光纤技术原理与应用
- 格式:doc
- 大小:31.00 KB
- 文档页数:2
光纤通信技术的原理和应用光纤通信技术是一种基于光信号传输的通信技术,与传统的电信技术相比,光纤通信技术具有传输带宽高、信号损耗低、信息安全性高、抗干扰性强等优势,已经成为现代化通信基础设施的重要组成部分。
一、光纤通信技术的原理光纤通信技术的原理是基于光的全反射现象,在一根光纤内部通过反复的全反射来传输光信号。
光纤通信系统由三部分组成:发射机、光纤和接收机。
发射机将电信号转换成光信号,并将光信号通过光纤传输给接收机,接收机将光信号转换回电信号。
发射机中主要的组成部分是激光器和调制器。
激光器能够产生高速的光信号,调制器则能够将电信号转换成光信号。
在激光器中,电子受到电场力的作用,会跃迁到能量较高的激发态,然后通过受激辐射从激发态退回到基态,同时发射出光子形成光信号。
光纤是光信号传输的媒介,主要由二氧化硅等材料制成。
由于材料的折射率比周围介质的折射率大,光在光纤中会发生全反射。
光纤通常被分成两种类型:单模光纤和多模光纤。
单模光纤通常应用于长距离、高速率的光传输,而多模光纤主要应用于较短距离、相对低速率的光传输。
接收机中主要的组成部分是探测器和前置放大器。
探测器能够将光信号转换成电信号,前置放大器则能够放大电信号。
探测器有效地将光纤中的光信号转换成电信号,通过前置放大器进行电信号的放大,接收机就能够获取到正确的信号。
二、光纤通信技术的应用光纤通信技术在现代通信领域得到了广泛的应用。
其主要应用包括以下几个方面:1、远程通信光纤通信技术能够实现远程通信,应用于电话网络、宽带网络、移动通信网络等多个领域。
光纤通信技术具有较高的传输带宽和低的信号损耗率,能够支持大量的高速数据传输和多媒体信息传递。
2、军事通信在军事通信领域,光纤通信技术的应用主要体现在高速数据传输、远程控制和情报传递等方面。
光纤通信技术能够支持极高速率和大量数据传输,通过其高度安全的特性,可以有效地保障军事机密信息的安全。
3、医疗领域光纤通信技术在医疗领域的应用主要体现在光纤内窥镜和激光切割系统等方面。
光纤的结构原理及应用技术1. 光纤的结构原理光纤是一种利用光的全反射在内部传输信息的传感器。
它由一根由高折射率材料(称为内核)包围的低折射率材料(称为包层)组成。
以下是光纤的结构原理的详细说明:1.光纤的内核(Core):光纤的内部核心是一种材料,通常是玻璃或塑料。
它具有高折射率,使得光束能够在内核内部传播,而不会逸散到外部环境中。
2.光纤的包层(Cladding):光纤的包层是一种包围在内核周围的低折射率材料。
这种包层的存在使得光线在内核中保持全反射,使光信号能够在光纤中传输。
3.光纤的包层材料:常见的光纤包层材料是硅氧化物。
它具有适当的折射率,使得光能够在内核中保持全反射。
此外,包层还可以用聚合物等其他材料制成。
4.光纤的护套(Jacket):光纤的护套是一层外部保护层,用于保护光纤免受外界环境的损害。
护套通常由聚合物或金属材料制成。
2. 光纤的应用技术光纤作为一种重要的信息传输技术,在许多领域都有广泛的应用。
以下是光纤的主要应用技术:2.1 光通信光通信是最常见的光纤应用之一。
光纤提供了高带宽和低损耗的传输介质,使得光纤成为远距离通信的理想选择。
光通信系统使用光纤传输数字信号或模拟信号,可以实现高速、高质量的数据传输。
2.2 光纤传感器光纤传感器利用光纤的特殊结构和性能来测量物理量或环境参数。
光纤传感器可以用于测量温度、压力、湿度等物理量,也可以应用于动态应力监测、燃气检测、水质监测等领域。
2.3 医疗应用光纤在医疗领域中有广泛的应用。
它可以用于内部检查和手术导航。
