武汉市汉阳区2019-2020年八年级下期末考试数学试题及答案
- 格式:pdf
- 大小:205.93 KB
- 文档页数:7
2019-2020学年八年级(下)期末数学试卷一、选择题(本大题共10小题,共40.0分)1. 把代数式根号外的因式移入括号内,则原式等于( ) A.B. C. D. 2. 用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( )A. (x −34)2=1716B. (x −34)2=12C. (x −32)2=134D. (x −32)2=114 3. 如图,▱ABCD 的周长为36cm ,△ABC 的周长为28cm ,则对角线AC 的长为( )A. 28cmB. 18cmC. 10cmD. 8cm4. 下面性质中,平行四边形不一定具备的是( )A. 对角互补B. 邻角互补C. 对角相等D. 对角线互相平分5. 下列说法错误的是( ) A. 必然事件的概率为1B. 数据1、2、2、3的平均数是2C. 连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上D. 如果某种活动的中奖率为40%,那么参加这种活动10次必有4次中奖6. 若x 1,x 2是方程2x 2+3x +1=0的两个根,则x 1+x 2的值是( )A. −3B. 32C. 12D. −32 7. 3、下列说法正确的是A. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2 C. 若a 、b 、c 是 △ABC 的三边,∠A =90°,则a 2+b 2=c 2D. 若a、b、c是△ABC的三边,∠C=90°,则a2+b2=c28.一个跳水运动员从10m高台上跳水,他每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),则运动员起跳到入水所用的时间是()A. −5sB. 2sC. −1sD. 1s9.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则|a|<0是不可能事件;④16的平方根是±4,用式子表示是√16=±4;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个10.如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a//b//c.若a与b之间的距离是3,b与c之间的距离是5,则正方形ABCD的面积是()A. 16B. 30C. 34D. 64二、填空题(本大题共4小题,共20.0分)11.分解因式:4x2−121=______.12.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4569户数3421则关于这10户家庭的月用水量的中位数是______ ,平均数是______ ,众数是______ .13. 若m2+m−1=0,n2+n−1=0,且m≠n,则mn=______.14. 如图,四边形ABCD是矩形,AB=2,AD=√2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是______.三、计算题(本大题共1小题,共8.0分)15. 解下列方程:(7分)(1)(2)X(X+4)=3(X+4)四、解答题(本大题共8小题,共82.0分)16. 计算:(1)√18÷√23×√43.(2)√48÷√3−√12×√12+√24.(3)(1+√5)(1−√5)+(1+√5)2.(4)√12+|√3−2|+(π−3.14)0−√3−1.17. 课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=√3AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=√3AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)18. 现在要从甲、乙两名学生中选择一名学生去参加比赛,因甲乙两人的5次测试总成绩相同,所以根据他们的成绩绘制了尚不完整的统计图表进行分析.第1次第2次第3次第4次第5次甲成绩90708010060乙成绩709090a70请同学们完成下列问题:(1)a=______,x乙−=______;(2)请在图中完成表示乙成绩变化情况的折线;2=200,请你计算乙的方差;(3)S甲(4)可看出______将被选中参加比赛.(第1问和第4问答案可直接填写在答题卡的横线上) 19. 将一条长为20厘米的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形.要使这两个正方形的面积之和等于17平方厘米,那么这段铁丝剪成两段后的长度各是多少?20. 如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,△CDF的面积为4,射线CF与射线AB交于点N,且∠CNA=45°,连接EF,请直接写出线段EF的长.21. 根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解贵阳市19路公交车的运营情况,公交公司统计了某天19路公交车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天19路公交车平均每班的载客量;(3)如果一个月按30天计算,请估计19路公交车一个月的总载客量,并把结果用科学记数法表示出来.22. 如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证:AE=CF.23. 如图,花园围墙上有一宽1m的矩形门ABCD,量得门框对角线AC的长为2m.现准备打掉部分墙体,使其变为以AC为直径的圆弧形门,问要打掉墙体的面积是多少?(π≈3.14,√3≈1.73)【答案与解析】1.答案:B解析:本题考查二次根式的概念,由负数没有平方根求出a 的范围,判断出a −1为负数,将原式变形即可得到结果.注意a −1为负数,化简后的根式为负.∵ >0, ∴a −1<0, ∴故选B .2.答案:A解析:解:由原方程,得x 2−32x =12,x 2−32x +916=12+916, (x −34)2=1716,故选:A .化二次项系数为1后,把常数项−12移项,应该在左右两边同时加上一次项系数−32的一半的平方. 本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 3.答案:C解析:解:∵▱ABCD 的周长是36cm ,∴AB +AD =18m ,∵△ABC的周长是28cm,∴AB+BC+AC=28cm,∴AC=(AB+BC+AC)−(AB+AC)=28−18=10(cm).故选:C.平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=36,则AB+BC=18cm,而△ABC的周长=AB+BC+AC=28,继而即可求出AC的长.本题考查平行四边形的性质,解题关键是掌握平行四边形的周长为相邻两边之和的2倍,难度一般.4.答案:A解析:试题分析:根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;所以B、C、D正确.∵平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;∴B、C、D正确.故选A.5.答案:D解析:此题主要考查了概率的意义,正确掌握概率的意义是解题关键.直接利用概率的意义进而分别分析得出答案.解:A、必然事件的概率为1,正确,不合题意;B、数据1、2、2、3的平均数是2,正确,不合题意;C、连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,正确,不合题意;D、如果某种活动的中奖率为40%,那么参加这种活动10次不一定有4次中奖,故此选项错误,符合题意.故选:D.6.答案:D解析:解:根据题意得x1+x2=−32.故选:D.直接根据根与系数的关系求解.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.7.答案:D解析:解:A、勾股定理只限于在直角三角形里应用,故A可排除;B、虽然给出的是直角三角形,但没有给出哪一个是直角,故B可排除;C、在Rt△ABC中,直角所对的边是斜边,C中的斜边应为a,得出的表达式应为,故C也排除;D、符合勾股定理,正确.故选D.8.答案:B解析:解:设运动员起跳到入水所用的时间是xs,根据题意可知:−5(x−2)(x+1)=0,解得:x1=−1(不合题意舍去),x2=2,那么运动员起跳到入水所用的时间是2s.故选:B.根据每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),把ℎ=0代入列出一元二次方程,求出方程的解即可.可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.9.答案:B解析:解:①“明天降雨的概率是50%”表示明天降雨与不降雨可能性相同,此结论错误;②无理数是无线不循环的数,此结论错误;③若a为实数,则|a|<0是不可能事件,此结论正确;④16的平方根是±4,用式子表示是±√16=±4,此结论错误;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.此结论正确;故选:B.根据概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义逐一求解可得.本题主要考查概率的意义,解题的关键是掌握概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义.10.答案:C解析:解:作AE⊥直线b于点E,作CF⊥直线b于点F,∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADE+∠CDF=90°,∵AE⊥直线b,CF⊥直线b,∴∠AED=∠DFC=90°,∴∠ADE+∠DAE=90°,∴∠DAE=∠CDF,在△AED和△DFC中,{∠AED=∠DFC ∠DAE=∠CDF AD=DC,∴△AED≌△DFC(AAS),∴AE=DF,∵AE=3,CF=5,∠CFD=90°,∴DF=3,∴CD=√CF2+DF2=√52+32=√34,∴正方形ABCD的面积是:√34×√34=34,故选:C.先作辅助线AE⊥直线b于点E,CF⊥直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC 全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.11.答案:(2x+11)(2x−11)解析:解:原式=(2x+11)(2x−11),故答案为:(2x+11)(2x−11).根据平方差公式,可得答案.本题考查了因式分解,利用平方差公式是解题关键.12.答案:5吨;5.3吨;5吨解析:本题考查了众数、加权平均数及中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;利用加权平均数的计算方法求得其平均数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:表中数据为从小到大排列,5t和5t处在第5位、第6位,其平均数5t为中位数,平均数为:3×4+4×5+2×6+910=5.3吨,数据5t出现了四次最多为众数.故答案为:5吨,5.3吨,5吨.13.答案:−1解析:解:由题意可知:m、n是方程x2+x−1=0的两根,∴mn=−1.故答案为:−1.根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.14.答案:2√2−2解析:解:连接AE,∵∠ADE=90°,AE=AB=2,AD=√2,∴sin∠AED=ADAE,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=√2,∴阴影部分的面积是:(2×√2−45⋅π×22360−√2×√22)+(45⋅π×22360−√2×√22)=2√2−2,故答案为:2√2−2.根据题意可以求得∠BAE和∠DAE的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与△ADE的面积之差的和,本题得以解决.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.答案:解析:(1)用公式法解方程;(2)用因式分解法解方程。
2019-2020学年武汉市八年级第二学期期末考试数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)
1.(3分)=()
A.±8B.±4C.8D.4
2.(3分)下列说法中,正确的有()
①如果∠A+∠B﹣∠C=0,那么△ABC是直角三角形;
②如果∠A:∠B:∠C=5:12:13,则△ABC是直角三角形;
③如果三角形三边之比为,则△ABC为直角三角形;
④如果三角形三边长分别是n2﹣4、4n、n2+4(n>2),则△ABC是直角三角形;
A.1个B.2个C.3个D.4个
3.(3分)将直线y=﹣2x﹣3怎样平移可以得到直线y=﹣2x()
A.向上平移2个单位B.向上平移3个单位
C.向下平移2个单位D.向下平移3个单位
4.(3分)甲乙两名同学本学期参加了相同的5次数学考试,老师想判断这两位同学的数学成绩谁更稳定,老师需比较这两人5次数学成绩的()
A.平均数B.中位数C.众数D.方差
5.(3分)如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()
A .B.2C.2D.6
6.(3分)路程s与时间t的大致图象如下左图所示,则速度v与时间t的大致图象为()
A .
