(完整版)TiO2光催化文献综述
- 格式:doc
- 大小:43.01 KB
- 文档页数:6
《纳米TiO2复合材料制备及其光催化性能研究》篇一一、引言随着科技的不断进步和人类对环保问题的日益关注,光催化技术作为新兴的绿色技术领域受到了广泛的关注。
纳米TiO2复合材料作为一种高效的光催化剂,具有广泛的应用前景。
本文旨在研究纳米TiO2复合材料的制备方法及其光催化性能,为实际应用提供理论依据。
二、文献综述纳米TiO2复合材料因其独特的物理和化学性质,在光催化领域具有广泛的应用。
其制备方法、性能及应用已成为研究热点。
目前,制备纳米TiO2复合材料的方法主要包括溶胶-凝胶法、水热法、微乳液法等。
其中,溶胶-凝胶法因其操作简便、制备条件温和等优点备受关注。
而光催化性能的研究主要关注其对有机污染物的降解、抗菌性能及自清洁等方面的应用。
三、实验方法(一)实验材料实验中所需材料主要包括TiO2纳米粉体、表面活性剂、溶剂等。
所有材料均需符合实验要求,保证实验结果的准确性。
(二)制备方法本文采用溶胶-凝胶法制备纳米TiO2复合材料。
具体步骤包括:将TiO2纳米粉体与表面活性剂混合,加入溶剂进行搅拌,形成溶胶;然后进行凝胶化处理,得到凝胶;最后进行热处理,得到纳米TiO2复合材料。
(三)性能测试本实验通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对制备的纳米TiO2复合材料进行表征。
同时,通过光催化实验测试其光催化性能,以降解有机污染物为评价指标。
四、实验结果与分析(一)表征结果通过XRD、SEM和TEM等手段对制备的纳米TiO2复合材料进行表征。
结果表明,制备的纳米TiO2复合材料具有较高的结晶度和良好的分散性。
(二)光催化性能测试结果以降解有机污染物为评价指标,对制备的纳米TiO2复合材料进行光催化性能测试。
结果表明,该材料具有优异的光催化性能,能够有效降解有机污染物。
此外,我们还研究了不同制备条件对光催化性能的影响,为优化制备工艺提供依据。
五、讨论本实验研究了纳米TiO2复合材料的制备方法及其光催化性能。
光催化在有机合成中的应用沈晓峰150110113化学师范10摘要21世纪,化学研究的一个主要目标是发展一种高效能技术,用于取代那些对环境有害的耗能过程。
在光催化的有机合成中,通过优化反应环境可以实现对某种目标产物的高选择性,从而为有机合成提供了一种绿色、节能的途径,成为21世纪最具潜力的绿色有机化学技术。
1•引言1972年,Fujishima 和Honda[1]发现TiO2单晶电极能够在光照条件下将水分解为氢气和氧气,光催化技术的序幕由此揭开•光催化领域的开拓瞬时点燃了科研工作者们对这一崭新领域的研究热情•随着研究工作的深入开展,人们的目光不再局限于光解水制氢这一体系,而是投向了更广阔的天地•在过去的近四十年里,有关光催化的研究报道如雨后春笋般涌现出来。
目前,大多数的研究工作主要集中于降解水和空气中污染物等环境治理和改善方面,太阳能的转化以及界面电子转移等电化学过程上。
尽管如此,将光催化用于特定的有机化合物的合成等方面已经得到了越来越多的关注。
众所周知,传统的有机合成不仅步骤繁琐,而且所使用的氧化剂通常是一些具有毒性或者腐蚀性的强氧化剂。
光催化反应将太阳光引入有机合成体系,无论从节能的角度还是环保的角度,都无疑是一个重大的突破主要原因有以下三点:(1)太阳能是一种完全可再生的资源;(2)光化学激发所需要的条件比热催化所要求的条件要温和得多;(3)光化学激发为人们设计出更短的反应历程提供条件,从而将副反应的发生减小到最小程度。
2.光催化原理光催化是光化学和催化科学的交叉点,一般是指在催化剂参与下的光化学反应。
半导体材料之所以具有光催化特性,是由它的能带结构所决定。