光纤传输的高分辨率图像可以帮助医生进行精确的诊断和治疗。
2.4 激光器光纤激光器是一种将能量转化为激光束的光电子器件。
光纤激光器具有体积小、高效率、高稳定性等优点,可以应用于光通信、医疗、工业加工等领域。
2.5 光纤传输技术光纤传输技术在信息技术领域中扮演着重要角色。
光纤传输技术可以实现大容量、高速率的数据传输,被广泛应用于互联网、电视广播、数据中心等领域。
现代光纤通信技术及其应用随着现代社会信息的迅速发展,通信技术也在不断更新和发展。
光纤通信技术作为其中的一个重要分支,已经成为了现代通信领域中不可或缺的一部分。
本文将着重介绍光纤通信技术的基本原理、发展历程以及在现代社会中的广泛应用。
一、光纤通信技术的基本原理光纤通信技术是一种将光信号作为信息的传输介质的技术。
光是电磁波的一种,它的波长远远短于无线电波,因此具有更高的频率和更强的能量。
光纤通信技术利用这种特性,将电信号通过调制后转换为光信号,通过光纤传输,再将光信号转换成电信号,实现数据传输和通信的过程。
光纤通信系统主要由三部分组成:光源、传输介质和检测器。
光源产生的光信号进入光纤中,经过光纤的传输后到达接收端,接收器将光信号转换为电信号,最终输出数字信号。
整个过程中光源、光纤和检测器的性能都会影响通信质量的好坏。
二、光纤通信技术的发展历程光纤通信技术的发展可以追溯到19世纪,当时科学家就已经发现了光可以通过玻璃管进行传输。
20世纪初,民用电话开始普及,传输距离越来越长,信号失真的问题也越来越严重。
1960年代,美国贝尔实验室的科学家率先提出了光纤通信技术的概念,并于1970年代将其实现。
1980年代,光纤通信技术开始商业化运营,迅速发展,逐渐替代了传统的无线电通信和有线电缆通信等传输方式。
到了21世纪,光纤通信技术已经成为了全球通信领域的主要技术之一。
目前,世界上许多国家都在大力推进光纤通信技术的发展,提高通信的质量和速度,为现代化建设和信息化发展提供强有力的支持。
三、光纤通信技术在现代社会中的广泛应用随着互联网的兴起,光纤通信技术在信息领域的应用越来越广泛。
目前,光纤通信技术已经被应用于许多领域,例如:1. 互联网通信光纤通信技术被广泛应用于互联网通信领域,极大地提高了互联网传输的速度和带宽。
同时,由于光纤通信技术具有抗干扰能力强、传输损耗小等特点,使得互联网通信更加稳定可靠。
2. 医疗行业光纤通信技术在医疗行业中的应用主要集中在光纤内窥镜和光学成像领域。
解释光纤的原理及应用实例1. 光纤的原理光纤是一种传输光信号的纤细玻璃或塑料管道。
它由一个或多个玻璃或塑料纤维组成,通过利用光的反射和折射来传输光信号。
光信号在光纤内通过全内反射的方式传输,从而实现高速、大容量的数据传输。
光纤传输的核心原理是光的全内反射。
当光从一个介质传到另一个折射率较小的介质时,会发生折射现象。
在光纤中,光信号被传输的光纤芯心(core)中进行,而外部包围着光纤芯心和光纤外壳(cladding)的是光纤的折射层。
光信号在光纤芯心中传输时,会发生多次的全内反射,避免了光信号的能量损失。
这样,光信号能够在光纤中远距离传输。
光纤的原理还涉及到光的吸收、色散、衰减等因素。
光的吸收会导致光信号的衰减,因此光纤的材料需要具有低吸收率。
光的色散是指光信号在光纤中传输时,不同频率的光信号具有不同的传播速度,从而导致信号畸变。
为了减小光纤的色散,可以采用增加光纤的纯度、使用窄带光源等方法来进行补偿。
2. 光纤的应用实例光纤作为一种高速、大容量的数据传输媒介,在现代通信和网络领域得到广泛应用。
以下是一些光纤的应用实例:2.1 光纤通信光纤通信是光纤应用的最主要领域之一。
光纤通信通过将光信号转换为电信号进行传输,实现了远距离、高速、大容量的数据传输。