B .
第1页(共35页)。
2019—2020学年度第二学期期末考试八年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷.2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是A .B.C.D.2.下列调查中,最适宜采用普查方式的是A.对科学通信卫星上某种零部件的调查B.对我国初中学生视力状况的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查3.与5是同类二次根式的是A.3B.10C.25D.154.下列分式中,最简分式是A.24aB.21aa+C.22a ba b-+D.2a aba b++5.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),下列事件中是必然事件的为A.两枚骰子朝上一面的点数和为6 B.两枚骰子朝上一面的点数均为偶数C.两枚骰子朝上一面的点数和不小于2 D.两枚骰子朝上一面的点数均为奇数6.已知反比例函数y=3x,下列结论中,不正确...的是A.图像必经过点(1,3)B.y随x的增大而减小C.图像在第一、三象限内D.若x>1,则0<y<37.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的玻璃,他带了两块碎玻璃,其编号应该是A.①,②B.①,④C.③,④D.②,③八年级数学试题第1页共6页八年级数学试题 第2页 共6页8.如图,在矩形ABCD 中,AB =3,BC =4,若点P 是AD 边上的一个动点,则点P 到矩形 的对角线AC 、BD 的距离之和为A .2.4B .2.5C .3D .3.6二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上).9. 使二次根式1x -有意义的x 的取值范围是 ▲ . 10.当x = ▲ 时,分式12x x +-的值为0. 11.若点A (1,m )在反比例函数2y x=的图像上,则m 的值为 ▲ . 12.比较大小:32 ▲ 23.(填“>”、“<”或“=”)13.一个不透明的盒子里装有黑、白两种球共40个(除颜色外其它均相同),小明将盒子里 的球搅匀后,从中随机摸出一个记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65124 178 302 481 599 1803 摸到白球的频率mn0.650.620.5930.6040.6010.5990.601请估计摸到白球的概率为 ▲ (精确到0.01).14.平行四边形ABCD 的对角线AC 、BD 相交于点O ,当AC 、BD 满足 ▲ 时,平行四边形ABCD 为菱形.15.实数a 、b 在数轴上对应点的位置如右图所示,化简2()a b a --的结果是 ▲ .16.如图,过点P (5,3)作PM ⊥x 轴于点M 、PN ⊥y 轴于点N ,反比例函数ky x=(0)x >的图像交PM 于点A 、交PN 于点B .若四边形OAPB 的面积为10,则k = ▲ .ABP MNOxy 第16题图ABCDP第8题图ba第15题图第7题图① ②③④八年级数学试题 第3页 共6页三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)计算:(1)282- (2)(32)(32)+-18.(本题满分6分)解方程:11322xx x-=--- 19.(本题满分6分) 先化简再求值:31(1)12x x x x -+-⋅--,其中x =3.20.(本题满分6分)关注“安全”是一个永恒不变的话题.某中学对部分学生就安全知识的了解程度,采取了随机抽样调查的方式,将收集到的信息分为4种类别:A.非常了解;B.基本了解;C.了解很少;D.不了解.请你根据统计图中所提供的信息解答下列问题.(1)接受问卷调查的学生共有 ▲ 人,扇形统计图中“了解很少”部分所对应扇形的圆心角为 ▲ °;(2)请补全条形统计图;(3)若该学校共有学生3000人,估计该学校学生中对安全知识达到 “非常了解”和“基 本了解”程度的总人数.ACB D50%扇形统计图10 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第4页 共6页21.(本题满分6分)如图,在□ABCD 中,∠BAD 的角平分线分别交BC 以及DC 的延长线于点E 、 F . (1)求证:BC =DF ;(2)若∠F =65°,求∠D 的度数.22.(本题满分6分)已知m 是3的整数部分,n 是3的小数部分. (1)m = ▲ ,n = ▲ ; (2)求代数式22m n - 的值.23.(本题满分8分)彭师傅检修一条长为900米的煤气管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长是原计划的1.2倍,结果提前3小时完成任务.彭师傅原计划每小时检修管道多少米?24.(本题满分8分)如图,点A (m ,4),B (n ,1)在反比例函数(0)ky x x =>的图像上,过点A 、B 分别作x轴的垂线,垂足为点C 和点D ,且CD =3. (1)求m 、n 的值,并写出反比例函数的表达式;(2)若直线AB 的函数表达式为(0)y ax b a =+≠,请结合图像直接写出不等式k ax b x+< 的解集.A B C D E F ABCDO xy八年级数学试题 第5页 共6页25.(本题满分10分)问题呈现:我们知道反比例函数(0)k y k x =≠的图像是双曲线,那么函数k y n x m =++(k 、m 、n 为常数且k ≠0)的图像还是双曲线吗?它与反比例函数(0)ky k x=≠的图像有怎样的关系呢?让我们一起开启探索之旅……探索思考:我们可以借鉴以前研究函数的方法,首先探索函数41y x =+的图像. (1)填写下表,并画出函数41y x =+的图像. ①列表:x … -5-3-20 1 3 … y……②描点并连线.(2)观察图像,写出该函数图像的两条不同类型的特征: ① ▲ ; ② ▲ . 理解运用:函数41y x =+的图像是由函数4y x=的图像向 ▲ 平移 ▲ 个单位,其对称中心的坐标为 ▲ .灵活应用:根据上述画函数图像的经验,想一想函数421y x =++的图像大致位置,并根据图像指出,当x 满足 ▲ 时,y ≥3.–1 –2 –3 –4 –5 –6 1 2 3 4 5 6 –1 –2 –3 –4 –5 –6 1 2 3 4 5 6 xy O八年级数学试题 第6页 共6页26.(本题满分10分) 在数学兴趣小组活动中,小悦进行数学探究活动.将边长为1的正方形ABCD 与边长为2的正方形AEFG 按图①位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.连接DG 、BE ,易得DG =BE 且DG BE ⊥(不需要说明理由).(1)如图②,小悦将正方形ABCD 绕点A 逆时针旋转,旋转角为α(30 º <α<180 º). (Ⅰ)连接DG 、BE ,求证:DG =BE 且DG BE ⊥.(Ⅱ)在旋转过程中,如图③连接BG 、GE 、ED 、DB ,求出四边形BGED 面积的最 大值.(2)如图④,分别取BG 、GE 、ED 、DB 的中点M 、N 、P 、Q ,连接MN 、NP 、PQ 、 QM ,则四边形MNPQ 的形状为 ▲ ,四边形MNPQ 面积的最大值是 ▲ .A B C D EF G 图① AB C DG E F图③ A B C D EF G MQ P N图④A BCD GEF 图②八年级数学试题 第7页 共6页八年级数学答题纸题号 1-8 9-16 17 18 19 20 21 22 23 24 25 26 总分得分一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案二、填空题(本大题共8小题,每小题3分,共24分)9. 10. 11. 12. 13. 14. 15. 16. 三、解答题(本大题共有10小题,共72分) 17.(本题满分6分) (1) (2)18.(本题满分6分)19.(本题满分6分)20.(本题满分6分)(1)________;________.10 20 30 40ABCD5 类别人数条形统计图1530(3)21.(本题满分6分)(1)(2)22.(本题满分6分)(1)________;________.(2)23.(本题满分8分)AB CDEF八年级数学试题第8页共6页八年级数学试题 第9页 共6页24.(本题满分8分) (1)(2)25.(本题满分10分)探索思考:(1) ①x … -5-3-20 1 3 … y……② (2)①:________________________________________________________________; ②:________________________________________________________________.ABC DO xy–1 –2 –3 –4 –5 –6 12 3 45 6 –1–2 –3 –4 –5 –612 3 4 5 6 x y O理解运用:________________;________________;________________.灵活应用:__________________________________.26.(本题满分10分)(1)(Ⅰ)(Ⅱ)(2)________________;________________.ABCDGEF图②ABCDGEF图③八年级数学试题第10页共6页八年级数学试题 第11页 共6页八年级数学试题参考答案及评分细则一、选择题(每小题3分,共24分.) 1.D 2.A 3.C 4.B 5.C 6.B 7.D 8.A 二、填空题(每小题3分,共24分.)9.x ≥1 10.1- 11.2 12.>13.0.6014.AC ⊥BD15.b16.5三、解答题(本大题共有10小题,共72分) 17.解:(1)原式=222-=2. ················································································ 3分 (2)原式=92-=7. ··················································································· 3分 18.