高数同济版第十二章幂级数
- 格式:ppt
- 大小:2.34 MB
- 文档页数:25
习题12−11. 试说出下列各微分方程的阶数:(1)x (y ′)2−2yy ′+x =0;解 一阶.(2)x 2y ′−xy ′+y =0;解 一阶.(3)xy ′′′+2y ′+x 2y =0;解 三阶.(4)(7x −6y )dx +(x +y )dy =0;解 一阶.(5)022=++C Q dt dQ R dtQ d L ; 解 二阶.(6)θρθρ2sin =+d d . 解 一阶.2. 指出下列各题中的函数是否为所给微分方程的解:(1)xy ′=2y , y =5x 2;解 y ′=10x .因为xy ′=10x 2=2(5x 2)=2y , 所以y =5x 2是所给微分方程的解.(2)y ′+y =0, y =3sin x −4cos x ;解 y ′=3cos x +4sin x .因为y ′+y =3cos x +4sin x +3sin x −4cos x =7sin x −cos x ≠0,所以y =3sin x −4cos x 不是所给微分方程的解.(3)y ′′−2y ′+y =0, y =x 2e x ;解 y ′=2xe x +x 2e x , y ′′=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x .因为y ′′−2y ′+y =2e x +4xe x +x 2e x −2(2xe x +x 2e x )+x 2e x =2e x ≠0,所以y =x 2e x 不是所给微分方程的解.(4)y ′′−(λ1+λ2)y ′+λ1λ2y =0, .x x e C e C y 2121λλ+= 解 , .x x e C e C y 212211λλλλ+=′x x e C e C y 21222211λλλλ+=′′因为y y y 2121)(λλλλ+′+−′′)())((2121212121221121222211x x x x x x e C e C e C e C e C e C λλλλλλλλλλλλλλ++++−+= =0,所以是所给微分方程的解.x x e C e C y 2121λλ+= 3. 在下列各题中, 验证所给二元方程所确定的函数为所给微分方程的解:(1)(x −2y )y ′=2x −y , x 2−xy +y 2=C ;解 将x 2−xy +y 2=C 的两边对x 求导得2x −y −xy ′+2y y ′=0,即 (x −2y )y ′=2x −y ,所以由x 2−xy +y 2=C 所确定的函数是所给微分方程的解.(2)(xy −x )y ′′+xy ′2+yy ′−2y ′=0, y =ln(xy ).解 将y =ln(xy )的两边对x 求导得y y x y ′+=′11, 即xxy y y −=′. 再次求导得 )(1)()()1()(2222y y y y y x x xy x xy y y y x x xy y x y y x xy y y ′+′−′−⋅−=−+−′−=−−′+−−′=′′. 注意到由y y x y ′+=′11可得1−′=′y x y yx , 所以 )2(1])1([12y y y y x xxy y y y y y x x xy y ′+′−′−⋅−=′+′−′−′−⋅−=′′, 从而 (xy −x )y ′′+xy ′2+yy ′−2y ′=0,即由y =ln(xy )所确定的函数是所给微分方程的解.4. 在下列各题中, 确定函数关系式中所含的参数, 使函数满足所给的初始条件:(1)x 2−y 2=C , y |x =0=5;解 由y |x =0=0得02−52=C , C =−25, 故x 2−y 2=−25.(2)y =(C 1+C 2x )e 2x , y |x =0=0, y ′|x =0=1;解 y ′=C 2e 2x +2(C 1+C 2x )e 2x .由y |x =0=0, y ′|x =0=1得, ⎩⎨⎧=+=10121C C C 解之得C 1=0, C 2=1, 故y =xe 2x .(3)y =C 1sin(x −C 2), y |x =π=1, y ′|x =π=0.解 y ′=C 1cos(x −C 2).由y |x =π=1, y ′|x =π=0得, 即, ⎩⎨⎧=−=−0)cos(1)sin(2121C C C C ππ⎩⎨⎧=−=0cos 1sin 2121C C C C 解之得C 1=1, 22π=C , 故2sin(π−=x y , 即y =−cos x . 5. 写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x , y )处的切线的斜率等于该点横坐标的平方;解 设曲线为y =y (x ), 则曲线上点(x , y )处的切线斜率为y ′, 由条件y ′=x 2, 这便是所求微分方程.(2)曲线上点P (x , y )处的法线与x 轴的交点为Q , 且线段PQ 被y 轴平分.解 设曲线为y =y (x ), 则曲线上点P (x , y )处的法线斜率为y ′−1, 由条件第PQ 中点的横坐标为0, 所以Q 点的坐标为(−x , 0), 从而有y x x y ′−=+−10, 即yy ′+2x =0. 6. 用微分方程表示一物理命题: 某种气体的气压P 对于温度T 的变化率与气压成正比, 所温度的平方成反比.解2T P k dT dP =, 其中k 为比例系数.习题12−111. 试用幂级数求下列各微分方程的解:(1)y ′−xy −x =1;解 设方程的解为, 代入方程得 ∑∞=+=10n n n x a a y ,111011=−−−∑∑∞=+∞=−x x a x a x na n n n n n n 即 . 0])2[()12()1(112021=−++−−+−+∞=+∑n n n n x a a n x a a a 可见 a 1−1=0, 2a 2−a 0−1=0, (n +2)a n +2−a n =0(n =1, 2, ⋅ ⋅ ⋅),于是 , 11=a 2102a a +=, !!313=a , !!4104a a +=, ⋅ ⋅ ⋅ , !)!12(112−=−k a k , !)!2(102k a a k +=, ⋅ ⋅ ⋅. 所以 ]!)!2(1!)!12(1[120120∑∞=−++−+=k k k x k a x k a y ∑∑∞=∞=−++−+=12011202(!1)1(!)!12(1k k k k x k a xk a ∑∞=−−+++−=11220!)!12(1)1(12k k x x k e a , 即原方程的通解为∑∞=−−+−=1122!)!12(112k k x x k Ce y .(2)y ′′+xy ′+y =0;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,0)1(01122=++−∑∑∑∞=∞=−∞=−n n n n n n n n n x a xna x x a n n即 , 0])1()1)(2[(21220=++++++∑∞=+n n n n x a n a n n a a 于是 0221a a −=,1331a a −=, ⋅ ⋅ ⋅,1112!)!12()1(a k a k k −−=−−,02!)!2()1(a k a k k −=, ⋅ ⋅ ⋅. 所以 ]!)!12()1(!)!2()1([12112010+∞=+−+−++=∑k k k k k x k a x k a x a a y ∑∑∞=−−∞=−−+−=11211020!)!12()1()2(!!1k k k k k x k a x k a ∑∞=−−−−−+=1121120!)!12()1(2k k k x x k a e a , 即原方程的通解为∑∞=−−−−−+=1121221!)!12()1(2k k k x x k C e C y . (3)xy ′′−(x +m )y ′+my =0(m 为自然数);解 设方程的解为, 代入方程得 ∑∞==0n n n x a y , 0)()1(01122=++−−∑∑∑∞=∞=−∞=−n n n n n n n n n x a m xna m x x a n n x 即 . 0])())(1[()(1110=−−−++−∑∞=+n n n n x a m n a m n n a a m 可见 (a 0−a 1)m =0, (n −m )[(n +1)a n +1−a n ]=0 (n ≠m ),于是 a 0=a 1,)2( )2()1(1+≥+⋅⋅⋅−=+m n m n n a a m n ,)( !11m n a n a n ≤=. 所以 ∑∑∞+=+++=+⋅⋅⋅−+++=2111100)2()1(!m n n m m m m n n x m n n a x a x n a a y∑∑∞+=+++=+++=211100!)!1(!m n n m n m mn n n x a m x a n x a ∑∑∞+=+=++=1100!)!1(!m n n m m n n n x a m n x a )!()!1(!0100∑∑=+=−++=m n n x m m n n n x e a m n x a∑=+++−++=m n n m x m n x a m a e a m 0101!])!1([)!1(, 即原方程的通解为∑=+=m n n x n x C e C y 021!(其中C 1, C 2为任意常数). (4)(1−x )y ′=x 2−y ;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,∑∑∞=∞=−−=−0211)1(n n n n n n x a x x na x 即 . 0])1[()13(231223201=+−++−−+++∑∞=+n n n n n x a na a n x a a x a a a 可见 a 1+a 0=0, 2a 2=0, 3a 3−a 2−1=0, (n +1)a n +1−(n −1)a n =0(n ≥3),于是 a 1=−a 0, a 2=0, 313=a , )1(221−=−=−n n a n n a n n (n ≥4). 因此原方程的通解为∑∞=−++−=43)1(231)1(n n x n n x x C y (C =a 0为任意常数). . (5)(x +1)y ′=x 2−2x +y .解 设方程的解为, 代入方程得 ∑∞==0n n n x a y, ∑∑∞=∞=−+−=+02112)1(n n n n n n x a x x x na x 即 . 0])1()1[()13()1(231232210=++−+−+++++−∑∞=+n n n n x a n a n x a a x a a a 于是 a 1=a 0, a 2=−1,323=a ,)4()1(4)1( 231≥−−=−−=−−n n n a n n a n n n. 