半导体的晶粒内含有能带结构,其能带结构通常由一个充满电子的低能价带( HD<8351KD3= RS和一个空的高能导带(E93=7E5693KD3= >S)构成,价带和导带之间由禁带分开,该区域的大小称为禁带宽度,其能差为带隙能,半导体的带隙能一般为"+!!(+"8R 。
二氧化钛的光催化性能摘要:以廉价易得的四氯化钛为原料,利用溶胶一凝胶法制备二氧化钛,工艺过程简单、易控制、污染少,是一种制备二氧化钛的理想方法。
同时研究了催化剂用量和时间对TiO2 光催化降解甲基橙的降解率的影响,实验结果表明当催化剂用量为4 g/L,光催化时间为60 min时,降解率可达到90%以上。
关键词: 二氧化钛,制备,甲基橙,光催化TiO2 具有化学性质稳定、催化活性高、催化简单有机物彻底、不引起二次污染等优点,在污水处理、空气净化等领域被广泛研究。
它利用半导体氧化物材料在光照时表面能受激活化的特性,利用光能可有效地氧化分解有机物、还原重金属离子、杀灭细菌和消除异味,无二次污染,不仅经济,而且自身无毒、无害及无腐蚀性,还可反复使用,并可望用太阳光为反应光源等特点而被广泛地应用到光催化降解有机污染物,是一种具有广阔应用前景的绿色环境治理技术。
目前,制备二氧化钛的方法很多,分类方法也有所不同。
根据物理性质,分为气相法、固相法和液相法。
气相法制备出的TiO2纯度高、分散性好、团聚少、比表面活性大,但是气相法的反应要求在高温条件下瞬间完成,对反应器的选择、设备的材质,加热方法等均有很高的要求,欲达到工业化生产还要解决一系列工程问题和设备材质问题。
与气相法相比,液相法具有原料廉价、无毒、常温下可以反应、工艺过程简单、易控制、污染少、产品质量稳定等优点。
因此,以廉价、易得的四氯化钛为原料,利用溶胶一凝胶法制备二氧化钛是一种具有工业发展潜力的理想方法。
其他实验方法1实验部分1.1实验试剂99.9%的四氯化钛(分析纯)(天津市科密欧化学试剂有限公司),28%的氨水,97%的乙醇(洛阳市化学试剂厂),0.1mol/L的浓硫酸,0.1mol/L的氢氧化钠,0.1mol/L的硝酸银溶液,去离子水,二次蒸馏水1.2 实验仪器抽滤器烘箱1.3 实验原理将四氯化钛加入乙醇的水溶液中,让TiCl4水解后再加入含羟基或可释放出羟基的化合物(本实验用氨水),使其缩合,逐渐凝胶化后经干燥和煅烧可得二氧化钛粉末,反应如下:水解反应:TiCl4 + 4C2H5OH = Ti(OC2H5)4 + 4HClTi(OC2H5)4 + 4H2O = Ti(OH)4↓+ 4C2H5OH煅烧反应:Ti(OH)4 = TiO2 + 2H2O1.4 材料制备取100ml乙醇和25ml去离子水混合均匀,将1.5ml的四氯化钛用干燥的滴管吸取,缓缓加入100ml乙醇和25ml去离子水的混合溶液中。
ZnO/TiO 2 复合纳米纤维的制备及光催化性能研究文献综述1. 前言20世纪以来,科技的不断进步和工业的快速发展,在给人类带来舒适与便利的同时,也造成了环境的污染与恶化,给人类的健康和生活带来了潜在的危胁。
[1-3]在各种环境污染中,最普遍、最主要和影响最大的是化学污染。
因而, 有效地控制和治理各种化学污染物对构成人类生存最基本的水资源、土壤和大气环境的破坏是环境综合治理中的重点。
多年来人们一直在寻找和尝试治理环境污染的办法,比如物理法、化学法和生物处理法等[4-6],但是都存在着不少缺陷。
因此,研究开发新型的化学污染处理方法有非常重要的意义。
光催化是纳米半导体的独特性能之一。
纳米半导体材料在光的照射下,通过有效吸收光能产生具有超强氧化能力和还原能力的光生电子和空穴,促进化合物的合成或使化合物(有机物,无机物)降解的过程称之为光催化[7]。
1972年,Fujishima 和Honda[8]首先发表了用TiO2作为光催化剂分解制氢的论文,这标志着光催化时代的开始,当时正值能源危机,因此利用光催化剂和太阳能制备氢气对缓解能源危机具有重大的意义,引起了科研学者的广泛关注,随后更多关于光催化的研究深入开展了对光催化机理的探索。