解:两边同乘以(2)x -1(1)3(2)x x =----2x = ································································································· 4分 检验:当2x =时,(2)x -=0 ································································· 5分 ∴2x =是原分式方程的增根,原分式方程无解. ······································· 6分 19.解:原式24112x x x x --=⋅-- 2x =+ ························································································ 4分 把3x =代入(2)x + 原式32=+5=. ·························································································· 6分 20.解:(1)60;90; ··············································································· 2分 (2)如图所示,就是我们所要补全的条件统计图; ······················· 4分 (3)30103000200060+⨯=(人) 答:该学校学生中对安全知识达到 “非常了解”和“基本了解”程度的 总人数为2000人. ········································································ 6分21.解:(1)∵四边形ABCD 为平行四边形1010 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第12页 共6页∴BA ∥CD ,AD =BC ···································································································· 1分 ∴∠BAF =∠F ∵AE 平分∠BAD ∴∠BAF =∠DAF∴∠DAF =∠F ··············································································································· 2分 ∴AD =DF∴BC =DF ······················································································································ 3分 (2)∵AD =DF∴∠F =∠DAF =65° ············································································ 5分 ∴∠D =50°. ····················································································· 6分 22.解:(1)1;31- ························································································ 2分 (2)原式()()m n m n =+⋅- ········································································ 3分 3(131)=⋅-+233=-. ··························································· 6分23.解:设彭师傅原计划每小时检修管道x 米,根据题意可得:90090031.2x x =+ ····················································································· 3分 解得:50x = ······················································································ 4分 经检验:50x =是原分式方程的解. ························································ 5分 答:彭师傅原计划每小时检修管道50米. ················································ 6分 24.解:(1)根据题意得:43m nn m =⎧⎨-=⎩·······································2分 解得:14m n =⎧⎨=⎩·································· 4分把(14),代入ky x= ∴4k =∴反比例函数的表达式为4y x=. ·························································· 6分 (2)01x <<或4x >. ········································································ 8分ABCO xy八年级数学试题 第13页 共6页25.解: (1)探索思考: ①列表:···························································································· 1分x … -5 -3 -2 0 1 3 … y…-1-2-4421…② ······································································································ 3分(2)①图像是中心对称图形; ········································································· 4分 ②当1x >-时,y 随着x 的增大减小. ························································ 5分 ③图像是轴对称图形 ④图像经过点(0,4) ⑤与x 轴没有交点…… (注:仅写两条即可) 理解运用:左;1;(1,0)-. ···················································································· 8分 灵活应用:13x -<≤. ························································································· 10分 26.解:(1) (Ⅰ)证明:∵正方形ABCD 和正方形AEFG∴AD =AB ,AE =AG ,∠BAD =∠GAE =90° ··············································· 1分 ∴∠DAG =∠BAE–1 –2 –3 –4 –5 –6 1 2 34 56 –1–2 –3 –4 –5 –612 3 4 5 6 xyO八年级数学试题 第14页 共6页在△DAG 和△BAE 中, DA BA DAG BAE GA EA =⎧⎪=⎨⎪=⎩∠∠ ∴△DAG ≌△BAE ·················································································· 2分 ∴DG =BE ···························································································· 3分 ∴∠DGA =∠BEA∵∠DGA +∠GHE =∠BEA +∠GAE ∴∠GHE =∠GAE =90°∴DG ⊥BE ···························································································· 4分 (Ⅱ)连接BE 、DG 相交点H ∵BE ⊥DG∴S 四边形BGED =S △BGE +S △BDE=1122GH BE DH BE ⋅+⋅ =12DG BE ⋅ =212BE ······························································································ 6分 当α=90°时BE 最大值=BA +AE =21+∴S 四边形BGED 的最大值为21(21)2+即为3222+. ········································· 8分(2)正方形;3224+. ······································································· 10分ABCDGEF图②ABCDG EF图③ HH。
