=05140369800140.⨯++=176 (元/件) 6.解 (1) 因为 C q ()=C q q ()=2502010q q ++'C q ()=()2502010qq ++'=-+2501102q令'C q ()=0,即-+=2501100q ,得q 1=50,q 2=-50(舍去),q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是q ()的最小值点,即要使平均成本最少,应生产50件产品.。
经济数学一元微积分第四章导数及应用第一节微分中值定理本次练习有4题,你已做4题,已提交4题,其中答对4题。
当前页有4题,你已做4题,已提交4题,其中答对4题。
1.不用求出函数的导数,分析方程有几个实根?()A.0B.1C.2D.3答题:A.B.C.D.(已提交)参考答案:D问题解析:2.=?()A.0B.1C.-1D.2答题:A.B.C.D.(已提交)参考答案:B问题解析:3.=?,()A.0B.1C.-1D.2答题:A.B.C.D.(已提交)参考答案:A问题解析:4.求不能使用洛必塔法则。
()答题:对.错.(已提交)参考答案:√问题解析:元微积分·第四章导数的应用·第二节函数单调性、极值和渐近线本次练习有4题,你已做4题,已提交4题,其中答对4题。
当前页有4题,你已做4题,已提交4题,其中答对4题。
1.下面关于函数的描述,那两句话是正确的?()上单调递减上单调递增上单调递减上单调递增A.函数在B.函数在C.函数在D.函数在答题:A.B.C.D.(已提交)参考答案:AC问题解析:2.在上是单调递增的。
()答题:对.错.(已提交)参考答案:√问题解析:3.函数的极大值就是函数的最大值。
()答题:对.错.(已提交)参考答案:某问题解析:4.如果函数在点。
()处二阶可导,且=0,若,则在点处取得极小值答题:对.错.(已提交)参考答案:√问题解析:一元微积分·第四章导数的应用·第三节经济中的优化模型本次练习有2题,你已做2题,已提交2题,其中答对2题。
当前页有2题,你已做2题,已提交2题,其中答对2题。
1.某厂生产某产品,每批生产台得费用为,得到的收入为,则利润为?()A.B.C.D.答题:A.B.C.D.(已提交)参考答案:A问题解析:2.在上题中,请问生产多少台才能使得利润最大?()A.220B.230C.240D.250答题:A.B.C.D.(已提交)参考答案:D问题解析:一元微积分·第四章导数的应用·第四节函数的作图本次练习有1题,你已做1题,已提交1题,其中答对1题。
武汉理工大学考试试题纸(A 卷)课程名称 经济数学—微积分(上) 专业班级:全校2007级经济类各专业备注: 学生不得在试题纸上答题(含填空题、选择题等客观题)一、单项选择题(本题共5小题,每小题3分,共15分) (1). 函数)(x f 在0x x =处可微是)(x f 在0x x =处可导的()条件.A. 充分.B. 必要.C. 充分必要.D. 无关的.(2). 当0→x 时,x cos 1-是关于2x 的( ).A .同阶无穷小.B .低阶无穷小.C .高阶无穷小.D .等价无穷小. (3).1=x 是函数11)(2--=x x x f 的( ).A .连续点.B .可去间断点.C .跳跃间断点.D .无穷间断点.(4). 函数x x f ln )(=及其图形在区间),1(+∞上( ).A. 单调减少上凹.B. 单调增加上凹.C. 单调减少上凸.D.单调增加上凸. (5). 若广义积分⎰∞++0)1(kx dx 收敛,则( ).A .k >1.B .k ≥1.C .k <1.D .k ≤1二、填空题(本题共5小题,每小题3分,共15分) (1).⎪⎭⎫⎝⎛-+∞→x x x x x sin 11sin lim = .(2). 已知11+=x y , n 为自然数,则=)(n y .(3). 曲线xey =上经过点(0,1)的切线方程是: y= .(4). =⎰dx x f )3('.(5). 已知dt t x G x⎰=03cos )(, 则)(0'G = .三、计算下列极限(本题共2小题,每小题6分,共12分) (1).⎪⎭⎫ ⎝⎛---→1112lim 21x x x . (2).xx x sin 01lim ⎪⎭⎫ ⎝⎛+→ .四、计算下列导数或微分(本题共3小题,每小题6分,共18分)(1). dydx dy x y 及求,2arctan=.(2).)(xef y -= , 其中f 具有二阶导数,求22dxy d .(3). 设函数)(x f y =由方程eexy y=+确定,求=x dxdy .五、计算下列不定积分(本题共2小题,每小题6分,共12分)(1). ⎰+dxx x )1ln(2. (2). ⎰+xdx 21.六、计算下列定积分(本题共2小题,每小题6分,共12分)(1). ⎰20cos πxdx x . (2). dxx ⎰-224.七、应用题(本题共2小题,每小题6分,共12分)(以下两小题为马区学生试题,余区学生不必解答) (1). 已知销售量Q 与价格P 的函数关系为PeQ 23-=,求销售量Q关于价格P 的弹性函数.(2). 设某工厂生产某产品的产量为x 件时的固定成本10000=C 元,可变成本21100110)(xx x C-=元,产品销售后的收益250120)(xx x R -=元, 国家对每件产品征税2元, 问该工厂生产该产品的产量为多少件时才能获得最大利润? 最大利润是多少?(以下两小题为余区学生试题,马区学生不必解答) (1). 求函数236)(xx x f -=的极值.(2). 计算由8,0,3===y x x y 所围成的图形绕y轴旋转一周而成的旋转体的体积.八、证明题(本题满分4分)设函数)(x f 在闭区间[0,1]上连续, 在开区间(0,1)内可导,且0)1(=f ,试证:存在∈ξ(0,1),使得)(2004)(ξξξf f -='.武汉理工大学2007级经济各专业《经济数学—微积分》(上)试题(A 卷)答案及平分标准一、(1)C ; (2)A ; (3)B ; (4)D ; (5)A .二、(1)1; (2)1)1(!)1(++-n nx n ; (3)1+x ; (4)Cx f +)3(31; (5)1 .三、(1)解 ⎪⎭⎫⎝⎛---→1112lim 21x x x =⎪⎭⎫⎝⎛--→11lim 21x x x ----------------------------------------(3分)=⎪⎭⎫⎝⎛-→x x 21lim 1=21-.----------------------------------(6分) (2)解xx x y sin 01lim ⎪⎭⎫⎝⎛=+→令,--------------------------------------------------------------(1分) 则xx y x 1lnsin lim ln⋅=+→=xxx sin 1ln lim 0-+→---------------------------------------(3分)=xxxx 20sincos 1lim --+→=xx xx cos sinlim2+→------------------------------------------(4分)=xx xxx x x cos 1lim sin lim sin lim+++→→→⋅⋅=0 ,----------------------------- (5分)∴11lim 0sin 0==⎪⎭⎫⎝⎛=+→e x y xx .