在1977年,Frank和Bard等[9]用TiO2 作为光催化剂将水中的氰化物分解,氧化CN-为OCN-,为光催化剂处理污水的发展提供了有力依据。
这些重大的研究也为如今催化剂在环境净化和新能源利用开发方向的研究奠定了基础。
TiO2以其无毒、催化活性高、稳定性好和价格低廉等优点, 被公认为优良的半导体光催化剂。
纳米TiO2的光生空穴的强氧化能力, 使得生物难降解的有机污染物的完全矿物化氧化成为可能。
大量研究表明,绝大部分有机物均能被TiO2光催化氧化而降解。
此外许多无机化合物或无机离子也能在TiO2表面与光生电子反应被光催化生成毒性较小或无毒的产物。
因而在大气净化、抗菌、净水、防污、防臭方面有着广阔的应用前景。
纳米T iO2气相光催化有机污染物的研究综述荆门职业技术学院化学工程系 李 瑛[摘 要]纳米T iO2气相光催化是目前一种新的环境治理技术,本文综述了近年来纳米T iO2气相光催化有机污染物的研究进展,并对该技术的应用进行了展望。
[关键词]纳米T iO2 气相光催化 有机污染物 随着环境污染日益突出,空气质量问题越来越受到人们的关注。
近年来,利用半导体光催化降解空气中有机污染物的多相光催化过程已成为一种理想的环境治理技术,目前有关纳米T iO2用于气相光催化有机污染物治理的研究较多。
实验研究表明:与液相光催化过程相比,气相光催化氧化可以使用能量较低的光源,而且气相光催化氧化反应速度快、光的利用效率高、容易实现完全氧化、体积流量大、不受溶剂分子影响等特点。
对于农药、工业制造、建筑材料、消毒防腐等产生的挥发性有机物,都有较好的降解效果。
1、对各类有机污染物的气相光催化(1)链烃。
对气相链烃的T iO2光催化研究表明:从乙烷到辛烷,无论直链烷烃还是支链烷烃,在室温下都可在二氧化钛表面光催化氧化,反应中存在中间产物醛和酮,最终产物为CO2[1]。
(2)含氯有机物。
很多学者对含氯有机物气相光催化降解的反应动力学及其影响因素方面做了大量研究,其中三氯乙烯研究最多[2]。
(3)含氧有机物。
含氧有机物包括醇、醛、酮类等。
对气相丙酮的T iO2光催化时发现:在常温常压下丙酮光催化降解可获得80%的转化率;丙酮转化为CO2,无中间产物[3]。
(4)芳香族有机物。
近年来,有很多研究者对苯、甲苯、二甲苯、乙苯、间二甲苯等芳香族气相有机物的光催化降解反应产物、催化剂失活及反应途径等方面进行了研究。
T a izo Sano等[4]用负载在P t上的T iO2催化剂对挥发性有机化合物如甲苯进行了研究。
(5)含硫有机物。
对含硫有机物的光催化降解研究相对较少,其降解机理非常复杂。
V o ro ntsov等[5]对T iO2气相光催化降解二乙基硫时发现,催化剂在反应100~300min后失活。
TiO2光催化剂综述TiO2光催化剂制备⽅法及应⽤综述摘要总结了近年来有关于⼆氧化钛光催化剂的制备⽅法以及⽤⾦属和⾮⾦属掺杂修饰⼆氧化钛光催化剂在降解有机物⽅⾯的应⽤。
关键词⼆氧化钛光催化剂掺杂降解环境催化是当今催化领域的热点问题。
⾃1972年Fujishima和Honda发现在TiO2电极上光催化分解⽔为H2和O2,揭⽰了太阳能的利⽤途径;1973年东京⼤学Fujishima等提出了将TiO2光催化剂应⽤于环境净化的建议,从⽽推动了光催环境净化的研究。
到1997年,⽇本推出了基于光催化技术[1]的室内空⽓净化技术,也称为光催化技术和光触媒技术。
光催化技术在环境⽅⾯的应⽤主要包括在空⽓净化、⽔的净化、抗菌[2]净化以及除臭、防污、抗菌、防霉、防雾等⽅⾯,⽐如⽆菌病房等。
纳⽶光催化剂的⾃⾝特点:(1)常温省能源(仅需低功率的UV光源);(2)杀菌能⼒强和⼴谱(⽆菌车间);(3)有毒有机物的彻底净化(使污染物彻底分解为CO2和H20);(4)效率⾼,寿命长(可以循环使⽤);(5)维护简单、运⾏费⽤低;(6)⽆污染,⽆毒,卫⽣安全。