因此原方程的通解为 ∑∞=−−−++−+=4332)1(4)1(32)1(n n n x n n x x x C y (C =a 0为任意常数). 2. 试用幂级数求下列方程满足所给初始条件的解:(1)y ′=y 2+x 3, 21|0==x y ; 解 根据初始条件, 可设方程的解为∑∞=+=121n n n x a y , 代入方程得 32111)21(x x a x na n n n n n n ++=∑∑∞=∞=−, 即 ⋅⋅⋅+++++++=+∑∑∞=∞=− )2(2414312232122113211x a a a x a a x a x a x x na a n n n n n n . 比较两边同次幂的系数得411=a , 2a 2=a 1, 3a 3=a 2+a 12, 4a 4=a 3+2a 1a 2+1, ⋅ ⋅ ⋅, 于是 411=a , 812=a , 1613=a , 3294=a , ⋅ ⋅ ⋅. 因此所求特解为329161814121432⋅⋅⋅+++++=x x x x y . (2)(1−x )y ′+y =1+x , y |x =0=0;解 根据初始条件, 可设方程的解为, 代入方程得 ∑∞==1n n n x a y,x x a x na x n n n n n n +=+−∑∑∞=∞=−1)1(111即 . x x a n a n a n n n n +=−+−+∑∞=+1])1()1[(111比较系数得 , 11=a 212=a , )3( )1(121≥−=−=−n n n a n n a n n . 因此所求特解为∑∑∞=∞=−+=−++=232)1(1)1(121n n n n x n n x x n n x x y . 因为∑∞=−2)1(1n n x n n 的和函数为(1−x )ln(1−x )+x , 所以特解还可以写成 y =2x +(1−x )ln(1−x )+x .(3)0cos 22=+t x dt x d , x |t =0=a , 0|0==t dt dx . 解 根据初始条件, 可设方程的解为. ∑∞=+=2n n n t a a x 将, ∑∞=+=2n nn t a a x ∑∞=−−=2222)1(n n n t a n n dt x d 和∑∞=−=02)!2()1(cos n n n t n t 代 入方程得0)!2()1()()1(02222=−++−∑∑∑∞=∞=∞=−n n n n n n n n n t n t a a t a n n .将级数展开、整理合并同次项, 并比较系数得, a a =001=a , !22a a −=, , 03=a !424a a =, , 05=a !696a a −=, , 07=a !8558a a =, ⋅ ⋅ ⋅. 故所求特解为 !855!69!42!211(8642⋅⋅⋅++−+−=t t t t a x .习题12−21. 求下列微分方程的通解:(1)xy ′−y ln y =0;解 分离变量得dx xdy y y 1ln 1=, 两边积分得∫∫=dx x dy y y 1ln 1, 即 ln(ln y )=ln x +ln C ,故通解为y =e Cx .(2)3x 2+5x −5y ′=0;解 分离变量得5dy =(3x 2+5x )dx ,两边积分得, ∫∫+=dx x x dy )53(52即 123255C x x y ++=, 故通解为C x x y ++=232151, 其中151C =为任意常数.(3)2211y y x −=′−;解 分离变量得2211x dx y dy −=−, 两边积分得∫∫−=−2211x dx y dy 即 arcsin y =arcsin x +C ,故通解为y =sin(arcsin x +C ).(4)y ′−xy ′=a (y 2+y ′);解 方程变形为(1−x −a )y ′=ay 2, 分离变量得dx x a a dy y −−=112, 两边积分得∫∫−−=dx xa a dy y 112, 即 1)1ln(1C x a a y−−−−=−, 故通解为)1ln(1x a a C y −−+=, 其中C =aC 1为任意常数. (5)sec 2x tan ydx +sec 2y tan xdy =0; 解 分离变量得dx xx y y y tan sec tan sec 22−=, 两边积分得∫∫−=dx xx y y y tan sec tan sec 22, 即 ln(tan y )=−ln(tan x )+ln C , 故通解为tan x tan y =C .(6)y x dxdy +=10; 解 分离变量得10−y dy =10x dx ,两边积分得∫∫=−dx dy x y 1010, 即 10ln 10ln 1010ln 10C x y +=−−, 或 10−y =10x +C ,故通解为y =−lg(C −10x ).(7)(e x +y −e x )dx +(e x +y +e y )dy =0;解 方程变形为e y (e x +1)dy =e x (1−e y )dx , 分离变量得dx e e dy e e xx y y +=−11, 两边积分得∫∫+=−dx e e dy e e xx y y 11, 即 −ln(e y )=ln(e x +1)−ln C ,故通解为(e x +1)(e y −1)=C .(8)cos x sin ydx +sin x cos ydy =0;解 分离变量得dx xx dy y y sin cos sin cos −=, 两边积分得∫∫−=dx x x dy y y sin cos sin cos , 即 ln(sin y )=−ln(sin x )+ln C ,故通解为sin x sin y =C .(9)0)1(32=++x dxdy y ; 解 分离变量得(y +1)2dy =−x 3dx ,两边积分得∫∫−=+dx x dy y 32)1(, 即 14341)1(31C x y +−=+, 故通解为4(y +1)3+3x 4=C (C =12C 1).(10)ydx +(x 2−4x )dy =0.解 分离变量得dx xx dy y 411(4−+=, 两边积分得∫∫−+=dx x x dy y )411(4, 即 ln y 4=ln x −ln(4−x )+ln C ,故通解为y 4(4−x )=Cx .2. 求下列微分方程满足所给初始条件的特解:(1)y ′=e 2x −y , y |x =0=0;解 分离变量得e y dy =e 2x dx ,两边积分得, ∫∫=dx e dy e x y 2即 C e e x y +=221,或 )21ln(2C e y x +=.由y |x =0=0得0)21ln(=+C , 21=C , 所以特解2121ln(2+=x e y .(2)cos x sin ydy =cos y sin xdx , 4|0π==x y ; 解 分离变量得tan y dy =tan x dx ,两边积分得∫∫=xdx ydy tan tan ,即 −ln(cos y )=−ln(cos x )−ln C , 或 cos y =C cos x . 由4|0π==x y 得C C ==0cos 4cos π, 21=C , 所以特解为x y cos cos 2=.(3)y ′sin x =y ln y , e y x ==2π;解 分离变量得dx xdy y y sin 1ln 1=, 两边积分得∫∫=dx x dy y y sin 1ln 1,即 C xy ln 2ln(tan )ln(ln +=, 或2tan x C e y =. 由e y x ==π2得4tan πC e e =, C =1,所以特解为2tan x e y =.(4)cos ydx +(1+e −x )sin ydy =0, 4|0π==x y ; 解 分离变量得dx e e dy y y x x +=−1cos sin , 两边积分得∫∫+=−dx e e dy y y xx 1cos sin , 即 ln|cos y |=ln(e x +1)+ln |C |,或 cos y =C (e x +1).由4|0π==x y 得)1(4cos 4+=ππe C , 42=C , 所以特解为)1(42cos +=x e y . (5)xdy +2ydx =0, y |x =2=1.解 分离变量得dx xdy y 21−=, 两边积分得∫∫−=dx x dy y 21, 即 ln y =−2ln x +ln C ,或 y =Cx −2.由y |x =2=1得C ⋅2−2=1, C =4, 所以特解为24x y =.3. 有一盛满了水的圆锥形漏漏斗, 高为10cm , 顶角为60°, 漏斗下面有面积为0. 5cm 2的孔, 求水面高度变化的规律及流完所需的时间.解 设t 时该已流出的水的体积为V , 高度为x , 则由水力学有x dtdV )9802(5.062.0×××=, 即dt x dV )9802(5.062.0×××=. 又因为330tan x x r =°=,故 dx x dx r V 223ππ−=−=, 从而 dx x dt x 23)9802(5.062.0π−=×××, 即 x dt 2398025.062.03×××=π,因此 C x t +×××−=2598025.062.032π. 又因为当t =0时, x =10, 所以251098025.062.053××××=πC ,故水从小孔流出的规律为 645.90305.0)10(98025.062.0532252525+−=−××××=x x t π. 令x =0, 得水流完所需时间约为10s .4. 质量为1g (克)的质点受外力作用作直线运动, 这外力和时间成正比, 和质点运动的速度成反比. 在t =10s 时, 速度等于50cm/s , 外力为4g cm/s 2, 问从运动开始经过了一分钟后的速度是多少?解 已知v t k F =, 并且法t =10s 时, v =50cm/s , F =4g cm/s 2, 故50104k =, 从而k =20, 因此vt F 20=. 又由牛顿定律, F =ma , 即v t dt dv 201=⋅, 故v dv =20t d t . 这就是速度与时间应满足的微分方程. 解之得C t v +=221021, 即C t v 2202+=. 由初始条件有C +×=2210105021, C =250. 因此 500202+=t v .当t =60s 时, cm/s 3.26950060202=+×=v .5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量R 成正比. 由经验材料得知, 镭经过1600年后, 只余原始量R 0的一半. 试求镭的量R 与时间t 的函数关系.解 由题设知,R dt dR λ−=, 即dt RdR λ−=, 两边积分得ln R =−λt +C 1,从而 .)