--------------------------------------------------(6分)四、(1)解22412xxdxdy +-=-------------------------------------------------------------------(3分)=422+-x ,----------------------------------------------------------------(4分)dxx dy 422+-=------------------------------------------------------------(6分)(2)解xxeef dxdy ---=)(',-----------------------------------------------------------(3分)xxxxeef eef dxy d 222)('')('----+=.---------------------------------------(6分)(3)解 各项关于x求导,得,0=++dxdy edxdy x y y,------------------------------(3分)yex y dxdy +-=,--------------------------------------------------------------- (4分)又当10==y x 时,---------------------------------------------------------(5分)∴10-==x dxdy .---------------------------------------------------------------------(6分)五、(1)解⎰+dxx x )1ln(2=⎰++)1()1ln(2122x d x-----------------------------------(3分)=])1[ln()1(21)1ln(212222⎰++-++x d x x x -------------(4分)=⎰++-++dxx x x x x 12)1(21)1ln(212222-----------------(5分)=Cxx x +-++2)1ln(21222----------------------------------(6分)(2)解 令,2x t = 则tdtdx tx ==,22,-------------------------------------------(2分)⎰+xdx 21=⎰+ttdt 1------------------------------------------------------------(3分)=⎰⎪⎭⎫⎝⎛+-dt t 111---------------------------------------------------(4分)=Ctt +++1ln --------------------------------------------------(5分)=Cx x +++21ln 2.---------------------------------------(6分)六、(1)解⎰20cos πxdxx =⎰20)(sin πx xd --------------------------------------------------(2分)=⎰-202sin sinππxdxxx --------------------------------------(4分)=20cos 2ππx+----------------------------------------------------(5分)=12-π.-----------------------------------------------------------(6分)(2)解令)0(sin 22π≤≤=t t x 则txtdt dxcos 24,cos 22=-=,----------(2分)dxx ⎰-2024=dt t ⎰202cos 4π-------------------------------------------------(3分)=dt t )2cos 1(220⎰+π-------------------------------------------(4分)=20]2sin 2[πt t +------------------------------------------------(5分)=π.----------------------------------------------------------------(6分)七、(马区学生试题答案 )(1)解EPEQ =η=PQ Q '-----------------------------------------------------------------(3分) =PeePP223)2(3---⋅=P 2.-------------------------------------------------------(6分)(2)解 利润x x x x x x L 2)100110(1000)50120()(22-----==1000100182--x x ,-----------------------------------------(2分) 令05018)('=-=x x L ,得,400=x,-----------------------------------(4分)又0501)(''<-=x L ,----------------------------------------------------------(5分) ∴当400=x 时,获得最大利润60)400(=L .----------------------------(6分)七、(余区学生试题答案 ) (1)解 令0123)('2=-=x x x f ,得,4,021==x x ,------------------------(3分)126)("-=x x f -----------------------------------------------------------(4分) ∵12)0("<-=f , ∴)0(=f 为一个极大值,---------------------(5分) ∵012)4(">=f , ∴32)4(-=f 为一个极小值. ------------------(6分) (2)解dyy V ⎰=8034π------------------------------------------------------------------(3分)=83773⎥⎦⎤⎢⎣⎡y π--------------------------------------------------------------------(5分)=⎪⎭⎫⎝⎛=ππ73842737.---------------------------------------------------------(6分)八、证明设)()(2004x f xx =φ,-----------------------------------------------------------(2分)则)(x φ在闭区间[0,1]上连续, 在开区间(0,1)内可导,且0)1()0(==φφ,由罗尔定理)1,0(∈∀ξ,使得)('=ξφ,------------------------------------(3分) 即)(2004)('20032004ξξξξf f +,∴)(2004)('ξξξf f -=.--------------------------------------------------------(4分)。