光催化技术是⼀种⾼级氧化技术,与普通氧化过程利⽤热作为能量不同,光催化氧化以光作为能量的来源(下图为光催化原理图)[3]。
锐钛型TiO2光催化剂存在不同能带(即导带和价带),两带之间存在3.2eV的能量间隔,在波长⼩于400nm的光照射下,价带中的电⼦被激发到导带形成空⽳(h+)-电⼦对(e-)。
在电场的作⽤下电⼦与空⽳发⽣分离,迁移到粒⼦表⾯的不同位置。
热⼒学理论表明:分布在表⾯的空⽳将吸附在TiO2表⾯H20和OH氧化成·OH⾃由基,⽽TiO2表⾯⾼活性的电⼦e-则可以使空⽓中的O2或⽔体中的⾦属离⼦还原。
·OH⾃由基的氧化能⼒是⽔体中存在的氧化剂中最强的,其能量相当于15000K的⾼温,可以将有机化合物中化学键打断,将有机毒物彻底分解为CO2和H20。
光催化产氢综述一、光催化产氢技术原理光催化产氢技术是利用可见光、紫外光或者太阳光照射到特定的催化材料上,使其吸收光子能量激发电子,从而促进水分子的光解反应,产生氢气和氧气。
该技术具有高效、环保、可再生等优点,被广泛应用于氢能源领域。
二、光催化产氢材料1. 二氧化钛(TiO2)二氧化钛是目前应用最广泛的光催化产氢催化剂之一。
其具有良好的光催化活性、稳定性和可再生性,在紫外光照射下能够促进水分解反应。
但由于其能带结构的限制,只能在紫外光区域进行光解反应,导致光利用率较低。
2. 铋基材料铋基材料是一类新型的光催化产氢催化剂,具有较高的光催化活性和可见光响应性,能够有效提高光解反应的光响应范围,并且在光解反应中还能够减少氧气的竞争性吸附,提高产氢效率。
3. 有机染料敏化材料有机染料敏化材料是一种能够吸收可见光的催化剂,能够有效提高光解反应的光响应范围,增强光解反应的效率。
此外,有机染料敏化材料还具有可再生性、低成本、制备简便等优点。
三、光催化产氢机理光催化产氢的反应机理主要包括光吸收、电子-空穴对的生成和分离、界面光生电荷的传输等过程。
当光照射到催化材料上时,激发材料中的电子和空穴,形成电子-空穴对,并且在催化材料表面发生还原和氧化反应,最终产生氢气和氧气。
四、光催化产氢应用光催化产氢技术已经在太阳能利用、氢能源生产、环境保护等领域得到了广泛应用。
通过光催化产氢技术,可以实现太阳能的有效利用和氢气的清洁生产,为解决能源危机和环境污染问题提供了新的途径。
五、光催化产氢未来发展未来,光催化产氢技术将继续发展,主要包括提高光催化活性、光电转换效率的提高、材料的稳定性和可再生性等方面。
同时,随着对清洁能源和环境保护的需求不断增加,光催化产氢技术将在未来得到更广泛的应用。
综上所述,光催化产氢技术是一种具有巨大潜力和前景的能源技术,通过不断的科研创新和工程实践,将可以实现太阳能的有效利用和氢气的清洁生产,为人类的可持续发展做出贡献。
《TiO2负载Co、Cu和Pd催化甲烷和二氧化碳制乙酸的理论研究》篇一一、引言随着全球能源需求的增长和环境保护意识的提高,利用可再生资源以及减少温室气体排放已成为当前科研的重要课题。
甲烷和二氧化碳作为主要的温室气体,其转化利用对于环境保护和能源替代具有重要意义。
TiO2作为一种常用的催化剂载体,其负载Co、Cu和Pd等金属后对甲烷和二氧化碳的转化反应,尤其是制备乙酸反应具有显著的效果。
本文将重点探讨TiO2负载Co、Cu 和Pd催化剂在甲烷和二氧化碳转化为乙酸反应中的理论机制,并探讨其在未来实际应用中的可能性。
二、文献综述在过去的几十年里,TiO2负载的金属催化剂在催化甲烷和二氧化碳制乙酸方面已经得到了广泛的研究。
TiO2由于其高稳定性、良好的光催化性能以及与金属良好的相互作用等特点,使其成为一种理想的催化剂载体。
Co、Cu和Pd等金属由于其在化学反应中的催化活性而被广泛应用于该类反应中。