( 1C t e C Ce R ==−λ 因为当t =0时, R =R 0, 故R 0=Ce 0=C , 即R =R 0e −λt .又由于当t =1600时, 021R R =, 故λ16000021−=e R R , 从而16002ln =λ. 因此 t t e R e R R 000433.0010002ln 0−−==.6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.解 设切点为P (x , y ), 则切线在x 轴, y 轴的截距分别为2x , 2y , 切线斜率为 xy x y −=−−2002, 故曲线满足微分方程:x y dx dy −=, 即dx x dy y 11−=, 从而 ln y +ln x =ln C , xy =C .因为曲线经过点(2, 3), 所以C =2×3=6, 曲线方程为xy =6.7. 小船从河边点O 处出发驶向对岸(两岸为平行直线). 设船速为a , 船行方向始终与河岸垂直, 又设河宽为h , 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k ). 求小船的航行路线.解 建立坐标系如图. 设t 时刻船的位置为(x , y ), 此时水速为)(y h ky dt dx v −==, 故dx =ky (h −y )dt .又由已知, y =at , 代入上式得dx =kat (h −at )dt ,积分得C t ka kaht x +−=3223121.由初始条件x |t =0=0, 得C =0, 故3223121t ka kaht x −=. 因此船运动路线的函数方程为⎪⎩⎪⎨⎧=−=ayy t ka kaht x 3223121, 从而一般方程为)312(32y y h a k x −=.习题12−31. 求下列齐次方程的通解:(1)022=−−−′x y y y x ;解 原方程变为1)(2−−=x y x y dx dy . 令xy u =, 则原方程化为 12−+=+u u dx du x u , 即dx x du u 1112=−, 两边积分得C x u u ln ln )1ln(2+=−+, 即Cx u u =−+12, 将xy u =代入上式得原方程的通解Cx x y x y =−+1)(2, 即222Cx x y y =−+. (2)xy y dx dy xln =; 解 原方程变为xy x y dx dy ln =. 令xy u =, 则原方程化为 u u dx du x u ln =+, 即dx x du u u 1)1(ln 1=−, 两边积分得ln(ln u −1)=ln x +ln C , 即u =e Cx +1, 将xy u =代入上式得原方程的通解 y =xe Cx +1.(3)(x 2+y 2)dx −xydy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+x 2u 2)dx −x 2u (udx +xdu )=0, 即dx x udu 1=,两边积分得u 2=ln x 2+C , 将xy u =代入上式得原方程的通解 y 2=x 2(ln x 2+C ).(4)(x 3+y 3)dx −3xy 2dy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 3+x 3u 3)dx −3x 3u 2(udx +xdu )=0, 即dx x du u u 121332=−, 两边积分得C x u ln ln )21ln(213+=−−, 即2312x C u −=, 将xy u =代入上式得原方程的通解 x 3−2y 3=Cx .(5)0ch 3)ch 3sh2(=−+dy xy x dx x y y x y x ; 解 原方程变为xy x y dx dy +=th 32. 令xy u =, 则原方程化为 u u dx du x u +=+th 32, 即dx x du u u 2sh ch 3=, 两边积分得3ln(sh u )=2ln x +ln C , 即sh 3u =Cx 2, 将xy u =代入上式得原方程的通解 22sh Cx xy =. (6)0)1(2)21(=−++dy yx e dx e y x y x . 解 原方程变为y xy xe e y x dy dx 21)1(2+−=.令yx u =, 则原方程化为 u u e e u dy du y u 21)1(2+−=+, 即u u ee u dy du y 212++−=, 分离变量得dy y du e u e uu 1221−=++, 两边积分得ln(u +2e u )=−ln y +ln C , 即y (u +2e u )=C , 将yx u =代入上式得原方程的通解 C e yx y y x =+)2(, 即C ye x y x =+2. 2. 求下列齐次方程满足所给初始条件的特解:(1)(y 2−3x 2)dy +2xydx =0, y |x =0=1;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2u 2−3x 2)(udx +xdu )+2x 2udx =0,即 dx x du u u u 1332=−−, 或dx x du u u u 1)11113(=−+++− 两边积分得−3ln |u |+ln|u +1|+ln|u −1|=ln|x |+ln|C |, 即u 2−1=Cxu 3, 将xy u =代入上式得原方程的通解 y 2−x 2=Cy 3.由y |x =0=1得C =1, 故所求特解为y 2−x 2=y 3.(2)xy y x y +=′, y |x =1=2; 解 令xy u =, 则原方程化为 u u dx du x u +=+1, 即dx xudu 1=, 两边积分得C x u +=ln 212,将xy u =代入上式得原方程的通解 y 2=2x 2(ln x +C ).由y |x =1=2得C =2, 故所求特解为y 2=2x 2(ln x +2).(3)(x 2+2xy −y 2)dx +(y 2+2xy −x 2)dy =0, y |x =1=1.解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+2x 2u −x 2u 2)dx +(x 2u 2+2x 2u −x 2)(udx +xdu )=0,即dx x du u u u u u 1112232−=+++−+, 或 dx x du u u u 1)1211(2=+−+, 两边积分得ln|u +1|−ln(u 2+1)=ln|x |+ln|C |, 即u +1=Cx (u 2+1), 将xy u =代入上式得原方程的通解 x +y =C (x 2+y 2).由y |x =1=1得C =1, 故所求特解为x +y =(x 2+y 2).3. 设有连结点O (0, 0)和A (1, 1)的一段向上凸的曲线弧A O , 对于A O 上任一点P (x , y ), 曲线弧P O 与直线段所围图形的面积为x 2, 求曲线弧A O 的方程. 解 设曲线弧A O 的方程为y =y (x ). 由题意得 20)(21)(x x xy dx x y x =−∫,两边求导得 x x y x x y x y 2)(21)(21)(=′−−, 即 4−=′x y y . 令xy u =, 则有 4−=+u dx du x u , 即dx xdu u 41−=, 两边积分得u =−4ln x +C . 将xy u =代入上式得方程的通解 y =−4x ln x +Cx .由于A (1, 1)在曲线上, 即y (1)=1, 因而C =1, 从则所求方程为y =−4x ln x +x .习题12−41. 求下列微分方程的通解:(1)x e y dxdy −=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+⋅=+∫⋅∫=−−−−−∫∫. (2)xy ′+y =x 2+3x +2;解 原方程变为x x y x y 231++=+′.])23([11C dx e x x e y x x +∫⋅++∫=∫−])23(1])23([12C dx x x x C xdx x x x +++=+++=∫∫x Cx x C x x x x +++=+++=22331)22331(1223.(3)y ′+y cos x =e −sin x ;解 )(cos sin cos C dx e e e y xdx x dx +∫⋅∫=∫−−)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=−−−∫.(4)y ′+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +∫⋅∫=∫−)2sin (cos ln cos ln C dx e x e x x +⋅=∫−∫+⋅=)cos 1cos sin 2(cos C dx x x x x=cos x (−2cos x +C )=C cos x −2cos 2x .(5)(x 2−1)y ′+2xy −cos x =0;解 原方程变形为1cos 1222−=−+′x xy x xy .)1cos(1221222C dx e x x e y x xdx x x +∫⋅−∫=∫−−−)(sin 11])1(1cos [112222C x x C dx x x xx +−=+−⋅−−=∫.(6)23=+ρθρd d ; 解 )2(33C d e e d d +∫⋅∫=∫−θρθθ )2(33C d e e +=∫−θθθ θθθ33332)32(−−+=+=Ce C e e . (7)x xy dxdy 42=+; 解 )4(22C dx e x e y xdx xdx +∫⋅∫=∫− )4(22C dx e x e x x +⋅=∫− .2222)2(x x x Ce C e e −−+=+= (8)y ln ydx +(x −ln y )dy =0;解 原方程变形为y x y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e ye x y y dy y y +∫⋅∫=∫− )ln 1(ln 1C ydy yy +⋅=∫ yC y C y y ln ln 21)ln 21(ln 12+=+=. (9)3)2(2)2(−+=−x y dxdy x ; 解 原方程变形为2)2(221−=−−x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +∫⋅−∫=∫−−− ∫+−⋅−−=]21)2(2)[2(2C dx x x x =(x −2)[(x −2)2+C ]=(x −2)3+C (x −2).(10)02)6(2=+−y dxdy x y .