CBA2019-2020年八年级下册期末考试数学试题含答案解析学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C.6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CS t /平方米/小时16060421ODA FE CBDABCP第13题图 第14题图 8题图 第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( ) A .40平方米B .50平方米C .80平方米D .100平方米10.如右图,矩形ABCD 中,AB =2,BC =4,P 为矩形边上的一个动点,运动路线是A →B →C →D →A ,设P 点 经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y , 则下列图象能大致反映y 与x 的函数关系的是( )二、填空题(本题共18分,每小题3分)11.如图,点D ,E 分别为△ABC 的边AB ,BC 的中点,若DE =3cm ,则AC = cm .12.已知一次函数2()y m x m =++,若y 随x 的增大而增大,则m 的取值范围是 .13.如图,在△ABC 中,D 是AB 边上的一点,连接CD ,请添加一个适当的条件 ,使△ACD ∽△ABC (只填一个即可).14.如图,在□ABCD 中,BC =5,AB =3,BE 平分∠ABC 交AD 于点E ,交对角线AC 于点F ,则AEFCBF S S △△=.15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在D AB CFE D B C A EDABCEFCD AB第15题图BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F . (1)求证:△CDE ∽△CBF ;yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEDAFB C(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?25.已知正方形ABCD 中,点M 是边CB (或CB的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .y x (元)(度)400120240216B AOEDBAC图1 图2(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————石景山区2015—2016学年第二学期期末试卷初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分)ADB C MADBCM y x1A BHO题号 1 2 3 4 5 6 7 8 9 10 答案CABADBDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)OFECADB21FECADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=△(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.6 40021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥EDBACNADB CM∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形3)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分260m m +-3= 2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分654321EN AD B CMyx 33y = -x+3E D MN OP (m ,-m +3)图1② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+ ∴232mm m=-+- 260m m +-7=1261m m ==,经检验,1261m m ==,是方程232mm m=-+-的解∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =yxy = -x+3EDP (m ,-m +3)O yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1图2∴点P(6,-3)⋯⋯⋯⋯⋯6分综上所述,满足条件的点P的坐标为P(6,-3).。
第二学期期终考试八年级数学试卷一、选择题(共10小题,每小题3分,共30分) 1.4的值是A.±2B.2C.-2D.162.函数x y +=5中自变量x 的取值范围是A.5-≥xB.5≥xC.5->xD.5>x3.已知四边形ABCD 是平行四边形,下列结论中不正确的是A.当AB=BC 时,它是菱形B.当AC ⊥BD 时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD 时,它是正方形4.下列函数是一次函数的是A.x y =B.x y 1=C.22+=x yD.21+=xy 5.数据4、7、4、8、6、9、4的众数和中位数分别是A.6,7B.4,8C.6,8D.4,66.某部队为了选拔“神枪手”,举行射击比赛,最后甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定7.下面四条直线,其中直线上每个点的坐标都是二元一次方程22=-y x 的解是A B C D8.若A(()11y x ,),B(22y x ,)为一次函数13+=x y 的图象上的两个不同点,且021≠x x ,,设221111x y N x y M -=-=,,那么M 与N 的大小关系 A.M >N B.M <N C.M=N D.不能确定9.对于实数a 、b,我们定义符号{}b a ,max 的意义为:当a ≥b 时,{}b a ,max =a ;当a ≤b时,{}b max =b a ,;如:max{4,-2}=4,若关于x 的函数为{}13max +-+=x x y ,,则该函数的最小值是A.0B.2C.3D.410.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为A.4S 1B.4S 2C.4S 2+S 3D.3S 1+4S 3二、填空题(每小题3分,共18分)11.正比例函数kx y =的图象经过点(1,2),则k 的值为___________.12.将直线42+-=x y 向左平移2个单位,得到直线的函数解析式为____________.13.数据4、-1、0、2、3的方差是____________. 附:方差公式:()()()⎥⎦⎤⎢⎣⎡-+⋯+-+-=2222121s x x x x x x n n14.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省___元。
2020年湖北省武汉市八年级第二学期期末综合测试数学试题一、选择题(每题只有一个答案正确)1.函数y=kx ﹣3与y=k x(k≠0)在同一坐标系内的图象可能是( ) A . B . C . D .2.下列图形既是中心对称图形又是轴对称图形的是( )A .B .C .D .3.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD 中,点E 、F 分别在边BC 、AD 上,____,求证:四边形AECF 是平行四边形. 你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE =DF ;②∠B =∠D ;③BAE =∠DCF ;④四边形ABCD 是平行四边形.其中A 、B 、C 、D 四位同学所填条件符合题目要求的是( )A .①②③④B .①②③C .①④D .④4.如图,在Rt ABC 中,90ACB ∠=,30A ∠=,CD AB ⊥于点D ,则BCD 与ABC 的面积之比为( )A .1:4B .1:3C .1:2D .1:25.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定6.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 都是格点,则线段AB 的长度为( )A .5B .6C .7D .257.如图.在正方形ABCD 中4AB =,E 为边BC 的中点,P 为BD 上的一个动点,则 PC PE +的最小值是( )A .25B .35C .33D .222+8.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80 人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.709.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有名学生,他们的决赛成绩如下表所示:决赛成绩/分人数那么名学生决赛成绩的众数和中位数分别是( )A .,B .,C .,D .,10.多项式322363a b a b -因式分解时,应提取的公因式为( )A .223a bB .323a bC .233a bD .333a b二、填空题11.如图,在ABC 中,90ACB ∠=︒,60ABC ∠=︒,BD 平分ABC ∠,点P 是BD 的中点,若6AD =,则CP 的长为__________.12.点A (﹣3,0)关于y 轴的对称点的坐标是__.13.不等式组240120x x +≥⎧⎨->⎩的整数解是__________. 14.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,60AOB ∠=,1AB =,则AD 的长为________.15.将直线23y x =-平移,使之经过点()9,3,则平移后的直线是__________.16.一次函数y kx b =+(,k b 是常数,0k ≠)的图象经过点()2,3A ,若3kx b +=,则x 的值是________. 17.如图,已知AD 是△ABC 的中线,AB a =,AD b =,那么DC =_________;三、解答题18.我国南宋时期数学家秦九昭及古希腊的几何学家海伦对于问题:“已知三角形的三边,如何求三角形的面积”进行了研究,并得到了海伦—秦九昭公式:如果一个三角形的三条边分别为,,a b c ,记2a b c p ++=,那么三角形的面积为()()()S p p a p b p c =---ABC 中,5AB =,6BC =,7AC =,求ABC 的面积.19.(6分)已知△ABC 中, ∠ACB=90°,∠CAB=30°,以AC ,AB 为边向外作等边三角形ACD 和等边三角形ABE,点F在AB上,且到AE,BE的距离相等.