研究发现,这些金属的存在能有效地提高催化剂的活性,从而加速甲烷和二氧化碳的转化过程。
三、理论方法本研究采用密度泛函理论(DFT)方法,对TiO2负载Co、Cu和Pd催化剂在甲烷和二氧化碳制乙酸反应中的性能进行理论研究。
通过构建催化剂模型,模拟反应过程,分析反应机理,以及计算反应的能量变化等,从而得出催化剂的活性、选择性和稳定性等性能参数。
四、结果与讨论1. 催化剂结构分析通过DFT方法,我们得出了不同金属负载在TiO2上的模型。
结果显示,Co、Cu和Pd都成功负载在TiO2上,并且与TiO2之间形成了良好的相互作用。
这有利于提高催化剂的稳定性和活性。
2. 反应机理分析我们模拟了甲烷和二氧化碳在TiO2负载Co、Cu和Pd催化剂上的转化过程。
结果表明,Co催化剂主要促进了甲烷的活化,而Pd则对二氧化碳的活化更为有效。
Cu则在这两个过程中都起到了关键作用。
通过一系列的反应步骤,最终生成了乙酸。
3. 能量变化分析通过计算反应过程中的能量变化,我们发现TiO2负载Co、Cu和Pd催化剂能够有效地降低反应的活化能,从而提高反应速率。
TiO2综述纳⽶TiO2的性能、应⽤及其制备⽅法综述摘要:纳⽶TiO2具有独特的光催化性、优异的颜⾊效应以及紫外线屏蔽等功能, 在光催化剂、化妆品、抗紫外线吸收剂、功能陶瓷、⽓敏传感器件等⽅⾯具有⼴阔的应⽤前景。
国内外⽂献对纳⽶TiO2的性质、应⽤及其制备⽅法进⾏了⼤量的性能、应⽤及制备⽅法研究进⾏了综述。
的研究报道, 本⽂对有关纳⽶TiO2关键字:纳⽶TiO2、性能、应⽤、制备⼀、简介:纳⽶⼆氧化钛,亦称纳⽶钛⽩粉。
从尺⼨⼤⼩来说,通常产⽣物理化学性质显著变化的细⼩微粒的尺⼨在100纳⽶以下,其外观为⽩⾊疏松粉末。
具有抗紫外线、抗菌、⾃洁净、抗⽼化功效,可⽤于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。
⼆、分类:①、按照晶型可分为:⾦红⽯型纳⽶钛⽩粉和锐钛型纳⽶钛⽩粉。
②、按照其表⾯特性可分为:亲⽔性纳⽶钛⽩粉和亲油性纳⽶钛⽩粉。
③、按照外观来分:有粉体和液体之分,粉体⼀般都是⽩⾊,液体有⽩⾊和半透明状。
三、纳⽶TiO2的性能:纳⽶TiO2除了具有与普通纳⽶材料⼀样的表⾯效应、⼩尺⼨效应、量⼦尺⼨效应和宏观量⼦隧道效应等外, 还具有其特殊的性质, 尤其是催化性能。
3. 1 基本物化特性纳⽶TiO2有⾦红⽯、锐钛矿和板钛矿3种晶型。
⾦红⽯和锐钛矿属四⽅晶系, 板钛矿属正交晶系,⼀般情况下,板钛矿在650℃转变为锐钛矿,锐钛矿915℃转变为⾦红⽯。
结构转变温度与TiO2颗粒⼤⼩、含杂质及其制备⽅法有关,颗粒愈⼩,转变温度愈低,锐钛型纳⽶TiO2向⾦红⽯型转变的温度为600℃或低于此温度。
纳⽶TiO2化学性能稳定,常温下⼏乎不与其它化合物反应,不溶于⽔、稀酸,微溶于碱和热硝酸,不与空⽓中CO2、SO2、O2等反应,具有⽣物惰性和热稳定性,⽆毒性[1]。
3. 2光催化性3.2.1光催化原理纳⽶TiO2是⼀种n型半导体材料,禁带宽度较宽,其中锐钛型为3.2eV,⾦红⽯型为3.0eV,当它吸收了波长⼩于或等于387.5nm 的光⼦后,价带中的电⼦就会被激发到导带,形成带负电的⾼活性电⼦e-,同时在价带上产⽣带正电的空⽳h+,吸附在TiO2表⾯的氧俘获电⼦形成?O2-,⽽空⽳则将吸附在TiO2表⾯的OH-和H2O氧化成具有强氧化性的?OH,反应⽣成的原⼦氧、氢氧⾃由基都有很强的化学活性, 氧化降解⼤多数有机污染物,同时空⽳本⾝也可夺取吸附在半导体表⾯的有机物质中的电⼦,使原本不吸收光的物质被直接氧化分解,这两种氧化⽅式可能单独起作⽤也可能同时起作⽤,对于不同的物质两种氧化⽅式参与作⽤的程度有所不同[2]。
ZnO/TiO2复合纳米纤维的制备及光催化性能研究文献综述1.前言20世纪以来,科技的不断进步和工业的快速发展,在给人类带来舒适与便利的同时,也造成了环境的污染与恶化,给人类的健康和生活带来了潜在的危胁。
