北京工业大学-材料力学-弯曲变形典型习题解析
- 格式:pdf
- 大小:548.03 KB
- 文档页数:5
弯曲内力典型习题解析1 作图示简支梁的剪力图和弯矩图,并求出maxSF 和maxM。
解题分析:作剪力、弯矩图的基本方法是写出每一段梁上的剪力、弯矩方程,根据方程描点作图。
在能熟练地作剪力、弯矩图后,可采用如下简便作图法:在表中列出特殊截面(如有位移约束的截面、集中力作用截面等的剪力、弯矩值,再根据载荷集度与剪力、弯矩之间的微分关系判断各区段的内力图形状,连线相邻特殊截面对应的点。
下面按两种方法分别作图。
解I :1、求支反力qa F Ay =,qa F Cy 2=2、将梁分成AB 、BC 和CD 三个区段 以A 为原点,向右取x 坐标。
AB 段,如图d :qa F F Ay ==S ,()a x <<02qa(c)(b)(a)M(d)(e)MSSSM(f)题1图qax x F M Ay ==,()a x ≤≤0BC 段,如图e:)2()(S x a q a x q F F Ay −=−×−=,(a x a 2<<))/2()/2)((22a x q a x a x q x F M Ay +=−−+=,(a x a 2≤≤)CD 段,如图f:)()(S x a q F a x q F F Ay −=−−×−=,(a x a 32<<))/2()/2)((22a x q a x a x q x F M Ay +=−−+=,(a x a 32≤≤)3、按照步骤2所得各段梁的剪力、弯矩方程画出剪力图和弯矩图,如图b 和图c。
4、计算剪力和弯矩的最大值qa F 2maxS=, 2max23qa M=解II :1、计算支反力qa F Ay =,qa F Cy2=2、将梁分为AB 、BC 、CD 三个区段,计算每个区段起点和终点的力值。
3、根据载荷情况及微分关系,判断各力区的内力图形状,并以相应的图线连接起来,得到剪力图和弯矩图。
力区 A 截面 AB B 截面 BC C 截面 CD D 截面 载荷 F Ay 向上 q =0无集中力q =负常数 F 向下 q =负常数 F Dy 向上F S突跳F Ay水平(+)连续 下斜线(+) 突减F 下斜线(-) 突跳F DyM 0 上斜线 相切上凸抛物线转折上凸抛物线4、计算剪力弯矩最大值qa F 2maxS=, 2max23qa M=讨论:利用剪力弯矩方程作图时,注意坐标轴x 的正向一般由左至右。
7-2c 梁受力、尺寸、刚度如图所示,求A 处的转角,以及C 、D 截面的挠度。
解:(1)求反力写弯矩方程:)3()(2)(2211x a P x M BCx P x M AB--=-=(2)分段积分''1112)(E I y x P x M AB-=-=''222)3()(EIy x a P x M BC=--=121'14C x P EIy +=222'2)3(2C x a P EIy +--=11131112D x C x P EIy ++=222322)3(6D x C x a P EIy ++-+=(3)边界、连续条件定积分常量00,0111=→==D y x⎪⎪⎪⎩⎪⎪⎪⎨⎧-==-=→⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=+⨯=+⨯+-⨯=⨯+⨯→⎩⎨⎧=====25673)23(2)2(402)23(602)2(1202322221221222313212121Pa D Pa C Pa C C a a P C a P D a C a a P a C a P y y a x x θθ时,(4)该梁的转角方程为⎪⎪⎩⎪⎪⎨⎧∈+--∈-=]3,2[(67)3(2]2,0[(3422221221'a a x Pax a P a x Pa x P EIy该梁的挠曲线方程为⎪⎪⎩⎪⎪⎨⎧∈-+-+∈-=]3,2[(2567)3(6]2,0[(31223223211231a a x Pa x Pax a P a x x Pa x P EIy(5)将横坐标值代入相应的式子可求出EIPay EIPa y EIPaD C A 4,,3332-==-=θ习题7-2c 图 习题7-5图7-5 用叠加法求图示外伸梁C 截面的挠度和转角。
解:(1)将原结构的荷载分解,如图所示。
(2)查表可得各简单载荷作用下的θC 、y C 之值。
并将其叠加,得所求θC 、y C 之值。
第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( ) 1.2 内力只作用在杆件截面的形心处。
( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。
( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。
( ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。
( ) 1.9 同一截面上各点的切应力η必相互平行。
( ) 1.10 应变分为正应变ε和切应变γ。
( ) 1.11 应变为无量纲量。
( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ) 1.13 若物体内各点的应变均为零,则物体无位移。
( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。
1.2 拉伸或压缩的受力特征是 ,变形特征是 。
1.3 剪切的受力特征是 ,变形特征是 。
1.4 扭转的受力特征是 ,变形特征是 。
B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。
1.6 组合受力与变形是指 。
1.7 构件的承载能力包括 , 和 三个方面。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
1.9 根据固体材料的性能作如下三个基本假设 , , 。
第七章 弯曲变形第七章答案7-1 用积分法求位移时,下列各等直梁应分几段?写出各梁中AB 段的挠曲线近似微分方程。
写出确定积分常数的位移边界条件和变形连续条件。
解:应该分为3段 取CD 为研究对象得:ql F F D C 41==取整体为研究对象得:ql F A 83=,ql F A 87= )223( )2(21)2(41)23(l )23(41)(0 21833233322212111l x l x l q x l ql w EI l x x l ql w EI l x qx qlx w EI ≤≤---=''≤≤--=''≤≤-=''0|||||0|0||23233232233232210133232211='='============l x lx lx lx lx l x l x x w w w w w w w w解:应该分为2段F F F C A ==,0)2( )2()(0 22211l x l x l F w EI l x Fl w EI ≤≤-=''≤≤=''1x x AF DF BF DF(b)AF 1xkFw w w w w w l x l x l x l x l x x -='='========22212101232321|||||0| 7.2 用积分法求图示梁跨度中点的挠度c w 和端截面转角A θ及B θ。
(EI ql w C 76854=,EI ql A 38473=θ,EI ql B 12833-=θ)解:ql F A 81=;ql F B 83=1113111211111 481 161)2(0 81D x C qlx EIw C qlx w EI l x qlx w EI ++=+='≤≤='' 2224232223222222222 )2(241 481 )2(61 161)2( )2(21 81D x C l x q qlx EIw C l x q qlx w EI l x l l x q qlx w EI ++--=+--='≤≤--='' 边界条件:0|011==x w ⇒ 01=D 0|22==l x w ⇒0 162414812244=++⋅-D l C ql ql 222132||l x l x w w ===⇒2211)2( )2(D l C D l C +=+ 222132||l x l x w w =='='⇒021==C C则:021==D D ,4213847ql C C -== 32111133113847 161)2(0 3847 481qlqlx w EI l x x ql qlx EIw -='≤≤-=3847)2(61 161)2( 3847)2(241 48133222222342322ql l x q qlx w EI l x l x ql l x q qlx EIw ---='≤≤---= AF BF1xEI ql w x A 3847|3011-='==θ EI ql w l x B 1283|322='==θ EIql l ql l ql EI w w C 3845)]2(3847 )2(481[13331-=-==7.3 用叠加法求下列各梁的指定位移。
弯曲变形基本概念题一、选择题1.梁的受力情况如图所示,该梁变形后的挠曲线如图()所示(图中挠曲线的虚线部分表示直线,实线部分表示曲线)。
2. 如图所示悬臂梁,若分别采用两种坐标系,则由积分法求得的挠度和转角的正负号为()。