(1)用尺规作出点F;(要求:尺规作图,保留作图痕迹,不写作法)(2)连接EF,DF,证明四边形ADFE为平行四边形.20.(6分)ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.21.(6分)已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.求证:四边形ECCD是矩形.22.(8分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:(1)△ACE≌△BCD;(2)222+=.AD DB DE23.(8分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC =180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.24.(10分)如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连结DF,DE, EF. 过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1) 填空:当t= 时,AF=CE,此时BH= ;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.① 求S关于t的函数关系式;② 直接写出周长C的最小值.25.(10分)(如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.⑴如图②,若M为AD边的中点,①△AEM的周长=_________cm;②求证:EP=AE+DP;⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.参考答案一、选择题(每题只有一个答案正确)1.B【解析】分析:根据当k>0、当k<0时,y=kx-3和y=kx(k≠0)经过的象限,二者一致的即为正确答案.详解:∵当k>0时,y=kx-3过一、三、四象限,反比例函数y=kx过一、三象限,当k<0时,y=kx-3过二、三、四象限,反比例函数y=kx过二、四象限,∴B正确;故选B.点睛:本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.2.A【解析】分析:根据轴对称图形与中心对称图形的概念求解.详解:A是轴对称图形,是中心对称图形,故A符合题意;B不是轴对称图形,是中心对称图形,故B不符合题意;C不是轴对称图形,也不是中心对称图形,故C不符合题意;D是轴对称图形,不是中心对称图形,故D不符合题意.故选A.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.C【解析】【分析】由平行四边形的判定可求解.【详解】解:当添加①④时,可得四边形AECF是平行四边形,理由如下:∵四边形ABCD是平行四边形∴AD=BC,AD∥BC∵BE=DF∴AD﹣DF=BC﹣BE∴AF=EC,且AF∥CE∴四边形AECF是平行四边形.故选C.【点睛】本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.4.A【解析】【分析】易证得△BCD∽△BAC,得∠BCD=∠A=30°,那么BC=2BD,即△BCD与△BAC的相似比为1:2,根据相似三角形的面积比等于相似比的平方即可得到正确的结论.【详解】解:∵CD AB∴∠BDC=90°,∵∠B=∠B,∠BDC=∠BCA=90°,∴△BCD∽△BAC;①∴∠BCD=∠A=30°;Rt△BCD中,∠BCD=30°,则BC=2BD;由①得:S△BCD:S△BAC=(BD:BC)2=1:4;故选:A.【点睛】此题主要考查的是直角三角形和相似三角形的性质;相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.5.B【解析】【分析】如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b >k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.6.A【解析】【分析】【详解】解:利用勾股定理可得:22AB=+=,345故选A.7.A【解析】【分析】根据正方形的性质得到点A和点C关于BD对称,BC=AB=4,由线段的中点得到BE=2,连接AE交BD于P,则此时,PC+PE的值最小,根据勾股定理即可得到结论.【详解】解:四边形ABCD为正方形∴关于BD的对称点为A.C连结AE交BD于点P,如图:+的值最小,即为AE的长.此时PC PE∵E为BC中点,BC=4,∴BE=2,∴2222=++=4225AE AB BE故选:A.【点睛】本题考查了轴对称-最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.8.C【解析】【分析】根据中位数和众数的概念进行求解.解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65,1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80众数为:1.75;中位数为:1.1.故选C.【点睛】本题考查1.中位数;2.众数,理解概念是解题关键.9.B【解析】【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】∵85分的有8人,人数最多,∴众数为85分;∵处于中间位置的数为第10、11两个数为85分,90分,∴中位数为87.5分.故选B.【点睛】本题考查了众数与中位数的意义,该组数据中出现次数最多的数为众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,解决问题时如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.A【解析】【分析】分别找出系数的最大公约数,相同字母的最低指数次幂,然后即可找出公因式.【详解】3223a b a b63-的公因式为223a b-=22-)因此多项式3223a b a b633a b(2a b故选A【点睛】本题主要考查公因式的确定。
武汉市2019-2020学年八年级下学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·云南) 函数y= 的自变量x的取值范围为()A . x≤0B . x≤1C . x≥0D . x≥12. (2分)下列图形中,是轴对称图形的是()A .B .C .D .3. (2分)(2018·遵义模拟) 一组从小到大排列的数据:a,3,5,5,6,(a为正整数),唯一的众数是5,则该组数据的平均数是()A . 3.8B . 4C . 3.6或3.8D . 4.2或44. (2分)设m>n>0,m2+n2=6mn,则=()A . 4B . 2C . 2D . 45. (2分) (2015八下·萧山期中) 一个多边形的内角和等于外角和的一半,那么这个多边形是()A . 三角形B . 四边形C . 五边形D . 六边形6. (2分)(2011·百色) 如图,四边形ABCD是平行四边形,下列说法不正确的是()A . 当AC=BD时,四边形ABCD是矩形B . 当AB=BC时,四边形ABCD是菱形C . 当AC⊥BD时,四边形ABCD是菱形D . 当∠DAB=90°时,四边形ABCD是正方形7. (2分) (2019八下·鄞州期末) 利用反证法证明命题“在中,若,则”时,应假设)A . 若,则B . 若,则C . 若,则D . 若,则8. (2分)某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP年平均增长率为 %,则 %满足的关系是()A .B .C .D .9. (2分)反比例函数y=的图象如图,点M是该函数图象上一点,MN 垂直于x轴,垂足是点N,如果S△MON =2,则k的值为()A . -2B . -4C . 2D . 410. (2分) (2016九上·夏津期中) 如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a+2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2 .上述4个判断中,正确的是()A . ①②B . ①②④C . ①③④D . ②③④11. (2分)如图,O是正方形ABCD的对角线BD上一点,☉O与边AB,BC都相切,点E,F分别在边AD,DC上.现将△DEF沿着EF折叠,折痕EF与☉O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是()A . 3B . 4C . 2+D . 212. (2分)若矩形的对角线长为4cm,一条边长为2cm,则此矩形的面积为()A . 8cm2B . 4cm2C . 2cm2D . 8cm2二、填空题 (共6题;共6分)13. (1分)(2017·平房模拟) 计算: =________.14. (1分)(2018·福清模拟) 有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=________.15. (1分)关于x的方程x2+mx+m2=0有实数根,则m的取值范围是 ________.16. (1分)如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为________17. (1分)如图,矩形ABCD中,点M是CD的中点,点P是AB上的一动点,若AD=1,AB=2,则PA+PB+PM 的最小值是________.18. (1分)(2017·冠县模拟) 如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为________.三、解答题 (共8题;共76分)19. (5分) (2020八上·覃塘期末)(1)计算:(2)先化简,再求值:,其中 .20. (10分) (2020九上·镇平期末) 先化简(﹣1)÷ ,再求值,其中x是一元二次方程x2﹣3x+2=0的两根.21. (10分)为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100)b.乙部门成绩如下:40 52 70 70 71 73 77 78 80 8182 82 82 82 83 83 83 86 91 94c.甲、乙两部门成绩的平均数、方差、中位数如下:平均数方差中位数甲79.636.8478.5乙77147.2md.近五年该单位参赛员工进入复赛的出线成绩如下:2014年2015年2016年2017年2018年出线成绩(百分7981808182制)根据以上信息,回答下列问题:(1)写出表中m的值;(2)可以推断出选择________部门参赛更好,理由为________;(3)预估(2)中部门今年参赛进入复赛的人数为________.22. (10分)(2016·河池) 如图,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于A(﹣3,2),B(2,n).(1)求反比例函数y= 的解析式;(2)求一次函数y=ax+b的解析式;(3)观察图象,直接写出不等式ax+b<的解集.23. (6分) (2016九上·仙游期末) 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。