光纤通信在电话、电视、互联网等领域起着重要作用。
光纤通信的优势包括低损耗、大带宽、抗干扰能力强等特点。
2.2 医疗领域在医疗领域,光纤被广泛应用于内窥镜、激光手术器械等医疗设备中。
光纤的灵活性和小尺寸使其能够轻松进入人体内部进行观察和治疗。
光纤还能够传输激光光束进行组织切割、凝固等操作。
2.3 传感器光纤传感器是一种利用光纤的特性来测量和检测物理量的传感器。
光纤传感器可以检测温度、压力、拉力等物理量,并将其转换为光信号进行传输。
光纤传感器具有高精度、远距离传输等优势,被广泛应用于工业、军事、环境监测等领域。
2.4 光纤传输网络光纤传输网络采用光纤作为传输介质,实现多节点之间的高速数据传输。
光纤的传光原理与应用前言光纤是一种以光波作为信号传输的介质。
它由被包覆在内核中心的光纤芯和包裹在外部的光纤鞘组成。
通过光的折射和反射,在光纤中传输信号。
光纤的传光原理与应用在现代通信技术中起到了重要的作用。
本文将介绍光纤的传光原理及其应用。
一、光纤的传光原理1. 折射定律光从一种介质入射到另一种介质时,由于介质的折射率不同,光线会发生折射。
折射定律描述了光线的折射规律。
在光纤中,当光线从光纤芯进入光纤鞘时,会发生折射。
2. 多重折射光纤是由光纤芯和光纤鞘组成的,两者的折射率不同。
光线在光纤芯和光纤鞘之间反复发生折射,这种现象称为多重折射。
多重折射使得光线可以在光纤中长距离传输。
3. 全反射当光线由光纤芯进入光纤鞘时,如果入射角超过一定临界角,光线将会完全反射回光纤芯中。
这种现象称为全反射。
全反射使得光线在光纤中沿着直线传播,减少了光信号的衰减。
二、光纤的应用1. 通信领域光纤在通信领域中得到广泛应用。
它具有高速传输、大容量传输、抗干扰性强等优点。
光纤通信系统通过利用光的全反射和多重折射的原理,将信息以光的形式传输。
光纤通信系统实现了远距离的高速数据传输,是现代通信技术中不可缺少的部分。
2. 医疗领域光纤在医疗领域中也有重要应用。
光纤可以用于内窥镜、激光手术器械等医疗器械中的光源传输。
它可以将光线传输到病人的身体内部,帮助医生进行检查和治疗。
3. 工业应用光纤在工业领域中也有广泛的应用。
例如,光纤传感器可以用于监测温度、压力、位移等物理量。
光纤传感器具有高灵敏度、抗干扰性强等特点,可以在恶劣的环境中稳定工作。
4. 光纤传感网络光纤传感网络是一种利用光纤传感器和通信技术构建的智能化监测系统。
它可以实时监测环境的温度、湿度、气体等参数,并将这些数据传输到中心控制系统。
光纤传感网络在环境监测、安全监控等领域有着广泛的应用前景。
结论光纤的传光原理和应用在现代科技中发挥着重要的作用。
通过光的折射和全反射,在光纤中传输信号成为了高速、大容量传输的重要手段。
光纤通信技术的基本原理和应用案例光纤通信技术已成为现代通信系统的重要基础,并成为人们生活和工作中不可或缺的一部分。
光纤通信技术是利用光纤的高带宽和低传输损耗特点,将信息信号转换成光信号,在光纤中进行传输,最终再转换成电信号。
本文将阐述光纤通信技术的基本原理和应用案例。
一、基本原理1. 光波导原理光波导是利用光在介质中的反射和折射特性而产生的光传导现象。
光纤中的光波导作为传输介质,其核心区域形成了一个高折射率的介质,其外围区域形成了一个低折射率的介质。
当入射光与介质交界面处时,光会发生反射和折射,因而在光纤中往返传播形成正向和反向传播的光波导。
2. 光的调制技术在光纤通信的过程中,信息信号转换成光信号后,需要进行调制使其适合于光纤传输。
光的调制方式主要有强度调制、频率调制和相位调制。
其中强度调制是最基本的调制技术,通过改变光强使之与信息信号相对应。