解 原方程变形为y x y dy dx 213−=−. ])21([33C dy e y e x y dy y +∫⋅−∫=∫− )121(33C dy y y y +⋅−=∫ 32321)21(Cy y C y y +=+=. 2. 求下列微分方程满足所给初始条件的特解:(1)x x y dxdy sec tan =−, y |x =0=0; 解 )sec (tan tan C dx e x e y xdx xdx +∫⋅∫=∫− )(cos 1)cos sec (cos 1C x xC xdx x x +=+⋅=∫. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2)xx x y dx dy sin =+, y |x =π=1; 解 )sin (11C dx e x x e y dx x x +∫∫=∫− )cos (1)sin (1C x xC xdx x x x +−=+⋅=∫. 由y |x =π=1, 得C =π−1, 故所求特解为)cos 1(1x x y −−=π. (3)x e x y dx dy cos 5cot =+, 4|−==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +∫⋅∫=∫− )5(sin 1)sin 5(sin 1cos cos C e xC xdx e x x x +−=+⋅=∫. 由4|2−==πx y , 得C =1, 故所求特解为)15(sin 1cos +−=x e x y . (4)83=+y dxdy , y |x =0=2;解 )8(33C dx e e y dx dx +∫⋅∫=∫− x x x x x Ce C e e C dx e e 3333338)38()8(−−−+=+=+=∫. 由y |x =0=2, 得32−=C , 故所求特解为)4(323x e y −−=. (5)13232=−+y x x dx dy , y |x =1=0. 解 )1(223232C dx e e y dx x x dx x x +∫⋅∫=∫−−− )21()1(22221131313C e e x C dx e x e x x x x x +=+=−−∫. 由y |x =1=0, 得e C 21−=, 故所求特解为)1(211132−−=x e x y . 3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y . 解 由题意知y ′=2x +y , 并且y |x =0=0.由通解公式得)2()2(C dx xe e C dx xe e y x x dx dx +=+∫∫=∫∫−− =e x (−2xe −x −2e −x +C )=Ce x −2x −2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x −x −1).4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.解 由牛顿定律F =ma , 得v k t k dt dv m21−=, 即t m k v m k dt dv 12=+. 由通解公式得)()(222211C dt e t m k e C dt e t m k e v t m k t m k dt m km k +⋅=+∫⋅∫=∫∫−− )(22222121C e k m k te k k e t m kt m k t m k +−=−.由题意, 当t =0时v =0, 于是得221k m k C =. 因此 )(22122121222k m k e k m k te k k e v t m k t m k m k +−=− 即 )1(22121t m k e k m k t k k v −−−=. 5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系.解 由回路电压定律知01025sin 20=−−i dt di t , 即t i dt di 5sin 105=+. 由通解公式得t dt dt Ce t t C dt e t e i 5555cos 5sin )5sin 10(−−+−=+∫⋅∫=∫. 因为当t =0时i =0, 所以C =1. 因此)45sin(25cos 5sin 55π−+=+−=−−t e e t t i t t (A).6. 设曲在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).dy x x xf dx x yf L ])(2[)(2−+∫ 解 因为当x >0时, 所给积分与路径无关, 所以])(2)]([2x x xf xx yf y −∂∂=∂∂, 即 f (x )=2f (x )+2xf ′(x )−2x , 或 1)(21)(=+′x f xx f . 因此 x C x C dx x x C dx e e x f dx x dx x +=+=+∫⋅∫=∫∫−32)(1)1()(2121. 由f (1)=1可得31=C , 故xx x f 3132)(+=. 7. 求下列伯努利方程的通解:(1))sin (cos 2x x y y dxdy −=+;解 原方程可变形为x x ydx dy y sin cos 11−=+, 即x x y dx y d cos sin )(11−=−−−. ])cos sin ([1C dx e x x e y dx dx +∫⋅−∫=−−∫x Ce C dx e x x e x x x sin ])sin (cos [−=+−=∫−, 原方程的通解为x Ce y x sin 1−=. (2)23xy xy dxdy =−; 解 原方程可变形为x y x dxdy y =−1312, 即x xy dx y d −=+−−113)(. ])([331C dx e x e y xdx xdx +∫⋅−∫=∫−−)(222323C dx xe e x x +−=∫− 31)31(222232323−=+−=−−x x x Ce C e e , 原方程的通解为311223−=−x Ce y . (3)4)21(3131y x y dx dy −=+; 解 原方程可变形为)21(31131134x y dx dy y −=+, 即12)(33−=−−−x y dx y d . ])12([3C dx e x e y dx dx +∫⋅−∫=−−∫x x x Ce x C dx e x e +−−=+−=∫−12])12([, 原方程的通解为1213−−=x Ce y x .(4)5xy y dxdy =−; 解 原方程可变形为x ydx dy y =−4511, 即x y dx y d 44)(44−=+−−. ])4([444C dx e x e y dx dx +∫⋅−∫=∫−− )4(44C dx xe e x +−=∫− x Ce x 441−++−=, 原方程的通解为x Ce x y 44411−++−=.(5)xdy −[y +xy 3(1+ln x )]dx =0.解 原方程可变形为 )ln 1(11123x yx dx dy y +=⋅−⋅, 即)ln 1(22)(22x y x dx y d +−=+−−. ])ln 1(2[222C dx e x e y x dx x +∫⋅+−∫=∫−− ])ln 1(2122C dx x x x ++−=∫ x x x x C 94ln 322−−=, 原方程的通解为x x x x C y 94ln 32122−−=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解.解 原方程可变形为)()(xy xg xy yf dx dy −=. 在代换v =xy 下原方程化为)()(22v g x v vf x v dx dv x −=−,即dx xdu v f v g v v g 1)]()([)(=−, 积分得 C x du v f v g v v g +=−∫ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程, 然 后求出通解:(1)2)(y x dxdy +=; 解 令u =x +y , 则原方程化为21u dx du =−, 即21u du dx +=. 两边积分得x =arctan u +C .将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =−x +tan(x −C ).(2)11+−=yx dx dy ; 解 令u =x −y , 则原方程化为 111+=−udx du , 即dx =−udu . 两边积分得 1221C u x +−=.将u =x +y 代入上式得原方程的通解12)(21C y x x +−−=, 即(x −y )2=−2x +C (C =2C 1).(3)xy ′+y =y (ln x +ln y );解 令u =xy , 则原方程化为u x u x u x u dx du x x ln )1(2=+−, 即du uu dx x ln 11=. 两边积分得ln x +ln C =lnln u , 即u =e Cx .将u =xy 代入上式得原方程的通解xy =e Cx , 即Cx e xy 1=. (4)y ′=y 2+2(sin x −1)y +sin 2x −2sin x −cos x +1;解 原方程变形为y ′=(y +sin x −1)2−cos x .令u =y +sin x −1, 则原方程化为x u x dx du cos cos 2−=−, 即dx du u =21. 两边积分得 C x u +=−1. 将u =y +sin x −1代入上式得原方程的通解 C x x y +=−+−1sin 1, 即C x x y +−−=1sin 1.(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 . 解 原方程变形为)1()1(22y x xy x xy y dx dy +++−=. 令u =xy , 则原方程化为)1()1(1222u u x u u x u dx du x +++−=−, 即)1(1223u u x u dx du x ++=. 分离变量得du uu u dx x )111(123++=. 两边积分得 u uu C x ln 121ln 21+−−=+. 将u =xy 代入上式得原方程的通解 xy xy y x C x ln 121ln 221+−−=+, 即 2x 2y 2ln y −2xy −1=Cx 2y 2(C =2C 1).习题12−51. 判别下列方程中哪些是全微分方程, 并求全微分方程的通解:(1)(3x 2+6xy 2)dx +(6x 2y +4y 2)dy =0;解 这里P =3x 2+6xy 2, Q =6x 2y +4y 2. 