武汉市汉阳区2019-2020年八年级下期末考试数学试题及答案学年度第二学期期终考试八年级数学试卷附:方差公式])()()[(1222212x x x x x x ns n -++-+-=第Ⅰ卷(选择题,共36分)一、选择题(每小题3分,共36分) 1. 4的算术平方根是A.2±B. 2C. -2D.4±2.函数5yx 中自变量x 的取值范围是A .x ≥-5B .x ≥5C .x >-5D .x >53.下列各组数据中,不可以构成直角三角形的是A 7,24,25B 1.5 ,2,2.5 C45,1,43D 40,50,60 4.在下列性质中,平行四边形不一定...具有的是 A 对边相等 B 对角互补 C 对边平行 D 内角和为3600 5.菱形的周长为8cm ,高为1cm ,则菱形两邻角度数比为 A 3:1 B 4:1 C 5:1 D 6:16.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,若∠BOC =1200,AC =8,AB 的长度是A 4B 24C 34D 8 7.下列函数是一次函数的是A y =-8x ;B y =-x 8C y =-8x 2+2D y =-x8+28.已知一次函数y kx b =+的图象如图所示,当x <0时,y 的取值范围是A y >0.B y <0.C -2y <<0.D y <-2.ODCBA第6题图9.在15人参加“我爱江城”演讲比赛中,参赛选手各不相同,因此选手要想知道自己是否进入前8名,只有了解自己的成绩以及全部成绩的A.平均数 B 众数 C 中位数 D.极差10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面图像中,能大致表示水的最大深度h 与时间t 之间的关系的是A B C D 第10题图11.某天早上王文上学, 先步行一段路, 因时间紧,他又改乘 出租车,结果到校时还是迟到了5分钟,其行程情况如图, 若他出门时直接乘出租车(车速不变),则他 A 仍会迟到2分钟到校 B 刚好按时到校 C 可以提前2分钟到校 D 可以提前5分钟到校12. 甲、乙两班进行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经过统计后如右表,规定每分钟输入汉字数≥150个为优秀。
2019-2020学年武汉市八年级第二学期期末统考数学试题一、选择题(每题只有一个答案正确) 1.若式子2-x有意义,则x 的取值范围为( ). A .x≥2B .x≠2C .x≤2D .x <22.下列图形是轴对称的是( )A .B .C .D .3.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A .B .C .D .4.已知平行四边形ABCD 中,90A B C ∠=∠=∠=,如果添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是( ) A .90D ∠=B .AB CD =C .AB BC =D .AC BD =5.在正方形ABCD 中,E 是BC 边上一点,若3AB =,且点E 与点B 不重合,则AE 的长可以是( )A .3B .4C .5D .66.在▱ABCD 中,对角线AC ,BD 交于点O ,下列结论错误的是( ) A .∠ABO =∠CDO B .∠BAD =∠BCD C .AB =CDD .AC ⊥BD7.不等式组{x 1042x 0-≥->的解集在数轴上表示为( )A .B .C .D .8.估算415+的运算结果应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间9.一元一次不等式组2201 3.x x +>⎧⎨+⎩,的解集在数轴上表示为( ).A .B .C .D .10.下列各组线段 中,能构成直角三角形的是( ) A .2,3,4 B .3,4,6 C .5,12,13 D .4,6,7 二、填空题11.如图,P 是矩形ABCD 内一点,4AB =,2AD =,AP BP ⊥,则当线段DP 最短时,CP = ________.12.如图,在平行四边形ABCD 中,∠A=70°,DC=DB ,则∠CDB=__.13.二次函数 y =ax 2+bx +c(a≠0)的图象如图所示,对称轴是直线 x =1,则下列四个结论:①c >0;②2a +b =0; ③b 2-4ac >0; ④a -b +c >0;正确的是_____.14.如图,数轴上点O 对应的数是0,点A 对应的数是3,AB ⊥OA ,垂足为A ,且AB =2,以原点O 为圆心,以OB 为半径画弧,弧与数轴的交点为点C ,则点C 表示的数为_____.15.如图,第()1、()2、()3、()4…中分别有“小正方形”1个、5个、11个、19个…,则第幅()10图中有“小正方形”__________个.(1) (2) (3) (4) 16.如图,己知: 123////l l l ,6AB =,5DE =,7.5EF =,则AC =_______.17.化简:22738⨯= . 三、解答题18.如图,O 是平行四边形ABCD 对角线AC 、BD 的交点,E 是CD 的中点,EF ⊥OE 交AC 延长线于F ,若∠ACB =50°,求∠F 的度数.19.(6分) “最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数; (3)该班平均每人捐款多少元?20.(6分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分. 运动员甲测试成绩表 测试序号 1 2 3 4 5 6 7 8 9 10 成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为20.8S 甲、2=0.4S 乙、2=0.8S 丙)21.(6分)某校为灾区开展了“献出我们的爱”赈灾捐款活动,九年级(1)班50名同学积极参加了这次赈灾捐款活动,因不慎,表中数据有一处被墨水污染,已无法看清,但已知全班平均每人捐款38元. 捐款(元) 10 15 30 50 60 人数361111136(1)根据以上信息可知,被污染处的数据为 . (2)该班捐款金额的众数为 ,中位数为 .(3)如果用九年级(1)班捐款情况作为一个样本,请估计全校2000人中捐款在40元以上(包括40元)的人数是多少?22.(8分)某学校开展课外体育活动,决定开设A :篮球、B :乒乓球、C :武术、D :跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了m 名学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题:()1m =______;()2在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为______; ()3请把图的条形统计图补充完整;()4若该校有学生1200人,请你估计该校最喜欢武术的学生人数约是多少?23.(8分)先阅读下面的材料,再解答下面的问题:如果两个三角形的形状相同,则称这两个三角形相似.如图1,△ABC 与△DEF 形状相同,则称△ABC 与△DEF 相似,记作△ABC ∽△DEF .那么,如何说明两个三角形相似呢?我们可以用“两角分别相等的三角形相似”加以说明.用数学语言表示为: 如图1:在△ABC 与△DEF 中,∵∠A =∠D ,∠B =∠E ,∴△ABC ∽△DEF .请你利用上述定理解决下面的问题:(1)下列说法:①有一个角为50°的两个等腰三角形相似;②有一个角为100°的两个等腰三角形相似;③有一个锐角相等的两个直角三角形相似;④两个等边三角形相似.其中正确的是______(填序号); (2)如图2,已知AB ∥CD ,AD 与BC 相交于点O ,试说明△ABO ∽△DCO ;(3)如图3,在平行四边形ABCD 中,E 是DC 上一点,连接AE .F 为AE 上一点,且∠BFE =∠C ,求证:△ABF ∽△EAD . 24.(10分)计算:(112726205; (2)21)2)+3﹣2)2 25.(10分)给出三个多项式:22211121,41,2222x x x x x x +-++-,请选择两个多项式进行加法运算,并把结果分解因式(写出两种情况).参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据被开方式大于且等于零,分母不等于零列式求解即可.【详解】有意义∴2x0 x20-≥⎧⎨-≠⎩∴x<2故选:D【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.2.D【解析】【分析】根据图形的特点结合轴对称图形和中心对称图形的概念解答.【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本项错误;B、既不是轴对称图形,也不是中心对称图形,故本项错误;C、是中心对称图形,不是轴对称图形,故本项错误;D、是轴对称图形,故本项正确;故选择:D.