[1-3]在各种环境污染中,最普遍、最主要和影响最大的是化学污染。
因而, 有效地控制和治理各种化学污染物对构成人类生存最基本的水资源、土壤和大气环境的破坏是环境综合治理中的重点。
多年来人们一直在寻找和尝试治理环境污染的办法,比如物理法、化学法和生物处理法等[4-6],但是都存在着不少缺陷。
因此,研究开发新型的化学污染处理方法有非常重要的意义。
光催化是纳米半导体的独特性能之一。
纳米半导体材料在光的照射下,通过有效吸收光能产生具有超强氧化能力和还原能力的光生电子和空穴,促进化合物的合成或使化合物(有机物,无机物)降解的过程称之为光催化[7]。
1972年,Fujishima和Honda[8]首先发表了用TiO2作为光催化剂分解制氢的论文,这标志着光催化时代的开始,当时正值能源危机,因此利用光催化剂和太阳能制备氢气对缓解能源危机具有重大的意义,引起了科研学者的广泛关注,随后更多关于光催化的研究深入开展了对光催化机理的探索。
在1977年,Frank和Bard等[9]用TiO2作为光催化剂将水中的氰化物分解,氧化CN-为OCN-,为光催化剂处理污水的发展提供了有力依据。
这些重大的研究也为如今催化剂在环境净化和新能源利用开发方向的研究奠定了基础。
TiO2以其无毒、催化活性高、稳定性好和价格低廉等优点, 被公认为优良的半导体光催化剂。
纳米TiO2的光生空穴的强氧化能力, 使得生物难降解的有机污染物的完全矿物化氧化成为可能。
大量研究表明,绝大部分有机物均能被TiO2光催化氧化而降解。
此外许多无机化合物或无机离子也能在TiO2表面与光生电子反应被光催化生成毒性较小或无毒的产物。
因而在大气净化、抗菌、净水、防污、防臭方面有着广阔的应用前景。
2.TiO2光催化原理TiO2作为半导体材料,其能带是不连续的,价带和导带之间存在一个禁带,其禁带宽度(带隙能,Eg)为数个电子伏特。
当用光子能量大于或等于禁带宽度的光照射半导体材料时,其价电子被激发,越过禁带进入导带,同时在价带上形成相应的空穴,即产生所谓电子-空穴对。
在光催化的过程中,空穴具有极强的获取电子的能力(TiO2价带上空穴氧化还原电位为+2.7eV) ,能将水中的OH-和H2O分子转化为氧化能力和反应活性极强的羟基自由基·OH,而吸附TiO2表面的物质或溶剂中的游离氧则俘获电子形成O2·等活性极强的自由基,这些自由基都具有有很强的化学活性,能与各种无机、有机污染物反应,生成无毒、无害的CO2、H2O和无机物等。
其反应机理可以用以下方程式[10]表示:TiO2+ hν → e-+ h+h++H2O → ·OH + H+h++OH- → ·OHO+e- → ·O2·O2+h+ → HO2·+ H+2HO2· → O2+ H2O23.TiO2光催化影响因素TiO2光催化的影响因素主要有:1.晶体结构。
TiO2光催化剂的晶型结构影响光催化反应反应速率。
在两种主要晶相结构中,金红石和锐钛矿虽都属于正交晶系,但两者的TiO6八面体的扭曲程度不一样。
金红石型结构较为致密稳定;锐钛矿相晶格中含有较多的缺陷和位错,能产生更多的氧空位来捕获电子,致使光生电子和空穴较容易分离,具有较高的活性和更多的活性表面。
所以锐钛矿型TiO2的光催化活性优于金红石型TiO2;随着环境稳定的升高,锐钛型TiO2会逐渐向金红石型转变,在1000℃不可逆转地转化成金红石型。
2.粒径。
TiO2的粒径越小,比表面积越大,其光催化效率越高。
TiO2的投加量与反应速率的关系是:开始反应速率随着催化剂用量的增加而迅速上升,在投加量过大时,反应速率反而减小。
这是因为TiO2是不溶性物质,加入量过多,会阻挡紫外光的透射深度,使光催化效果下降[17]。
3.光强。
TiO2光催化反应必须在光照下进行,并且主要对紫外光响应,但是光强过大并不利于反应的进行。