因为x Q xy yP ∂∂==∂∂12, 所以此方程是全微分方程, 其通解为 , C dy y y x dx x y x =++∫∫02202)46(3即 C y y x x =++3223343. (2)(a 2−2xy −y 2)dx −(x +y )2dy =0;解 这里P =a 2−2xy −y 2, Q =−(x +y )2. 因为xQ y x y P ∂∂=−−=∂∂22, 所以此方程是全微分方程, 其通解为 , C dy y x dx a y x =+−∫∫0202)(即 a 2x −x 2y −xy 2=C .(3)e y dx +(xe y −2y )dy =0;解 这里P =e y , Q =xe y −2y . 因为x Q e yP y ∂∂==∂∂, 所以此方程是全微分方程, 其通解为 , C dy y xe dx e y y x =−+∫∫000)2(即 xe y −y 2=C .(4)(x cos y +cos x )y ′−y sin x +sin y =0;解 原方程变形为(x cos y +cos x )dy −(y sin x +sin y )dx =0. 这里P =−(y sin x +sin y ), Q =x cos y +cos x . 因为xQ x y y P ∂∂=−=∂∂sin cos ,所以此方程是全微分方程, 其通解为, C dy x y x dx yx =++∫∫00)cos cos (0即 x sin y +y cos x =C .解(5)(x 2−y )dx −xdy =0;解 这里P =x 2−y , Q =−x . 因为x Q yP ∂∂=−=∂∂1, 所以此方程是全微分方程, 其通解为, C xdy dx x y x =−∫∫002即 C xy x =−331. (6)y (x −2y )dx −x 2dy =0;解 这里P =y (x −2y ), Q =−x 2. 因为y x yP 4−=∂∂, x x Q 2−=∂∂, 所以此方程不是全微分方程.(7)(1+e 2θ)d ρ+2ρe 2θd θ=0;解 这里P =1+e 2θ, Q =2ρe 2θ. 因为xQ e y P ∂∂==∂∂θ22, 所以此方程是全微分方程, 其通解为 , C d e d =+∫∫θθρθρρ02022即 ρ(e 2θ+1)=C .(8)(x 2+y 2)dx +xydy =0.解 这里P =x 2+y 2, Q =xy . 因为y yP 2=∂∂, y x Q =∂∂, 所以此方程不是全微分方程.2. 利用观察法求出下列方程的积分因子, 并求其通解:(1)(x +y )(dx −dy )=dx +dy ;解 方程两边同时乘以y x +1得 y x dy dx dy dx ++=−, 即d (x −y )=d ln(x +y ), 所以yx +1为原方程的一个积分因子, 并且原方程的通解为 x −y =ln(x +y )+C .(2)ydx −xdy +y 2xdx =0;解 方程两边同时乘以21y 得 02=+−xdx y xdy ydx , 即02()(2=+x d y x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C x y x =+22. (3)y 2(x −3y )dx +(1−3y 2x )dy =0;解 原方程变形为xy 2dx −3y 3dx +dy −3x 2dy =0, 两边同时乘以21y 并整理得 0)33(2=+−+xdy ydx ydy xdx , 即0)(3)1()2(2=−−xy d y d x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C xy yx =−−3122. (4)xdx +ydy =(x 2+y 2)dx ;解 方程两边同时乘以221y x +得 022=−++dx yx ydy xdx , 即0)]ln(21[22=−+dx y x d , 所以221y x +为原方程的一个积分因子, 并且原方程的通解为 x 2+y 2=Ce 2x .(5)(x −y 2)dx +2xydy =0;解 原方程变形为xdx −y 2dx +2xydy =0, 两边同时乘以21x 得 0222=−+x dx y xydy x dx , 即0)()(ln 2=+x y d x d , 所以21x为原方程的一个积分因子, 并且原方程的通解为 C x y x =+2ln , 即x ln x +y 2=Cx . (6)2ydx −3xy 2dx −xdy =0.解 方程两边同时乘以x 得2xydx −x 2dy −3x 2y 2dx =0, 即yd (x 2)−x 2dy −3x 2y 2dx =0, 再除以y 2得03)(2222=−−dx x ydy x x yd , 即0)(32=−x y x d 所以2y x 为原方程的一个积分因子, 并且原方程的通解为 032=−x yx . 3. 验证)]()([1xy g xy f xy −是微分方程yf (xy )dx +xg (xy )dy =0的积分因子, 并求下列方程的通解:解 方程两边乘以)]()([1xy g xy f xy −得 0])()()]()([1=+−dy xy xg dx xy yf xy g xy f xy , 这里)]()([)(xy g xy f x xy f P −=, )]()([)(xy g xy f y xy g Q −=. 因为x Q xy g xy f xy g xy f xy g xy f y P ∂∂=−′−′=∂∂2)]()([)()()()(, 所以)]()([1xy g xy f xy −是原方程的一个积分因子. (1)y (x 2y 2+2)dx +x (2−2x 2y 2)dy =0;解 这里f (xy )=x 2y 2+2, g (xy )=2−2x 2y 2 , 所以 31)]()([1y x xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以3331y x 得全微分方程 032323222232=−++dy y x y x dx y x x , 其通解为C dy y x y x dx x x y x =−++∫∫122123232, 即C y x y x =−+−)11ln (ln 31222, 或2212y x e Cy x =.(2)y (2xy +1)dx +x (1+2xy −x 3y 3)dy =0.解 这里f (x y )=2x y +1, g (x y )=1+2x y −x 3 y 3 , 所以 441)]()([1yx xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以1y x 得全微分方程 02112433334=−+++dy y x y x xy dx yx xy ,其通解为C dy y x y x xy dx x x y x =−+++∫∫14333142112, 即 C y y x y x =++||ln 3113322. 4. 用积分因子法解下列一阶线性方程:(1)xy ′+2y =4ln x ;解 原方程变为x x y x y ln 42=+′, 其积分因子为 22)(x e x x =∫=μ, 在方程x xy x y ln 42=+′的两边乘以x 2得 x 2y ′+2xy =4x ln x , 即(x 2y )′=4x ln x ,两边积分得, C x x x xdx x y x +−==∫222ln 2ln 4原方程的通解为21ln 2x C x y +−=. (2)y ′−tan x ⋅y =x . 解 积分因子为,x e x xdx cos )(tan =∫=−μ在方程的两边乘以cos x 得cos x ⋅y ′−sin x ⋅y =x cos x , 即(cos x ⋅y )′=x cos x , 两边积分得C x x x xdx x y x ++==⋅∫cos sin cos cos , 方程的通解为xC x x y cos 1tan ++=.习题12−61. 求下列各微分方程的通解:(1)y ′′=x +sin x ;解 12cos 21)sin (C x x dx x x y +−=+=′∫, 21312sin 61)cos 21(C x C x x dx C x x y ++−=+−=∫, 原方程的通解为213sin 61C x C x x y ++−=. (2)y ′′′=xe x ;解 , 12C e xe dx xe y x x x +−==′′∫, 21122)2(C x C e xe dx C e xe y x x x x ++−=+−=′∫, 3221213)22(C x C x C e xe dx C x C e xe y x x x x +++−=++−=∫原方程的通解为.32213C x C x C e xe y x x +++−= (3)211x y +=′′; 解 12arctan 11C x dx x y +=+=′∫ x C dx x x x x dx C x y 1211arctan )(arctan ++−=+=∫∫ 212)1ln(21arctan C x C x x x +++−=, 原方程的通解为2121ln arctan C x C x x x y +++−=.(4)y ′′=1+y ′2;解 令p =y ′, 则原方程化为p ′=1+p 2, 即dx dp p =+211, 两边积分得arctan p =x +C 1, 即y ′=p =tan(x +C 1),, 211|)cos(|ln )tan(C C x dx C x y ++−=+=∫原方程的通解为21|)cos(|ln C C x y ++−=.(5)y ′′=y ′+x ;解 令p =y ′, 则原方程化为p ′−p =x ,由一阶线性非齐次方程的通解公式得, 1)()(111−−=+=+∫⋅∫=∫∫−−x e C C dx xe e C dx e x e p x x x dx dx 即 y ′=C 1e x −x −1,于是 221121)1(C x x e C dx x e C y x x +−−=−−=∫, 原方程的通解为22121C x x e C y x +−−=.(6)xy ′′+y ′=0;解 令p =y ′, 则原方程化为 x p ′+p =0, 即01=+′p xp , 由一阶线性齐次方程的通解公式得xC e C e C p x x 1ln 111==∫=−−, 即 xC y 1=′, 于是 211ln C x C dx xC y +==∫, 原方程的通解为y =C 1ln x +C 2 .