【点睛】此题考查了轴对称图形和中心对称图形的概念,熟记的定义是解题的关键.3.D【解析】【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.4.C【解析】【分析】由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD 为正方形,故选:C.【点睛】本题考查正方形的判定.正方形的判定方法有:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角;③先判定四边形是平行四边形,再用1或2进行判定.5.B【解析】【分析】且根据E为BC边上一点(E与点B不重合),可得当E与点C重合时AE最长,求出AC即可得出答案.【详解】解:∵四边形ABCD为正方形,∴AB=BC=3,=又∵E为BC边上一点,E与点B不重合,∴当E与点C重合时AE最长,则3<AE≤32,故选:B.【点睛】本题考查全正方形的性质和勾股定理,求出当E与点C重合时AE最长是解题的关键.6.D【解析】【分析】由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,对角相等;两直线平行,内错角相等;即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∠BAD=∠BCD,∴∠ABO=∠CDO.所以A、B、C正确.故选:D.【点睛】本题考查平行四边形的性质.注意平行四边形的对边相等,对角相等,对角线互相平分定理的应用是解此题的关键.7.D【解析】【分析】分别求出不等式组中每一个不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】:x1042x0->⎧⎨-≥⎩①②,由①得,x1≥,由②得,x2<,故此不等式组的解集为:1x2≤<,在数轴上表示为:故选D.【点睛】本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.在数轴上表示时要注意实心圆点与空心圆点的区别.8.C【解析】【分析】先估算出15的大小,然后求得4+15的大小即可.【详解】解:9<15<16,∴3<15<4,∴5<4+15<6,故选C.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.9.A【解析】【分析】根据不等式解集的表示方法即可判断.【详解】解:22013xx+>⎧⎨+⎩①②解不等式①得:x>-1,解不等式②得:x≤2,∴不等式组的解集是-1<x≤2,表示在数轴上,如图所示:.故选:A.【点睛】此题考查解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.10.C【解析】试题分析:选项A,22+32=13≠42;选项B,32+42=25≠62;选项C,52+122=169=132;选项D,42+62=52≠1.由勾股定理的逆定理可得,只有选项C能够成直角三角形,故答案选C.考点:勾股定理的逆定理.二、填空题11.23【解析】【分析】因为AP⊥BP,则P点在AB为直径的半圆上,当P点为AB的中点E与D点连线与半圆AB的交点时,DP 最短,求出此时PC的长度便可.【详解】解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP最短,则AO=OP′=OB=12AB=2,∵AD=2,∠BAD=90°,∴2,∠ADC=∠AOD=∠ODC=45°,∴DP′=OD-2-2,过P′作P′E⊥CD于点E,则P′E=DE=22DP′=22,∴2+2,∴CP22'P E CE23故答案为3【点睛】本题是一个矩形的综合题,主要考查了矩形的性质,勾股定理,圆的性质,关键是作辅助圆和构造直角三角形.12.40°【解析】【分析】根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【详解】∵四边形ABCD 是平行四边形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°-70°-70°=40°.故答案是:40°.【点睛】考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识.13.①②③【解析】【分析】由抛物线开口方向得到a <0,由抛物线与y 轴交点位置得到c >0,则可对①进行判断;利用抛物线的对称轴方程可对②进行判断;由抛物线与x 轴的交点个数可对③进行判断;由于x=-1时函数值小于0,则可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵抛物线与y 轴交点位于y 轴正半轴,∴c >0,所以①正确; ∵抛物线的对称轴为直线x 12b a=-=, ∴b=-2a ,即2a+b=0,所以②正确;∵抛物线与x 轴有两个不同的交点,∴b2-4ac >0,所以③正确;∵x=-1时,y <0,∴a-b+c <0,所以④错误.故答案为:①②③.【点睛】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac <0时,抛物线与x轴没有交点.14【解析】【分析】首先利用勾股定理计算出OB的长,然后再由题意可得BO=CO,进而可得CO的长.【详解】∵数轴上点A对应的数为3,∴AO=3,∵AB⊥OA于A,且AB=2,∴BO∵以原点O为圆心,OB为半径画弧,交数轴于点C,∴OC【点睛】此题主要考查了实数与数轴,勾股定理,关键是利用勾股定理计算出BO的长.15.109【解析】【分析】仔细观察图形的变化规律,利用规律解答即可.【详解】解:观察发现:第(1)个图中有1×2-1=1个小正方形;第(2)个图中有2×3-1=5个小正方形;第(3)个图中有3×4-1=11个小正方形;第(4)个图中有4×5-1=19个小正方形;…第(10)个图中有10×11-1=109个小正方形;故答案为109.【点睛】此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.16.15【解析】【分析】首先过D 作直线AC 的平行线DK ,交l 2于点N ,再利用相似比例可得AC 的长.【详解】解:过D 作直线AC 的平行线DK ,交l 2于点N123////l l lDNE DKF ∴∆~∆ DN DE DK EF ∴= 6,AB DN DK AC ===6557.5AC ∴=+ 15AC ∴= 故答案为15.【点睛】本题主要考查平行线的性质,再结合考查相似比例的计算,难度系数较小,关键在于作AC 的平行线. 17.32. 【解析】试题分析:原式227933842⨯==. 考点:二次根式的乘除法.三、解答题18.∠F 的度数是40°.【解析】【分析】证出OE 是△BCD 的中位线,得出OE ∥BC ,得出∠EOF =∠ACB =50°,由直角三角形的性质即可得出结果.【详解】解:∵四边形ABCD是平行四边形∴OB=OD,即O是BD的中点,∵E是CD的中点,∴OE是△BCD的中位线,∴OE∥BC,∴∠EOF=∠ACB=50°,∵EF⊥OE,∴∠EOF+∠F=90°,∴∠F=90°﹣∠EOF=90°﹣50°=40°;答:∠F的度数是40°.【点睛】本题考查了平行四边形的性质、三角形中位线定理、直角三角形的性质,熟练掌握平行四边形的性质,证明OE是△BCD的中位线是解题的关键.19.(1)该班的总人数为50(人);(2)捐款10元的人数1人,图见解析;(3)该班平均每人捐款13.1元.【解析】【分析】(1)根据频数、频率和总量的关系,用捐款15元的人数14除以所占的百分比28%,计算即可得解.(2)用该班总人数减去其它四种捐款额的人数,计算即可求出捐款10元的人数,然后补全条形统计图,根据众数的定义,人数最多即为捐款总额的众数.(3)根据加权平均数的求解方法列式计算即可得解.【详解】解:(1)该班的总人数为14÷28%=50(人).(2)捐款10元的人数:50﹣9﹣14﹣7﹣4=50﹣34=1.图形补充如下图所示,众数是10:(3)∵150(5×9+10×1+15×14+20×7+25×4)=150×655=13.1(元), ∴该班平均每人捐款13.1元.20.(1)甲运动员测试成绩的众数和中位数都是7分;(2)选乙运动员更合适.【解析】【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)易知20.8S =甲、2=0.4S 乙、2=0.8S 丙),根据题意不难判断;【详解】(1)甲运动员测试成绩的众数和中位数都是7分,(2)经计算=7x 甲(分),=7x 乙(分),=6.3x 丙(分) ∵=x x x >乙甲丙,22S S >乙甲∴选乙运动员更合适.【点睛】此题考查众数和中位数,方差,折线统计图,解题关键在于看懂图中数据21.(1)40;(2)50,40;(3)1200人【解析】【分析】(1)根据平均数的定义即可列式求解;(2)根据表格即可求出众数、中位数;(3)先求出捐款40元以上(包括40元)的人数占比,再乘以总人数即可求解.【详解】(1)设被污染处的数据钱数为x,故1031563011115013606 3850x⨯+⨯+⨯++⨯+⨯=解得x=40;(2)由表格得众数为50,第25,26位同学捐的钱数为40,故中位数为40;(3)解:全校捐款40元以上(包括40元)的人数为111362000120050++⨯=(人)【点睛】此题主要考查统计调查的应用,解题的关键是熟知平均数、中位线、众数的定义.22.(1)50;(2)108°;(3)见解析;(4)1.【解析】【分析】(1)由B项目人数及其所占百分比可得总人数m;(2)用360°乘以B项目对应百分比可得;(3)根据各项目人数之和为50求得A项目人数即可补全图形;(4)总人数乘以样本中C项目人数所占比例即可得.【详解】()1m1530%50=÷=,故答案为50;()2在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为36030%108⨯=,故答案为108;()3A项目人数为()501551020-++=人,补全图形如下:()4估计该校最喜欢武术的学生人数约是5120012050⨯=人.