频率调制则是利用频率调制器或者光晶体,改变光信号的频率,来传输信息信号。
相位调制则是通过改变光信号的相位,来传输信息信号。
3. 光接收器和解调技术在光信号传输到达接收器之后,需要进行解调和转换成电信号。
光接收器主要由光探测器和电路组成。
光探测器可以将光信号转换成电信号,然后通过电路进行解调,恢复原始的调制信息信号。
二、应用案例1. 计算机数据中心光纤通信技术在现代计算机数据中心中已经得到了广泛的应用。
它可以用于连接服务器、存储设备和网络设备,保证计算机数据中心的高效快速运行和数据传输。
光纤通信技术的高带宽和低传输损耗,不但可以满足计算机数据中心之间的高速连接需求,而且可以降低能耗,提高数据传输速率。
2. 无线通信光纤通信技术在无线通信中也得到了广泛应用。
在LTE网络中,光纤技术可以承载基站和控制器之间的传输连接,解决高密度无线网络传输量的问题。
而在5G网络中,光纤通信技术被广泛应用于网络核心部分和边缘计算部分,实现网络的高速连接和大容量传输。
3. 视频监控系统视频监控系统是一个非常成熟的应用场景,光纤通信技术在其中也得到了广泛的应用。
简述光纤通信的原理及应用一、光纤通信的原理光纤通信是一种利用光学原理传输信息的技术。
其原理基于光的折射与反射特性,即光线在两种介质之间传播时会发生折射或反射。
光纤通信利用光纤作为信息传输的介质,通过将信息转化为光信号,并利用光的折射与反射,将光信号在光纤中传输,并在接收端将光信号转化为电信号,从而实现信息的传输。
光纤通信的原理主要包括以下几个方面:1.1 光的传播特性光在光纤中的传播主要遵循光的折射和反射特性。
当光线从一种介质(如空气)射入到另一种具有不同折射率的介质(如玻璃光纤)中时,光线会发生折射。
而光线在介质表面发生反射时,会沿着入射角等于反射角的方向反射。
基于这些特性,光纤可以将光信号传输到目标位置。
1.2 光的衰减与色散光在光纤中的传播过程中,会受到衰减和色散的影响。
光在光纤中传播时,会发生能量损耗,导致光信号的强度逐渐减弱,这就是光的衰减现象。
而色散是由于光的不同频率成分传播速度不同而引起的,导致光信号在传输过程中发生信号失真。
1.3 光的调制与解调光纤通信中,发送端将电信号转化为光信号进行传输,这个过程叫做光的调制。
而光信号到达接收端后需要将光信号再转化为电信号,这个过程叫做光的解调。
光的调制和解调过程采用的是光电器件,如光电二极管等。
1.4 波分复用技术波分复用技术(Wavelength Division Multiplexing,WDM)是光纤通信的一项重要技术。
它利用不同波长的光信号在光纤中进行并行传输,从而实现光纤通信的高容量传输。
利用波分复用技术,可以实现多个光信号同时传输,大大提高了光纤通信的传输速率和带宽。
二、光纤通信的应用光纤通信作为一种高速、大容量、抗干扰能力强的通信方式,在现代通信领域的应用非常广泛。
下面列举一些光纤通信的主要应用领域:•宽带接入光纤通信作为宽带接入的主要手段,能够提供高速、稳定的网络连接,满足了人们对于宽带网络的需求。
光纤宽带接入常见的应用包括光纤到户(FTTH)、光纤到楼(FTTB)等,广泛用于家庭、办公楼、学校等场所,提供高速互联网接入服务。
光纤的工作原理及应用场景工作原理光纤,即光导纤维,是一种能够传输光信号的细长柔韧的光学器件。
它由一个或多个包覆在外层的一根或多根光芯组成。
光纤的工作原理主要基于光的全反射现象。
当光从一种介质进入另一种具有较高折射率的介质时,光线会发生折射。
根据光线从光密介质(如玻璃)射入光疏介质(如空气)时的折射规律,当入射角大于临界角时,光线将完全反射回光密介质中。
光纤光导的原理就是利用了光的全反射现象。