(7)yy ′′+′=y ′2;解 令p =y ′, 则dy dp p dx dy dy dp y =⋅=′′, 原方程化为 21p dy dp yp =+, 即dy y dp p p 112=−, 两边积分得||ln ||ln |1|ln 2112C y p +=−, 即. 22121y C p ±− 当|y ′|=|p |>1时, 方程变为2211y C y +±=′, 即dx dy y C ±=+21)(11, 两边积分得arcsh(C 1y )=±C 1x +C 2,即原方程的通解为)(sh 1121x C C C y ±=. 当|y ′|=|p |<1时, 方程变为 2211y C y −±=′, 即dx dy y C ±=−21)(11, 两边积分得arcsin(C 1y )=±C 1x +C 2,即原方程的通解为)(sin 1121x C C C y ±=.(8)y 3y ′′−1=0;解 令p =y ′, 则dy dp py =′′, 原方程化为 013=−dy dp py , 即pdp =y −3dy , 两边积分得122212121C y p +−=−, 即p 2=−y −2+C 1, 故 21−−±=′y C y , 即dx dy y C ±=−−211, 两边积分得)(12121C x C y C +±=−,即原方程的通解为C 1y 2=(C 1x +C 2)2 .(9)yy 1=′′; 解 令p =y ′, 则dy dp py =′′, 原方程化为 y dy dp p 1=, 即dy ypdp 1=, 两边积分得122221C y p +=, 即1244C y p +=, 故 12C y y +±=′, 即dx dy C y ±=+11, 两边积分得原方程的通211231]2)(32[C C y C C y x ++−+±=.(10)y ′′=y ′3+y ′. 解 令p =y ′, 则dydp py =′′, 原方程化为 p p dy dp p +=3, 即0)]1([2=+−p dy dp p . 由p =0得y =C , 这是原方程的一个解. 由0)1(2=+−p dydp 得 arctan p =y −C 1, 即y ′=p =tan(y −C 1),从而 )sin(ln )tan(1112C y dy C y C x −=−=+∫, 故原方程的通解为.12arcsin C e y C x +=+ 2. 求下列各微分方程满足所给初始条件的特解:(1)y 3 y ′′+1=0, y |x =1=1, y ′|x =1=0;解 令p =y ′, 则dy dp p y =′′, 原方程化为013=+dy dp p y , 即dy ypdp 31−=, 两边积分得1221C y p +=, 即y y C y 211+±=′. 由y |x =1=1, y ′|x =1=0得C 1=−1, 从而yy y 21−±=′, 分离变量得dx dy yy =−±21, 两边积分得221C x y +=−±, 即22)(1C x y +−±=.由y |x =1=1得C 2=−1, 2)1(1−−=x y , 从而原方程的通解为22x x y −=.(2)y ′′−ay ′2=0, y |x =0=0, y ′|x =0=−1;解 令p =y ′, 则原方程化为02=−ap dx dp , 即adx dp p=21, 两边积分得 11C ax p +=−, 即11C ax y +−=′. 由y ′|x =0=−1得C 1=1, 11+−=′ax y , 两边积分得 2)1ln(1C ax a y ++−=.由y |x =0=0得C 2=0, 故所求特解为)1ln(1+−=ax a y .(3)y ′′′=e ax , y |x =1=y ′|x =1=y ′′|x =1=0;解 11C e adx e y ax ax +==′′∫.。
注:r.级数是无穷多个数相加的结果./!-12°.级数£知的形成经历了一个有限到无限的过程.n-13•级数的和:称级数亍“”的前”项和s 产士%为级数的部分和.称数列{»}为级数的部分和数列. /r-l女■】 若部分和数列{片}有极限$,即lim»=s ,则称级数收敛,称s 为级数的和,即"K-1s = u { + u 2 + w 3+ ・・• + ll n + ….称差值/;,=5-5,_为级数的余项,显然lim/^0. 気 "T* 若数列{»}的极限不存在,则称发散.H-1X例1 •讨论等比级数(几何级数)5>/=0 +如+如2+…+呵“+…的敛散性,其中。
工0・ 解:(1)・若§工1 ,则部分和片=工彳/ =a + aq+ +aq n ^9a(l — q")_ a acfl_g l_g \-q当I ty 1< 1 0寸,有lim 片=—^―,则乞呵收敛.…1 _ qn-l综上,等比级数为诃在Iglvl 时收敛,在Iglni 时发散. F1-In-1 n-1当I g l> 1时,有lini s H = oo ,则为“q"发散n->xn-1⑵.若q = 1 ,则部分和s n = na* ,有liin s” = s ,则工发散fi->xn-1⑶•若§ = -1,则部分和》=<::二严,有呼不存在'则討发散X例2.证明等差级数2> = 1 + 2 + 3 +… n-l证明:由于部分和L + 2 +…卄冒有lim s = s从而发散.J7-1航判定级数£法r护右…躺r…的敛散性•解:由于通项= —=-—-L ,因此部分和片=1 一丄+丄一丄+…+丄一丄=丄n(n +1) n n + \12 2 3 n n + \ n + \且lim s n = lim 1 ---- !— I = 1,则, ! 收敛,其和为1.―丸n + \)/?(// +1)二、收敛级数的基本性质性质1 :若级数Y知收敛,和为$ ,则级数工《冷也收敛,和为愿,其中&H0. n-l n-1性质2 :若级数与$>"都收敛,其和分别为S和CT ,则土儿也收敛,其和为S±b.H-l K-l fl-1性质3 :在级数工“”中去掉、加上或改变有限项,不会改变级数丫心的敛散性. n-l n-i 性质4 :若级数丫匕收敛,则对该级数的项任意加括号后所形成的级数n-i(⑷+ …+5) +(仏+1+ •••+%) + ••• + (%” + ••• + %) + ••.仍收敛.注:r.反之不成立,即去掉收敛级数各项中的括号后得到的级数未必收敛.例如:为(1-1) = (1-1) +…+ (1-1) +…收敛于o,但去掉括号后所形成的级数“■】90工(・1)M =1_1 + 1_1 +・・・+ (_1)曲+・・・/I-1□0C Q 77 = 2£却发散•因为yc-ir1的部分和必=‘ "/ 不存在极限.”■11, n = 2k +1 ・XX2°.若级数乞叫的项加括号后所形成的级数发散,则也发散n-i/r-1x性质5 :若级数5X 收敛,则limw w =O.J?-l"T*X21若lim u n = 0 ,则,u n 未必收敛.x1例4•证明调和级数》丄发散.证明:用反证法.001假设级数工丄收敛于$,再令该级数的部分和为》,有,从而也有Um = 5 ,Iln->x n->» -即 lim(s 2 -5 ) = 0.但1 1 I 1 1 1 1 九一兀= ---- + ----- + …+— > — + — + …+—=-,n + \ n + 2 2n 2n 2n 2n 2x i这与鯉(%-$”)= 0矛盾,从而调和级数岁发散. 三.级数收敛的判别法一(柯西审敛原理)8定理:级数工心收敛、3N 已N ・、Pn>N Np 已W ,都有+/^2+ --- + ^p \<£/r-l成立.8证明:级数》©收敛O 数列{S 〃}收敛OVw>0 , mN , V/7 > N , Vp e ,都有;t-iI S 一 片 1=1 %】+ %2 + …+ J IV £ 成立.x 1例5•利用柯西审敛原理判定级数若占的敛散性.X 注:1°.若lim/HO ,则发散 n->xH-l解:V^>0 , V/r N+ ,要使不等式1 ---------- +…+(“ +1)(〃 + 2)] (/? + /7-l)(n + p)1 1 1 ------- -- —I ---------- n + \ n +2 n + p -11< - n 成立,只须"〉丄.由柯西审敛原理知,数收敛.叽+%+…+%匸时+ -------- T + …+ ---------- T ⑺ + 2)" 1 -- + n{n +1) 于是, Vw>0VpeAT ■都有l%】+%2 + ・第二节常数项级数的审敛法正项级数及其审敛法 1 •正项级数及其收敛性(1) .正项级数:若级数中的通项>0 ,则称为正项级数./|-1n-1(2).正项级数收敛:设正项级数£ 的部分和数列{»}收敛于s ,则称£叫收敛,其和为s. n-1 n-1注:正项级数工知的部分和数列{»}是单调增加的数列.“■1 (3) .正项级数收敛的性质:X 00定理1.正项级数为“”收敛O 工叫的部分和数列匕}有界.n-ln-I注:正项级数£血发散的部分和数列{»}无界./i-ln-l2.正项级数审敛法(敛散性判别法) (1) .比较审敛法,满足s 叫,/7 = (1,2,-),若£气,收敛,则£收敛;若”■】 H-18 X发散,则\>”发散(大的收敛保证小的必收敛;小的发散导致大的发散)n-ln-l证明:1°.设fl ,”收敛于和<7 ,则土叫的部分和n-1n-1S fJ = U x +U 2 + ・・• + ll n + ■' * < Vj + v 2 + • • • + \;, + ・・• V b ,即部分和数列{»}有上界,且单调增加,于是由单调有界准则知{»}收敛,从而也收敛.2°.假设收敛,由1知也收敛,出现矛盾,故发散.n-1 n-1 n-1X X定理2•对正项级数丫知和工叫 w-l n-l推论:对正项级数工冷和为匕,若Y匕收敛,且2N , V/7 > TV,有u n < kv n伙>0), n-l /t-l n-1□000 X则丫你收敛・若工X发散、且mN w N十,\fn>N , u H > kv n伙>0),则》叫发散n-l n-l n-ix 1例i•讨论〃-级数(广义调和级数)y4(p>0)的收敛性・解:(I).当0</虫1时,有-L>1 ,而调和级数发散,从而广义调和级数£占发散.(2).当P>1 时,由于m"时,有君 V 士,所以-L = ^l_dx<\k_^dx ,a>2). 从而级数的部分和『1+£存1+£匸占心出号心< 1 + —-—(72 = 2,3,…). ”一1=1 +00 1这表明数列{»}有界,从而广义调和级数工丄收敛.tin8 1综上,广义调和级数工丄当”>1时收敛,当0</7<1发散.n-l n例2•证明级数V , 1是发散的.台/心+ 1)I 1 x i证明:由于/?(« + 1)<(/: + 1)2 ,从而.1> —>而级数,丄是调和级数,发散•故级yjn(n +1) 7? + 1 铝"+ 1x ]数》,是发散的.禽3®+1)(2).比较审敛法的极限形式定理3.对正项级数和",满足!坐如=/n-l n-l 叫(1).若Ov/v+s ,为比与》心同敛态.n-l /?-!(2).若/ = 0 ,且£ v”收敛,则“收敛.n-l n-l(3) .