【点睛】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)②③④;(2)见解析;(3)见解析【解析】【分析】(1)由于50°的角可作为等腰三角形的顶角,也可以作为底角,由此可判断①;而100°的角只能作为等腰三角形的顶角,故可判断②;根据直角三角形的性质可判断③;根据等边三角形的性质可判断④,进而可得答案;(2)根据平行线的性质和材料提供的方法解答即可;(3)根据平行四边形的性质和平行线的性质可得∠BAE=∠AED,∠D+∠C=180°,然后根据已知和补角的性质可得∠D=∠AFB,进而可得结论.【详解】解:(1)①由于50°的角可作为等腰三角形的顶角,也可以作为底角,所以有一个角为50°的两个等腰三角形不一定相似,所以①错误;②由于100°的角只能作为等腰三角形的顶角,所以有一个角为100°的两个等腰三角形一定相似,所以②正确;③有一个锐角相等的两个直角三角形一定相似,所以③正确;④两个等边三角形一定相似,所以④正确.故答案为②③④;(2)∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO;(3)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAE=∠AED,∠D+∠C=180°,∵∠AFB+∠BFE=180°,∠BFE=∠C,∴∠D=∠AFB,∴△ABF∽△EAD.【点睛】本题以阅读理解的形式考查了平行线的性质、平行四边形的性质和相似三角形的判定,解题的关键是正确理解题意、熟练掌握上述基本知识.24. (1)【解析】【分析】(1)根据二次根式的混合运算法则进行计算即可.(2)利用完全平方公式和平方差公式进行计算即可.【详解】(1)原式=+==(2)原式=2﹣1+3﹣=8﹣【点睛】此题考查二次根式的混合运算,解题关键在于利用平方差公式和完全平方公式进行计算.25.答案不唯一,详见解析【解析】【分析】选择第一个与第二个,第一个与第三个,利用整式的加法运算法则计算,然后再利用提公因式法或平方差公式进行因式分解即可.【详解】 情形一:2221121416(6)22x x x x x x x x +-+++=+=+ 情形二:222112121(1)(1)22x x x x x x x +-+-=-=+- 【点睛】此题主要考查了多项式的计算,以及分解因式,关键是正确求出多项式的和,找出公因式.。
武汉市汉阳区2019-2020年八年级下期末考试数学试题及答案学年度第二学期期终考试八年级数学试卷附:方差公式])()()[(1222212x x x x x x nsn第Ⅰ卷(选择题,共36分)一、选择题(每小题3分,共36分)1. 4的算术平方根是 A.2 B. 2 C. -2 D.42.函数5y x =+中自变量x 的取值范围是A .x ≥-5B .x ≥5C .x >-5D .x >53.下列各组数据中,不可以构成直角三角形的是A 7,24,25B 1.5 ,2,2.5 C45,1,43 D 40,50,604.在下列性质中,平行四边形不一定...具有的是A 对边相等B 对角互补C 对边平行D 内角和为36005.菱形的周长为8cm ,高为1cm ,则菱形两邻角度数比为A 3:1B 4:1C 5:1D 6:1 6.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,若∠BOC =1200,AC =8,AB 的长度是A 4B 24C 34D 8 7.下列函数是一次函数的是A y =-8x ;B y =-x 8C y =-8x2+2 D y =-x8+2 8.已知一次函数y kx b 的图象如图所示,当x0时,y 的取值范围是 A y0. B y0.C2y0. Dy2.ODCBA第6题图21Oyx第7题图9.在15人参加“我爱江城”演讲比赛中,参赛选手各不相同,因此选手要想知道自己是否进入前8名,只有了解自己的成绩以及全部成绩的A.平均数 B 众数 C 中位数 D.极差10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面图像中,能大致表示水的最大深度h 与时间t 之间的关系的是A B C D第10题图11.某天早上王文上学, 先步行一段路, 因时间紧,他又改乘出租车,结果到校时还是迟到了5分钟,其行程情况如图,若他出门时直接乘出租车(车速不变),则他A 仍会迟到2分钟到校B 刚好按时到校C 可以提前2分钟到校 D可以提前5分钟到校12.甲、乙两班进行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经过统计后如右表,规定每分钟输入汉字数≥150个为优秀。
比较两班的优秀率,则A 甲比乙高B 乙比甲高C 甲不比乙高D 乙不比甲高第Ⅱ卷(非选择题共84分)二、填空题(每小题3分,共18分)13.计算818的值14.已知数据2,5,3,3,4,5,3,6,5,3 ,则这组数据的众数为15.数据-2,-1, 0, 3, 5的方差是16. 将42x y 向右平移1个单位,得到直线的函数解析式为17.甲、乙两车同时从A 地出发,以各自的速度匀速向B地行驶.甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A 、B 两地之间的距离为千米. 18. 如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=2,CE=6,H 是AF 的中点,那么CH 的长是班级参加人数中位数甲56 149 乙56151htht ht thOO O O 距离(百米)时间(分)O81420535第11题图第17题图65150Oyx第18题图三、解答题(共7题,共66分)19.(本题满分8分)一次函数图象经过(3,8)和(5,12)两点.,求一次函数解析式.20.(本题满分8分)小青在九年级上学期的数学成绩如下表所示:平时期中测试期末考试测验1测验2 测验3 测验4 成绩887098869087(1)计算该学期的平时平均成绩;(2)如果学期的总评成绩是根据右图所示的权重计算,请计算出小青该学期的总评成绩.21.(本题满分8分)△ABC 在平面直角坐标系中的位置如图所示,点O 为坐标原点:(1).作出△ABC 关于y 轴对称的△A 1B 1C 1;(2).将△ABC 向右平移6个单位,作出平移后的对应△A 2B 2C 2,并画出△A 1B 1C 1与△A 2B 2C 2,的对称轴;(3).(2)中△ABC 向右平移个单位时,OA 2+OB 2的值最小.22.(本题满分10分)如图,在四边形ABCD 中,E 、F 分别为对角线BD 上的两点,且BE=DF.(1)若四边形AECF 是平行四边形,求证:四边形ABCD 是平行四边形;(2)若四边形AECF 是菱形,则四边形ABCD 是菱形吗?请说明理由?(3)若四边形AECF 是矩形,则四边形ABCD 是矩形吗?不必写出理由.第20题图O第21题图D ACBE F 第22题图23. (本题满分10分)(1)根据画函数图象的步骤,在如图的直角坐标系中,画出函数y=x 的图象;(2) 求证:无论m 取何值,函数y=mx-2(m-1)的图象经过的一个确定的点;(3)若(1),(2)中两图象围成图形的面积刚好为2,求m 值.24.(本题满分10分)某工厂计划为震区生产A ,B 两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料0.5m 3,一套B 型桌椅(一桌三椅)需木料0.7m 3,工厂现有库存木料302m 3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)25. (本题满分12分)如图正方形ABCD ,DE 与HG 相交于点O.(1)如图(1),当∠GOD =90°,①求证DE =GH ; ②求证GD+EH ≥2DE ; (2) 如图(2),当∠GOD =45°,边长AB=4,HG=52,求DE 的长.第23题图OABCDGHE第25题图(2)OABCDG HE 第25题图(1)八年级数学参考答案及评分标准一、选择题(共12小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BADBCAADCCCC二、填空题(共6小题,每小题3分,共18分)13,2 ; 14. 3; 15.6.8; 16.y=2x+2;17.450;18.52三、解答下列各题(本大题共7小题,共66分)19.解:设一次函数解析式.的解析式为y=kx+b,则125,83b kb k …………4分解得22bk ∴一次函数解析式.的解析式为y=2x+2…………8分20. 解:(1)(88+70+98+86)÷4=85.5答:平时成绩为85.5分… ………4分(2)87×60%+90×30%+85.5×10%=87.75答:小青该学期的总评成绩. 87.75分…………8分21. (1)略;…………3分 (2)略:…………6分 (3)34…………8分22. (1)证明:连接AC 交BD 于点O∵四边形AECF是平行四边形,∴OA=OC,OE=OF ∵BE=DF,OB=OD∴四边形ABCD 是平行四边形; …………5分(2)证明: 连接AC 交BD 于点O ∵四边形AECF 是菱形,∴AC ⊥BD,O由(1)知,四边形ABCD 是平行四边形;∴四边形ABCD 是菱形。
…………8分(3)不是…………10分23.(1)略…………3分(2)y=mx-2(m-1)=(x-2)m+2∵无论m 取何值,函数图象经过的一个确定的点∴x-2=0,y=2∴x=2,y=2 即函数图象过定点(2,2)…………6分(3)可求另一个交点为(-1,1)m=31…………10分24. (1)设生产A 型桌椅x 套,则生产B 型桌椅(500-x )套,根据题意,可得不等式组:302)500(7.05.01250)500(32x xx x 解之得240≤x ≤250因为x 是整数,所以有11种生产方案。
…………6分(2)根据题意可得关系式y=(100+2)x+(120+4)(500-x )整理可得 y=-22x+62000 因为k=-22<0,所以x 越大,y 越小,当x 为250时,费用最少,费用为y=-22×250+62000=-5500+62000=56500…………10分25.(1)作平行四边形DGHM,则GH=DM 又证ADE ≌CDM,∴DE=DM∴DE=GH ………4分可证EM=2GHEH+MH ≥EM ∴GD+EH ≥2GH ……8分(2)过点D 作DN ∥GH 交BC 于点N ∴∠EDN =45°,CN=2,BN=2 可证AE+CN=EN 设AE=x.则BE=4-x, 在RtBEN 中,222)2()4(2x x 解得x=34∴DE=238……12分M。