在光纤的外层光芯中注入光信号,这些光信号会在光芯内部一直以全反射的方式传播。
由于光纤的结构设计,光纤能够将光信号传输得非常远,并且保持信号的强度和质量。
应用场景光纤作为先进的光学传输技术,被广泛应用于各个领域。
下面将介绍几个主要的应用场景:1. 通信领域光纤通信是光纤技术最重要的应用之一。
相较于传统的铜线传输,光纤传输具有高带宽、低损耗、抗干扰等优势。
光纤通信可以用于长距离的电话、互联网和广播电视信号的传输。
另外,在数据中心和局域网中,光纤通信也被广泛采用,以满足高速、大容量的通信需求。
2. 医疗领域光纤在医疗领域的应用主要体现在内窥镜和激光手术器械中。
内窥镜是一种能够在人体内进行检查和手术的器械,其内部使用了光纤传输图像和光源。
通过光纤的引导,医生可以观察到人体内部的细节,从而进行诊断和手术。
3. 光学传感器光纤传感器是利用光纤作为传感元件的传感器。
光纤传感器的工作原理是将测量对象和光纤接触或互相靠近,利用测量对象对光信号的影响来检测和测量物理量。
光纤传感器具有高灵敏度、抗干扰性强的优点,广泛应用于温度、压力、应力、流量等物理量的测量。
4. 光纤传输图像光纤可以用于传输图像,其中最常见的应用就是光纤显示器。
光纤传输的图像具有高分辨率和高质量,可以用于医学影像、安防监控、工业检测等领域。
另外,光纤光束调制也可应用于光学设备中的图像透镜、光学防抖等功能。
5. 光纤传感网络光纤传感网络结合光纤传感技术和网络传输技术,可以实现对环境和物体的实时监测和控制。
光纤的应用实例及原理1. 光纤的应用实例1.1 无损通信•光纤通过将信息转换为光脉冲,实现了信号的传输。
•在通信领域,光纤广泛应用于电话、互联网和有线电视等领域。
•光纤通信具有高带宽、长距离传输、低损耗和抗干扰等优点。
1.2 医疗领域•光纤在医疗领域的应用较为广泛,如内窥镜等医疗器械中常使用光纤传输图像信号。
•光纤传输的图像信号具有高清晰度和较高的分辨率,能够提供准确的医学影像。
1.3 传感技术•光纤传感技术利用光纤作为传感元件,通过测量光信号的传播特性来实现对各种物理、化学和生物参数的检测。
•光纤传感技术具有高灵敏度、远距离传输和抗干扰等特点,广泛应用于环境监测、生命科学和工业控制等领域。
1.4 激光器•光纤激光器利用光纤的倍增、调谐和放大等特性,广泛应用于通信、医疗和材料加工等领域。
•光纤激光器由于具有较小的体积和较高的能量转换效率,在实际应用中更加灵活和高效。
2. 光纤的工作原理光纤是一种能够传输光信号的导光介质。
其工作原理基于光的全反射现象。
光纤由两部分组成:光芯和包层。
光芯是一种具有较高折射率的材料,光信号通过光芯传输。
包层是一种折射率较低的材料,用于包覆光芯,保护光信号免受损失。
光信号在光纤中的传输是基于光的全反射原理。
当光信号以一定角度射入光纤中时,由于光芯的高折射率,光信号会在光芯内部发生多次全反射,并沿光纤传输。
光纤的传输距离会受到衰减影响,主要有两种类型的衰减:吸收衰减和散射衰减。
吸收衰减是指光信号在光纤中被材料吸收而减弱。
散射衰减是指光信号在光纤内部发生经由光纤材料界面或杂质而改变传输方向。
光纤的工作原理决定了其应用领域的多样性和广泛性。
通过光信号的传输和控制,光纤可用于无损通信、医疗仪器、传感技术和激光器等领域,为人们的生活和工作带来了很大的便利和发展机会。
3. 总结光纤作为一种重要的光传输介质,具有传输速度快、带宽大、抗干扰能力强和传输距离远等优点,被广泛应用于通信、医疗、传感和激光技术等领域。
光纤传感技术的原理与应用前景光纤传感技术是一种基于光学原理的传感技术,通过光纤中光的传输和变化来实现对环境参数的检测和测量。
它具有高灵敏度、抗干扰性强等特点,因此在多个领域具有广泛的应用前景。