若/ = +s ,且£卩”发散,则发散. n-l w-l证明:⑴•由 lim = / ,贝 1」对£ = — , mNwTT宀v n 2若£叫收敛,由于U n <^v n ,从而$>“收敛.若£叫发散,由于叫〉A ,从而发散. “■1 2 “■] “■】 2H-IX从而YX 收敛・n-i⑶•由lim/ = ”o 知lim — = 0 ,假设工心收敛,则由⑵知工匕收敛,矛盾,故工心发散xi例3•判定级数工sin 丄的收敛性.・1 sin- — x f解:由于1曲—^ = 1 ,又》丄发散,从而工sin 丄发散 “虫 1 粽n 粽 川 (3).比值审敛法©Alembert 判别法) X定理4.对正项级数,知,满足lim 也(1)•若pvl ,则工心收敛.12-1⑵.若Q>1或Q = +s ,则》"”发散./r-1(3) .若Q = 1 ,则£叫敛散性待定.n-1证明:,V/7 > N , W —-/ <£ =—⑵•由lim 乞=0 ,则对 £ =丄,3/Ve7V +, V/7 > N ,有性2VnV ,即u n <Lv n .^±v n 收敛,例6.判断级数£ 解:由于 lim 也=lim "°"7卩2"屮)=lim“y u n "TOC 1/(2〃-1)2” "TOC (2〃+ 1)(2”+ 2)1 1 x 1 x 1由于2—沁〃,从而十讣,而若+收敛,从而希坛收釵 (4) .根值审敛法(柯西判别法)(1) •由lim 上伫丄= /?vl ,取£>0 ,使/? + £ = /・vl ,存在正数加,当n > m B 寸,有或护"+ £ =厂‘即心V" •从而柿<",%2 <叽G …由于级数j^r ku m 收敛,于是根据比较判别法的推论知乞竹收敛. J1 “■】 (2).由limdd = Q>l ,取£>0,使°一£>1,存在正数加,当n > m 时,有 "T8 linlfn或也>° —£>1,即“心>©「即数列{血}是单调增加的,从而,因此工©发散. 心 “ 粽(3).当° = 1日寸,土叫可能收敛也可能发散,例如:广义调和级数£丄满足”■】 n-l “u ICC \/n P 1叫〃 + 1 丿P=1,但当301x1”>1时工二收敛,当0</,<1时工二发散n-i n/r-i nx1例4 •证明级数若聞的收敛性.证明:由于 lim = lim = Um - = 0< IS H "TOC /?! HT3C JJ x1I,故工时收敛.w-1 例5.判定级数£竺的收敛性."■1 1° 解:由于lim 乞日n->® 叫2* nl/\O n 10,故謠发散.⑵-1)2“=1 ,故比值判别法失效.n-l定理5・对正项级数为心,满足lim诉7 = °・/r-l(1).若pel ,则£©收敛.n-1⑵.若p>l或Q = +S ,则工"”发散./r-l(3)•若p = \ ,则工心敛散性待定.n-l注:当0=1时,£心可能收敛也可能发散,例如:广义调和级数£2满足“■】n-l “lim li/w? = limn->»v n->x但当”>1时£厶收敛,当0</7<l时£丄发散例7.判断级数£2 + 3的收敛性.W-1/— 1 i -------------------- 1 一训2+(-1*] 1 Um-ln|2+(-l)rt J 解:由于lim 呃=lim -r{l2 + (一1)“ = lim =lim _疋"““Tx> v— x> 2 “f00 2 “f00 2 =0,从而£2 + (-1)"/r-l收敛.(5) •极限审敛法定理6•对正项级数工匕,w⑴•若lim nu n = / (0 < / < +s),则Y u n发散.H—n-lg⑵•若〃 > 1 而lim n p u n =1 (0</ < +s),则乞收敛.n-ln-»»证明:(1).在比较审敛法的极限形式中,取V n=-,由调和级数E丄发散,结论成立. (2).在比较审敛法的极限形式中,取v…=J-,当p>l时,由“-级数丈丄收敛,结论成立.例&判断级数finn-lT 的收敛性.二.交错级数及其收敛法解:由于In ; 1+ 1 - ---- (〃 T s),有 lim /?2 In 1 i f 丿 rr 心30 V + -L ) = lim n 2- 1 zr 丿 gg 1 30 ' 1 '—=1 ,故工In 1 +眉 收敛.irn-l 例9.判断级数 n-l 的收敛性.1-COS- 77解:由于1- cos — = 2sin 2n 7t2n )、2 ,有3 lim n 2( 〃 1・ 》1 - cos — = lim 八"丿1 2= _7V21-COS-n 丿收敛.1.交错级数:称各项是正负交错的级数为交错级数,记作E (j )”「S”或£(j )s”("”no )・n-lw-12•交错级数审敛法:(莱布尼兹判别法)定理7•若交错级数工(_1)心知满足(1).给》也(〃 =123,…),(2). 收敛,且其和余项乙满足|/;?|<^rX oc简记:若交错级数为(-1广5”中数列{“”}单调减少趋近0 ,则为(-1)”“叫收敛.H-1W-1xi例io •判断交错级数yc-ir 1丄的收敛性.11 1 x解:由于(1 )・冷=—> -- =%](〃 = 1,2,3,…),(2). lim u n = lim — = 0 ,从而工(-1)心—收敛. n n + \ 『―30 28 口 訂 n II三.任意项级数及其绝对绝对收敛.条件收敛1.任意项级数:若级数$>”中各项为任意实数,则称$>”为任意项级数. n-ln-l00X2.绝对收敛:若级数£h/n l 收敛,则称级数绝对收敛・H-ln-l例如:$(j )心丄绝对收敛;yc-ir 1-条件收敛・ 3•级数收敛的绝对审敛法:定理8.若级数绝对收敛,则必定收敛.n-ln-l001证明:由已知,有刃"」收敛,设匕=一(冷+1"口1) >则有匕V"」,从而有工叫收敛. “■】 2□00C 130OC3030又亍匕=乞:7(如+1"」)’有刃匕=乞2叫-力叩’从而亍心收敛./i-l/r-1 乙/i-ln-l/r-1n-1注:「反之不成立,即收敛的级数未必是绝对收敛的.2°.—般来讲,£|“”1发散,办”未必发散 但若1心1不趙近0则由£|“”1发散可知n-ln-ln-ln-I发散.例11.判定级数£弓笋 的收敛性.条件收敛:若级数“收敛,而级数£|“」发散,则称级数条件收敛.n-1/i-lH-l/I-1解:由于sin na 活而洋收敛吨譽艸收敛,从而£耳笋也收敛•例12. x1 / 1 Y r判定级数£(_1)”厶1+丄 的收敛性.n=l2 Ifl )71=1 T £>1 (“TS),从而有©不趋近0 ,因此2工 I I工(T )发散.第三节幕级数—、函数项级数的相关概念1.函数项级数:设有区间/上的函数列{叫(力},将{n…(A)}中各项依次用加号连接起来,即n I(x) + H2(x)+ -- + zf/l(x) + - -,称为函数项无穷级数,简称函数项级数,记作£"“(尤).n-1注:1°.若x = x.el ,则函数项级数]>”(切成为常数项级数$>“(无).n-1 /r-l2°.函数项级数分两类:幕级数、三角级数.2.函数项级数的收敛域:若常数项级数(忑)收敛,则称儿是函数项级数£心(羽的收敛n-1 n-1点,收敛点的全体称为它的收敛域.若常数项级数£馮(无)发散,则称也是函数项级数/r-l£叫(劝的发散点,发散点的全体称为它的发散域.“■1X3•函数项级数的和函数:对收敛域内的任一数x ,常数项级数£知(0都有一个确定的和数/r-ls(x),称之为函数项级数£你(切的和函数,即=n-1 H-1注:和函数s(x)的定义域是£叫(切的收敛域. n-1x4•函数项级数的余项:若的部分和为片(x),其和函数为s(x),有lim s n(x) = s(x), n—l则称r n(x) = s n(x) - s(x)为工u… (x)的余项,有liny;(x) = 0.“■1"T*二、幕级数及其收敛性1.幕级数:称各项都是幕函数的函数项级数Xa n x"为幕级数,即/!-090为G*=a0 + a}x + a2x2 + ・・・ + a n x n + ….zi-0注:幕级数在兀=0处收敛于5.(幕级数还在X轴上哪些点收敛,又在哪些点n-0 n-0发散呢?下面的介绍的幕级数的收敛性能回答这些问题.)2 •幕级数的收敛性X例1 •考察幕级数E疋的收敛性・J7-0解:暂时固定X,则工弋为几何级数,从而当lxl<10寸,工0收敛,其和为5(x)=—;当H-0K-0 1 —XX 8lxl>lH寸,£対发散,即亍*在(一1,1)上收敛,在(V — l]U[l, + s)发散.□■0“■()由此可见幕级数壬疋的收敛域是一个区间,这个结论对一般的幕级数也成立,即: /!-(>定理l.(Abel定理)若级数工当% =儿工0时收敛,则Vx:lxl<x0 ,有工©0绝对收敛.”■()口■()若级数^a n x"当x =儿H 0时发散,则Vx: I x 1>心,有为发散./!-0 口■()注:由Abel定理可以看出,幕级数^a…x n的收敛域是以原点为中心的区间:(-1忑1,1忑1);/!-0(-lx0IJx0 I] ; [-lx0IJx D l) ; [-lx o IJx o l].推论:若幕级数工©0既不仅在x = 0 —点收敛,也不是在整个数轴上都收敛,则必有一个确定的正数R存在,使得1.当\x\<R时,幕级数绝对收敛./!-02•当\x\>R时,幕级数发散・/I-03•当1x1=/?时,幕级数工敛散性待定.zi-0注:称/?为幕级数工勺工的收敛半径.7!-02 •幕级数收敛半径的求法x定理2•设有幕级数工,若lim紜a ft =p ,则的收敛半径R = <H-0丄,Q H 0P+ s,p = 00, p = +sX X定理3.设有幕级数,若巴]呃| = °,则为©*的收敛半径/? = <n-0n-0 丄,"0 P+ s,p = 0・例2•求幕级数$(-1)心匸=兀-少+匸+・・・+ (-1)心匸+…的收敛半径与收敛区间. 铝n 2 3 n1= lim 斗1 = 1,则该级数的收敛半径为/? = ! = !."T8 1 1nX 1 X 1 X 1又当X = -\时,工(—1尸7丄=_工丄发散;当*1时,工(—1)^丄是交错级数,H-l f1/i-l ,l/r-1 n,从而收敛区间为(-1, 1]・例3.求幕级数£匚=w-0料・心+計・丄+…的收敛区间.IV.解:由于Q = lim 土=1曲竺岂=1曲丄=0,从而级数歹匸的收敛半径R=W2 8 1 2" n + \粽川收敛区间为(_S,+QO)・例4•求幕级数为川疋= l + x + 2!/ +…+川疋+…的收敛区间.n-0解:由于p = lim =亦也士 = lim〃+ l = +s ,从而级数丈匸的收敛半径R = 0 MT* n\ “TOC粽 /?!从而例g 级数£器0的收敛半径.收敛;当4I X I 2>1 ,即lx 卜丄时,级数£ 斗0发散,从而级数£ 半的收敛半2 /r-o (川) /I-O (n!) 径R =丄.2例6.