研究表明[17],在相当大的光强下,光量子效率反而较差,因为此时存在中间氧化物在催化剂表面的竞争性复合。
TiO2的吸收边缘在350nm,一般在实验中采用高压汞灯。
太阳光在紫外区也有一定的辐射能量,实验表明[17],许多化合物可被太阳光催化分解,这一结果为大规模应用TiO2光催化技术提供了可行性。
4.PH值。
pH 值的变化会影响TiO2的表面电荷,从而影响反应物在TiO2表面的吸附以及TiO2的分散程度,最终影响光催化反应的速率。
研究发现[17],pH 值的变化对不同反应物的光催化反应的影响也有所不同,并且影响程度与其它因素如光强等有关。
4.TiO2光催化改性由于TiO2是宽禁带半导体,只能吸收太阳光中的紫外线部分,对太阳光的利用率只有6%左右,光生电子-空穴易复合,光量子效率低等在一定程度上限制了TiO2的实际应用。
因此对纳米TiO2材料进行改性,拓宽其光谱吸收范围,提高其光量子效率成为目前的研究热点。
目前改性的方法主要有:离子掺杂、光敏化、贵金属沉积、半导体复合。
半导体复合主要是利用半导体导带或价带位置不同进行半导体复合,使光生电子或空穴从一个半导体迁移到另外一个半导体,增加了光生电子与空穴间的距离,减小了光生电子与光生空穴的复合几率,从而提高其光量子效率[11-13]。
Wang等[12]用化学法在锐钛矿TiO2纳米管(TNT s)表面制备出ZnO颗粒,研究ZnO-TNT s复合材料在紫外光辐照下降解若丹明B 的光催化活性。
结果显示,此体系比P25、ZnO、-TNT s的催化活性都高。
Wang等[12]分析认为,TNT s复合ZnO有利于光生电子从ZnO导带传输到TiO2导带,有利于光生空穴从TiO2价带传输到ZnO价带,实现光生电子与空穴的有效分离,延长了其寿命,增加了光生电子和光生空穴参与光催化的几率,从而提高了光催化活性。
氧化锌(ZnO)也是一种重要的无机功能材料,由于它具有优异的物理化学性质,在光电导、压电、发光器件、激光器、透明导电膜、气敏传感器、表面及体声波器件以及声光器件等方面得到广泛应用和具有广阔的应用前景。
由于ZnO半导体具有高激子束缚能、优良的电子输运性质、强抗辐照特性、低成本以及环境友好等显著特征,是未来半导体光电子领域极具应用潜力的新一代宽带隙半导体材料[13-16]。
ZnO 是禁带宽与TiO2相近(ZnO为3.37eV,Ti02为3.2eV)的n型半导体,具有六方纤锌矿结构,且在光氧化有机物方面比TiO2更有效。
但Zn0价带电位太低,且光稳定性较差。
鉴于单一光催化剂存在的优点和不足,目前国内外大量研究者开始对ZnO-TiO2的复合产生了兴趣,通过复合这2种优异的半导体材料,一方面可扩大对光的吸收范围,另一方面有利于电子迁移和抑制电子/空穴的复合,从而提高其物理和化学性能。
5.研究展望及结语目前TiO2光催化剂改性研究对提高其催化性能已取得一定成果,但仍然存在一些问题。
首先,TiO2的改性可能会造成生产成本增加,如何在提高光催化性能的同时兼顾生产成本,将关系到改性TiO2的应用推广。
其次,污水或废气中污染物种类多,成分复杂,TiO2在复杂环境下的稳定性研究还相对较少。
另外,TiO2光催化剂颗粒细小,应用过程中容易损失,如何提高其回收利用率也是一个研究方向。
未来随着研究的深入,更多的改性方法将会被发现、完善,获得性能优越、经济实惠、应用广泛的催化剂。
推广光催化技术的产业化,为环境污染的控制与治理等开辟一条新道路。