本文将介绍光纤传感技术的原理,并探讨其在不同领域中的应用前景。
一、光纤传感技术的原理光纤传感技术基于光学原理,利用光在光纤中的传输和变化来实现对环境参数的检测和测量。
其原理主要包括两个方面:光的传输原理和光的变化原理。
1. 光的传输原理光纤传感技术的关键在于光的传输。
光纤是一种由玻璃或塑料等材料制成的细长柔性管状结构,内部呈光滑的反射面。
当光线进入光纤时,会在内壁上以全反射的方式进行传输,保持高度集中和远距离传输。
2. 光的变化原理光纤传感技术通过检测光在光纤中的传输和变化情况,来实现对环境参数的测量。
当光纤暴露在环境参数作用下,会导致光的某些特性(如光强、相位、波长等)发生变化。
通过测量这些变化,可以得到环境参数的信息。
二、光纤传感技术的应用前景光纤传感技术具有高灵敏度、抗干扰性强、体积小、响应速度快等优点,在多个领域具有广泛的应用前景。
1. 工业领域应用光纤传感技术在工业领域中可以应用于温度、压力、形变等参数的检测和测量。
例如,可以利用光纤传感技术实现对高温炉内温度的实时监测,以及对管道中压力变化的监测和预警。
2. 医疗领域应用光纤传感技术在医疗领域具有广阔的应用前景。
例如,可以通过光纤传感技术实现对生理参数(如心率、血氧饱和度等)的监测,从而实现对患者的远程监护和医疗服务。
3. 环境监测应用光纤传感技术在环境监测领域中可以用于大气污染、水质监测等方面。
通过将光纤传感技术应用于这些领域,可以实现对环境污染物的实时监测和预警,从而保护环境和人民身体健康。
4. 结构健康监测应用光纤传感技术在结构健康监测领域中具有重要的应用意义。
例如,可以利用光纤传感技术实现对桥梁、楼房等结构的实时监测,从而判断其健康状态并采取相应的维护措施。
光纤技术原理与未来应用
摘要:光纤是光导纤维的简称,是一种导引光波的新型传输介质。
人们利用光
纤作为光的传输介质的研究工作经历了一段艰辛的道路。
目前,光纤在通讯、传感、激光治疗、激光加工等许多方面都获得了广泛应用,但其最主要的应用领域是光纤通讯和光纤传感。
通过本次专题实验,了解到了光纤的结构和一般性质,学习到光纤的耦合,传输及传感特性及其在通讯和传感领域中的应用。
关键字:光纤,光纤特性,光信号传输,光纤传感,光纤通信,激光的应用
一光纤的简介
是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
光导纤维由前香港中文大学校长高锟发明。
微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。
通常,光纤的一端的发射装置使用发光二极管或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。
在日常生活中,由于光在光导纤维的传导损耗比电在电线传导的损耗低得多,光纤被用作长距离的信息传递。
通常光纤与光缆两个名词会被混淆.多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆.光纤外层的保护结构可防止周遭环境对光纤的伤害,如水,火,电击等.光缆分为:光纤,缓冲层及披覆.光纤和同轴电缆相似,只是没有网状屏蔽层。
中心是光传播的玻璃芯。
在多模光纤中,芯的直径大致与人的头发的粗细相当。
芯外面包围着一层折射率比芯低的玻璃封套,以使光纤保持在芯内。
再外面的是一层薄的塑料外套,用来保护封套。
光纤通常被扎成束,外面有外壳保护。
纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆,易断裂,因此需要外加一保护层。
二光纤的传输
1 光纤传输材料:
综合布线系统中使用的光纤为玻璃多模850nm波长的LED,传输率为100M/bps,有效范围约20Km.其纤芯和包层由两种光学性能不同的介质构成。
内部的介质对光的折射率比环绕它的介质的折射率高。
由物理学可知,在两种介质的界面上,当光从折射率高的一侧射入折射率高的一侧时,只要入射角度大于一个临界值,就会发生反射现象,能量将不受损失。
这时包在外围的覆盖层就象不透明的物质一样,防止了光线在穿插过程中从表面逸出。
只有那些初始入射角偏小的光线才有折射发生,并且在很短距离内就被外层物质吸收干净。
目前生产的光纤,无论是玻璃介质还是塑料介质,都可传输全部可见光和部分红外光谱。
用光纤做的光缆有多种结构形式。
短距离用的光缆主要有两种,一
种层结构光缆是在中心加钢丝或尼龙丝,外束有若干根光纤,外面在加一层塑料护套;另一种是高密度光缆,它有多层丝带叠合而成,每一层丝带上平行敷设了一排光纤。
用光纤做的光缆有多种结构形式。
短距离用的光缆主要有两种,一种层结构光缆是在中心加钢丝或尼龙丝,外束有若干根光纤,外面在加一层塑料护套;另一种是高密度光缆,它有多层丝带叠合而成,每一层丝带上平行敷设了一排光纤。
2、光纤传输过程:
由发光二极管LED或注入型激光二极管ILD发出光信号沿光媒体传播,在
另一端则有PIN或APD光电二极管作为检波器接收信号。
对光载波的调制为移幅键控法,又称亮度调制。
典型的做法是在给定的频率下,以光的出现和消失来表示两个二进制数字。
发光二极管LED和注入型激光二极管ILD的信号都可以用这种方法调制,PIN和ILD检波器直接响应亮度调制。
功率放大──将光放大器置于光发送端之前,以提高入纤的光功率。
使整个
线路系统的光功率得到提高。
在线中继放大──建筑群较大或楼间距离较远时,可起中继放大作用,提高光功率。
前置放大──在接收端的光电检测器之后将微信号进行放大,以提高接收能力
光缆传输的实现与发展形成了它的几个优点。
相对于铜线每秒1.54MHZ的速率光纤网络的运行速率达到了每秒2.5GB。
从带宽看,很大的优势是:光纤具有较大的信息容量。
光纤电缆对诸如无线电、电机或其他相邻电缆的电磁噪声具有较大的阻抗,使其免于受电噪声的干扰。
从长远维护角度来看,光缆最终的维护成本会非常低。
光纤使用光脉冲沿光线路传输信息,以替代使用电脉冲沿电缆传输信息。
在系统的一端是发射机,是信息到光纤线路的起始点。
发射机接收到的已编码电子脉冲信息来自于铜线电缆,然后将信息处理并转换成等效的编码光脉冲。
使用发光二极管或注入式激光器产生光脉冲,同时采用透镜,将光脉冲集中到光纤介质,使光脉冲沿线路在光纤介质中传输。
由内部全反射原理可知,光脉冲很容易眼光纤线路运动,光纤内部全反射原理说明了当入射角超过临界值时,光就不能从玻璃中溢出;相反,光纤会反射回玻璃内。
应用这一原理制作光纤的多芯电缆,使得与光脉冲形式沿光线路传输信息成为可能。
光纤传输具有衰减小、频带宽、抗干扰性强、安全性能高、体积小、重量轻等优点,所以在长距离传输和特殊环境等方面具有无法比拟的优势。
传输介质是决定传输损耗的重要因素,决定了传输信号所需中继的距离,光纤作为光信号的传输介质具有低损耗的特点,光纤的频带可达到1.0GHz以上,一般图像的带宽只有8MHz,一个通道的图象用一芯光纤传输绰绰有余,在传输语音、控制信号或接点信号方面更为优势t光纤传输中的载波是光波,光波是频率极高的电磁波,远远比电波通讯中所使用的频率高,所以不受干扰。
且光纤采用的玻璃材质,不导电,不会因断路、雷击等原因产生火花,因此安全性强,在易燃,易爆等场合特别适用。
本文部分观点材料来自:
百度百科/view/5190.htm
《光纤传感器及其应用》,作者:彭玉彬。