题2图题1图A.两组结果的正负号完全一致B.两组结果的正负号完全相反C.挠度的正负号相反,转角正负号一致D.挠度正负号一致,转角的正负号相反3.已知挠曲线方程y = q0x(l3 - 3lx2 +2 x3)∕(48EI),如图所示,则两端点的约束可能为下列约束中的()。
题3图4. 等截面梁如图所示,若用积分法求解梁的转角、挠度,则以下结论中()是错误的。
A.该梁应分为AB、BC两段进行积分B.挠度积分表达式中,会出现4个积分常数-26-题4图 题5图C .积分常数由边界条件和连续条件来确定D .边界条件和连续条件表达式为x = 0,y = 0;x = l ,0==右左y y ,0='y5. 用积分法计算图所示梁的位移,边界条件和连续条件为( ) A .x = 0,y = 0;x = a + l ,y = 0;x = a ,右左y y =,右左y y '=' B .x = 0,y = 0;x = a + l ,0='y ;x = a ,右左y y =,右左y y '=' C .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y =D .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y '=' 6. 材料相同的悬臂梁I 、Ⅱ,所受荷载及截面尺寸如图所示。
关于它们的最大挠度有如下结论,正确的是( )。
A . I 梁最大挠度是Ⅱ梁的41倍B .I 梁最大挠度是Ⅱ梁的21倍 C . I 梁最大挠度与Ⅱ梁的相等 D .I 梁最大挠度是Ⅱ梁的2倍题6图 题7图7. 如图所示等截面梁,用叠加法求得外伸端C 截面的挠度为( )。
此文只供参考,写作请独立思考,不要人云亦云,本文并不针对某个人(单位),祝您工作愉快!一是主要精力要放在自身专业能力的提升上,二是业余时间坚持写作总结,这是一个长期的积累过程,剩下的,不用过于浮躁,交给时间就好了。
每个人都有自己的爱,不能强迫自己去做。
每个人都有自己的意志,不能被强迫。
每个人都有自己的命运,而不是自己的结。
放松你的思想,满足于现状。
不要控制你的情绪。
去吧,依靠你的梦想。
成功取决于奋斗。
成长取决于经验。
幸福取决于开放。
幸福取决于满足。
很容易被人看不起。
如果你看起来有点肤浅,你可以放心。
往下看,你会很高兴的。
敞开心扉,敞开心扉。
只有看透了,我们才能成熟。
这很容易理解。
为了成功,你需要给生活足够的速度。
这是胜利者的态度,也是胜利者的态度。
为了实现这个伟大的目标,我们必须能够忍受别人的嘲笑和独自工作的孤独。
有了信念和追求,人就能忍受一切艰难困苦,适应一切环境。
美属于自信,平静属于准备,奇迹属于坚持。
真正的努力,是“不积跬步,无以至千里;不积小流,无以成江海”的积累;是“贵有恒,何必三更眠五更起;最无益,只怕一日曝十日寒”的自律;是“千淘万漉虽辛苦,吹尽黄沙始到金”的执着。
第七章 弯曲变形7-2 图示外伸梁AC ,承受均布载荷q 作用。
已知弯曲刚度EI 为常数,试计算横截面C 的挠度与转角,。
题7-2图 解:1. 建立挠曲轴近似微分方程并积分 支座A 与B 的支反力分别为23 ,2qaF qa F By Ay ==AB 段(0≤x 1≤a ):121122d d x EI qa x w -=121114d d C x EIqa x w +-= (a)11131112D x C x EIqa w ++-= (b)BC 段(0≤x 2≤a ):2222222d d x EI q x w -=232226d d C x EIq x w +-= (c)22242224D x C x EIq w ++-= (d)2. 确定积分常数梁的位移边界条件为 0 0 11==w x 处,在 (1)0 11==w a x 处,在(2)连续条件为2121 w w a x x ===处,在(3)221121d d d d x wx w a x x -===处,在(4)由式(b )、条件(1)与(2),得01=D , EIqa C 1231=由条件(4)、式(a )与(c ),得EI qa C 332=由条件(3)、式(b )与(d ),得EIqa D 24742-=3. 计算截面C 的挠度与转角将所得积分常数值代入式(c )与(d ),得CB 段的转角与挠度方程分别为EI qa x EI q 36332+-=2θEIqa x EI qa x EI q w 247324423422-+-=将x 2=0代入上述二式,即得截面C 的转角与挠度分别为() 33EI qa C =θ()↓-= 2474EIqa w C7-3 图示各梁,弯曲刚度EI 均为常数。
试根据梁的弯矩图与约束条件画出挠曲轴的大致形状。
题7-3图解:各梁的弯矩图及挠曲轴的大致形状示如图7-3。
图7-37-6 图示简支梁,左、右端各作用一个力偶矩分别为M 1与M 2的力偶。