参考文献[1] ShenXT,Zhu LH, Liu GX, et al .Enhanced Photocatalytic Degradation and Selective Removal of Nitrophenols by Using Surface Molecular Imprinted Titania[J].Environment Science & Technology.2008, 42(5): 1687-1692.[2] Zhang Q, Lima D Q, Lee I, et al. Angewandte Chemie International Edition [J]. 2011, 123(31): 7226-7230.[3] Lee I, Joo JB, Yin Y D, et al. Angewandte Chemie International Edition [J]. 2011, 50(43):10208-10211.[4] 曹广秀, 李贯良, 陈淑敏. 工业水处理[J]. 2003, 23(9): 20-22.[5] 王津南, 李爱民, 张波等. 离子交换与吸附[J]. 2008, 24(1): 33-39.[6] 王国平, 黄超, 官卫军等. 离子交换与吸附[J]. 2009, 25(5): 425-432.[7]Nozik AJ.Proceedings of the 9th International Conference on Photo chemical Conver sio n and Sto rage of Sola r Energy . 1992[8] Fujishima A, Honda K. Elect rochemical photolys is of water atasemiconducto relec trode[J]. Nature , 1972, 238 (5358 ): 37-38[9] Frank SN,Bard AJ.Heter ogeneous photoc ataly ticox idation of cyanideand sulfite inaqu eous solution satsemic on duct or powders [J] . J .Phys.Chem. ,1977, 81:1484 -1489[10]徐顺,杨鹏飞,杜宝石等.掺杂TiO2的光催化性能研究进展[J].化学研究与应用, 2003,15(2);146-150.[11] He j, Cai Q Z, Zhu D, et al. Curr. Appl. Phys., 2011,11(1):98-100[12] Wang L S, Xiao M W, Huang X J, et al. J. Hazard. Mater.2009,161(1):49-54[13] Pearton S J;Norton D P;Ip K Convergence of the formation energies of intrinsic point defects inwurtzite ZnO:First-principles study by projector augmented wave method 2005[14] Chen Da;Zhang Hao;Hu Song Preparation and enhanced photoelectro-chemical performance of coupledbicomponent ZnO-TiO2 nanocomposites 2008[15] Zhang Zhonghai;Yuan Yuan;Fang Yanju Preparation of photocatalytic nano-ZnO/TiO2 film andapplication for determination of chemical oxygen demand[外文期刊] 2007(3)[16] 彭秧;侯林瑞;原长洲ZnO/TiO2纳米管复合材料的制备及其光催化性能[期刊论文]-新疆大学学报:自然科学版2007(02)[17]付红亮,谢云波,魏开华. TiO2光催化剂在废水处理中的应用[J].河南化工,2002,(4).。