求幕级数£口匕的收敛区间.n-0 2"・〃解:令y = x-l ,则有级数■*于Q = lim|加|=lim ——/—=-,从而级数幺 2"•” ” | "2间心 + 1)/ 2” •“ 2 £恙的收敛半径X X 1 X / [ W"001当"2时,工4 =工丄发散;当尸一2时,工畔二=工(一1)“丄收敛;因此级数 /I-0 乙• n/r-(> n/r-(>Z •11 /r-() 口-的收敛区间为[-2, 2).n-o 2 • n由-2<x-\<2 , fiP-l<x<3 ,于是级数f的收敛区间为[—1,3)n-0 2 • ll三. 幕级数的运算x x定理4.设幕级数为如卍与工>屏的收敛半径分别为&和鸟,令/? = nin{/?1,/?2},则有n-0n-»0□c 00吃认=工加* , 2为常数,H</?j ;“■0£%"±£加"=£("“±»)x", \x\<R ;/I «B 0//-()n»0= ,其中 C n =^a k b n _k , \X \<R ;n=0 A-0级数n-0仅在x = 0收敛.解:由于lim/t->x ⑵2+ 2)!宀+2 /⑵叭2〃 W + 1)!]' / 耐.—当仆"即I 吨时,级哼霧0x / oo x n工工仇x"=》C 詁川,其中5=工%5“ ,凶 <凡,&比&和心都小> /|-0 / /i-O n-0 X:-()x例如:工%疋=1 ,其中(q = 1“ =0昇2 = 1,2,…),/|-0^b n x'' = \-x ,其中 % = 1,勺=一1,戈=0, “ = 2,3,…,这两个级数的收敛半径均为R = +s ,但是Z唧/ E X” =一=工八1+%+F +…+疋+… /I-0 /n-0 1 — X /!-()的收敛半径只是/? = !.四. 幕级数和函数的性质 定理5•若幕级数的收敛半径7?>0 ,则其和函数$(对满足:n-0 ⑴.在收敛区间(-ER)上连续;90f3D(2)•在收敛区间内可逐项求导,且F(x) =》(d =£叫严,xw(—R 、R);/T -O/r-J(3).在收敛区间内可逐项积分,且匚$(x)〃x = £qJ (X 血,xe(-R.R). n»0 注:逐项积分时,运算前后端点处的敛散性不变. 例7.求幕级数£匚的和函数5(x). 緬n\解:由于R = lim 厶=血]化丄=+00 ,所以该级数的收敛域为(-1 + 00),设其函数为 1计川两端乘以「,有(e~v s(x)) =0 •因此s(x) = Ce" •由 s(0) = 1 得 s(x) = e",故有 V — = e v . 紜n\X yfl,(一OOVXV+S ),贝9s'M = X/?=|⑺一1)!(一 oo <X< +s)・例8.求幕级数的和函数s(x).w-0—[——f/x = - —ln(l -x) , [0<lxl<l)及 x = -l ・ x Jo l-x x 而$(o )= q = i 或由和函数的连续性得到5(0) = lim s(x) = lim | - ln (1~ V )=1,于是5 XT 叭 X 丿心-抑-"[7叽(0'1) 1,x = 0第四节函数展开成幕级数—、函数展开成幕级数的相关概念1. 函数展开成幕级数:若在区间/上存在幕级数j^a n x n收敛于给定的函数/(x),则称/(x)n.O在I 上能展开成幕级数,即/(A ) = Xa n x n .n-02. 泰勒级数:若函数/(x)在儿的某邻域内具有” + 1阶导数,则称乞£2学2(X _站 *(勺)+几G (—勺)+今2(一勺)2+…+£2^2(兀—勺)”+…为/(对的泰勒级数,即 心)〜歹口^2(—观)”.解:由于 /? = lim|^|=lim —= 1 ”鬥勺+] | “* n又x = ±l 时,级数<>(±1)"发散,所以该级数的收敛11-0域为(-1,1),设其函数为 s(x) = £nx" , (-lvxvl),则 ;r-()5(x)=为必"=xy' nx n ~l;r —0 口 ■()X 川例9.求幕级数y — E+i 的和函数s(x)・ 解:由于/? = liman= lim 出.=1,又x = 10寸,级数Y —发散,% = -!时,级数Y — E “ + 1 忍"+ 1 禺八+ 1收敛,所以该级数的收敛域为[-1,1),设其和函数为s(x) , 1-1<X<1),当XH0日寸,有心)=£n-0= xE (x”)'=x(£x")= ;t -0 /r-1[IFH +1当心=0时,泰勒级数又叫麦克劳林级数.注:泰勒级数£ 匚如(―勺)"在“儿处收敛于f(x0).為n\3.函数展成幕级数的条件定理1 .函数/(X)在点儿的某一邻域t/(x(J内具有各阶导数,则/(x)在该邻域内能展开成泰勒级数的充要条件是/G)的泰勒公式的余项满足liin/?w(x) = O.证明:设S”+") = 土心如(―勺)*为泰勒级数£匚如(—和”的” + 1项余和,/⑴的z k!n=o ”!〃阶泰勒公式为fM = S ll+l(x) + ^(x),其中R ii(x) = J^l(x-x o y l+l为拉格朗日余项.S + 1)!必要性:若_/3在邻域“忑)内能展开成泰勒级数/W = y£2^(x-x(>)« ,则有伺川lim R tl(x) = -S”+](x)] = O.HTOC n->®充分性:若lim R ti(A) = 0,则有f(x) = lini 5ZI+1(A)=工一(x-x0)".,l /F n=0 料・思考:函数_/3在儿处“有泰勒级数”与“能展成泰勒级数”有何不同?定理2•若/(x)能展成x的幕级数,则这种展开式是唯一的,且与它的麦克劳林级数相同.证明:设/(X)所展成的幕级数为f(x) = a0 + a x x + a2x2 + - - - + a tl x n + • •,有勺=/(。
高等数学同济下册教材目录第一章无穷级数1.1 数项级数1.1.1 数项级数的概念1.1.2 数项级数的性质1.1.3 极限形式的级数1.2 幂级数1.2.1 幂级数的概念1.2.2 幂级数的收敛域1.2.3 幂级数的和函数1.3 函数项级数1.3.1 函数项级数的概念1.3.2 函数项级数的一致收敛性第二章傅里叶级数2.1 傅里叶级数的定义2.1.1 周期函数的傅里叶级数2.1.2 奇偶延拓的傅里叶级数2.2 傅里叶级数的性质2.2.1 傅里叶级数的线性性质2.2.2 傅里叶级数的逐项积分与逐项微分 2.2.3 傅里叶级数的逐项积分和逐项微分 2.3 傅里叶级数的收敛性2.3.1 傅里叶级数一致收敛的性质2.3.2 周期函数的傅里叶级数收敛性2.3.3 局部函数化的傅里叶级数第三章一元函数积分学3.1 定积分3.1.1 定积分的定义3.1.2 定积分的性质3.1.3 线性运算与换元积分法3.2 反常积分3.2.1 第一类反常积分3.2.2 第二类反常积分3.3 微积分基本定理3.3.1 牛顿-莱布尼茨公式3.3.2 积分求导法3.3.3 函数定积分的应用第四章多元函数微分学4.1 多元函数的极限与连续4.1.1 多元函数的极限4.1.2 多元函数的连续性4.2 多元函数的偏导数与全微分 4.2.1 多元函数的偏导数4.2.2 多元函数的全微分4.3 隐函数与参数方程的偏导数 4.3.1 隐函数的偏导数4.3.2 参数方程的偏导数第五章多元函数的积分学5.1 二重积分5.1.1 二重积分的概念5.1.2 二重积分的性质5.1.3 二重积分的计算方法5.2 三重积分5.2.1 三重积分的概念5.2.2 三重积分的性质5.2.3 三重积分的计算方法5.3 曲线积分与曲面积分5.3.1 第一类曲线积分5.3.2 第二类曲线积分5.3.3 曲面积分第六章多元函数的向量微积分6.1 多元函数的梯度、散度与旋度 6.1.1 多元函数的梯度6.1.2 多元函数的散度6.1.3 多元函数的旋度6.2 多元函数的曲线积分与曲面积分 6.2.1 多元函数的第一类曲线积分 6.2.2 多元函数的第二类曲线积分6.2.3 多元函数的曲面积分第七章序列与函数的多元极限7.1 多元函数的序列极限7.1.1 多元函数序列极限的概念7.1.2 多元函数序列极限的性质7.2 多元函数的函数极限7.2.1 多元函数函数极限的概念7.2.2 多元函数函数极限的性质第八章多元函数的泰勒展开8.1 函数的多元Taylor展开8.1.1 函数的多元Taylor展开定理 8.1.2 函数的多元Taylor展开的应用 8.2 隐函数存在定理与逆函数存在定理 8.2.1 隐函数存在定理8.2.2 逆函数存在定理第九章向量场与散度定理9.1 向量场9.1.1 向量场的定义9.1.2 向量场与流线9.2 散度与散度定理9.2.1 向量场的散度9.2.2 散度定理的概念与性质第十章曲线积分与斯托克斯定理10.1 向量值函数的曲线积分10.1.1 向量值函数的曲线积分的定义 10.1.2 向量值函数的曲线积分的计算 10.2 Stokes定理10.2.1 Stokes定理的概念与性质第十一章重积分与高斯定理11.1 二重积分与三重积分的概念11.1.1 二重积分与三重积分的定义 11.1.2 二重积分与三重积分的性质 11.2 高斯定理11.2.1 高斯定理的概念与性质第十二章序列与级数的广义极限12.1 无穷小量和无穷大量12.1.1 无穷小量的概念与性质12.1.2 无穷大量的概念与性质12.2 级数极限与广义极限12.2.1 级数极限的概念与性质12.2.2 广义极限的概念与性质第十三章多项式逼近与傅里叶级数近似13.1 约束方程组的最小二乘解13.1.1 约束方程组的最小二乘解的概念 13.1.2 约束方程组的最小二乘解的计算 13.2 多项式逼近13.2.1 多项式逼近的概念与性质13.2.2 最佳一致逼近13.3 傅里叶级数的近似13.3.1 傅里叶级数的收敛性13.3.2 傅里叶级数的部分和逼近第十四章偏微分方程初步14.1 偏导数14.1.1 偏导数的定义与性质14.1.2 高阶偏导数14.2 偏微分方程的分类与例子14.2.1 第一阶偏微分方程14.2.2 二阶线性偏微分方程14.2.3 泊松方程与拉普拉斯方程第十五章全微分方程初步15.1 微分方程的定义与解15.1.1 微分方程的概念与性质15.1.2 微分方程解的存在唯一性 15.2 一阶线性微分方程15.2.1 齐次线性微分方程15.2.2 非齐次线性微分方程15.3 可降阶的高阶线性微分方程15.3.1 可降阶的高阶线性微分方程第十六章复变函数初步16.1 复数的性质与运算16.1.1 复数的概念与性质16.1.2 复数的运算与表示16.2 复变函数的导数16.2.1 复变函数的导数的定义 16.2.2 复变函数的导数的性质 16.3 复变函数的积分16.3.1 复变函数的积分的定义 16.3.2 复变函数的积分的性质第十七章应用篇17.1 牛顿法与割线法17.1.1 牛顿迭代法17.1.2 割线法17.2 微分方程的应用17.2.1 放射性衰变方程17.2.3 流体的入口速度与出口速度之间的关系17.3 级数的应用17.3.1 泰勒级数的应用17.3.2 调和级数的收敛性与发散性希望以上内容能满足您对《高等数学同济下册教材目录》的需求,如有任何疑问或其他需求,请随时告知。