A2F系列斜轴式轴向柱塞定量泵技术参数及工作原理
- 格式:doc
- 大小:35.50 KB
- 文档页数:4
柱塞泵技术参数摘要:一、柱塞泵概述二、柱塞泵的技术参数1.缸体与柱塞2.工作容积3.端面配油径向载荷4.配流盘5.轴径较小三、缸体倾斜的限制四、配流传动轴的作用五、柱塞泵的应用领域正文:一、柱塞泵概述柱塞泵是一种常见的液压泵,广泛应用于各种液压系统中。
其主要构成部分为缸体和柱塞,柱塞在缸体内进行往复运动。
在工作容积增大时,柱塞泵会吸油;而在工作容积减小时,则会排油。
二、柱塞泵的技术参数1.缸体与柱塞:柱塞泵的缸体与柱塞是其核心部件。
缸体通常为圆筒形,柱塞则是圆柱形,它们之间的配合精度直接影响着泵的工作效率和寿命。
2.工作容积:柱塞泵的工作容积是指柱塞在往复运动过程中,从一个端点到另一个端点所扫过的空间体积。
工作容积的增大或减小,决定了泵的吸油或排油能力。
3.端面配油径向载荷:端面配油径向载荷由缸体外周的大轴承所平衡,它能够有效限制缸体的倾斜,保证泵的稳定运行。
4.配流盘:配流盘是柱塞泵的一个重要部件,它能够根据需要,调整泵的输出流量和压力,实现对液压系统的精确控制。
5.轴径较小:柱塞泵的轴径较小,这使得泵的结构更加紧凑,同时也降低了泵的重量和成本。
三、缸体倾斜的限制在柱塞泵的工作过程中,缸体的倾斜会对泵的性能产生不良影响。
为了解决这个问题,设计者采用了端面配油径向载荷平衡缸体外周的大轴承,有效限制缸体的倾斜。
四、配流传动轴的作用配流传动轴是柱塞泵的一个重要部件,它主要负责将电机的转矩传递给泵,从而使柱塞进行往复运动。
此外,配流传动轴还能够通过调整轴径大小,实现对泵的流量和压力的控制。
五、柱塞泵的应用领域柱塞泵广泛应用于各种液压系统中,如工程机械、汽车、船舶、机床等。
柱塞泵Piston Pumps柱塞泵是通过柱塞在柱塞孔内往复运动时密封工作容积的变化来实现吸油和排油的。
由于柱塞与缸体内孔均为圆柱表面,滑动表面配合精度高,所以这类泵的特点是泄漏小,容积效率高,可以在高压下工作。
2.4.1 斜盘式轴向柱塞泵Swash Plate Axial Piston Pumps轴向柱塞泵可分为斜盘式(Swash Plate Type)和斜轴式(Bent-axial Type),图2.18为斜盘式轴向柱塞泵的工作原理。
泵由斜盘1、柱塞2、缸体3、配油盘4等主要零件组成,斜盘1和配油盘4是不动的,传动轴5带动缸体3,柱塞2一起转动,柱塞2靠机械装置或在低压油作用压紧在斜盘上。
当传动轴按图示方向旋转时,柱塞2在其沿斜盘自下而上回转的半周内逐渐向缸体外伸出,使缸体孔内密封工作腔容积不断增加,产生局部真空,从而将油液经配油盘4上的配油窗口a吸入;柱塞在其自上而下回转的半周内又逐渐向里推入,使密封工作腔容积不断减小,将油液从配油盘窗口b向外排出,缸体每转一转,每个柱塞往复运动一次,完成一次吸油动作。
改变斜盘的倾角γ,就可以改变密封工作容积的有效变化量,实现泵的变量。
图2.18斜盘式轴向柱塞泵的工作原理1—斜盘(Swash Plate);2—柱塞(Piston);3—缸体(Block);4—配流盘(Valve Plate);5—传动轴(Drive Shaft);a—吸油窗口(Inlet Port);b—压油窗口(Outlet Port);2.4.1.1 斜盘式轴向柱塞泵的排量和流量如图2.18,若柱塞数目为z,柱塞直径为d,柱塞孔分布圆直径为D,斜盘倾角为γ,则泵的排量为γπtan 42zD d V = (2.25)则泵的输出流量为γηπtan 42v zDn d q = (2.26)实际上,柱塞泵的排量是转角的函数,其输出流量是脉动的,就柱塞数而言,柱塞数为奇数时的脉动率比偶数柱塞小,且柱塞数越多,脉动越小,故柱塞泵的柱塞数一般都为奇数。
轴向柱塞泵的性能参数轴向柱塞泵的性能参数轴向柱塞泵的主要性能有压力、排量、转速、效率和寿命等,主要结构参数有柱塞的直径、柱塞数、斜盘倾角等。
(l)压力在各种液压泵中,柱塞泵能达到的T作压力最高。
直轴式和斜轴式柱塞泵的压力普遍达到了40~48MPa,某些军品甚至达60MPa;旋转斜盘式柱塞泵的最高压力达100MPa。
(2)排量的估算及范围轴向柱塞泵的排量主要取决于柱塞直径、柱塞的有效行程、斜盘倾角(传动轴与缸体轴线之间的夹角)以及每个工作循环中各柱塞的作用次数等。
柱塞泵排量的通用计算公式为V=Kπ/4d2hZ×10-3(mL/r) (4-1)式中 K——每个工作循环中各柱塞的作用次数;d——柱塞直径,mm;h——柱塞的有效行程,mm;Z——柱塞数。
轴向柱塞泵的排量计算公式见下表。
轴向柱塞泵排量的计算公式常用直轴式柱塞泵的排量范围为1.5~1500mL/r;斜轴式柱塞泵的排量范围为5~2500mL/r;旋转斜盘式柱塞泵的排量范围为2.5~100mL/r。
(3)转速柱塞泵的许用转速均很高,具体数值因排量规格不同而异,例如小排量的转速可超过10000r/min,中等排量泵的转速为3000~5000r/min,大规格重系列直轴泵在有预压的条件下,转速也可达2000r/min以上。
(4)效率在已知的各种液压泵中,由于柱塞泵的工作容积具有完全连续的密封线(面),故能达到最高的容积效率。
又由于各运动副之间的润滑条件良好,它的机械效率也已达到了很高的水平。
目前40MPa压力级重系列轴向柱塞泵在额定工况点附近的容积效率和机械效率均超过95%,最高总效率高达91%~93%。
由于斜轴式柱塞泵缸体的摆角可以较大,工作容积内的“死容积”相对较小,又没有滑履静压支承的漏损项,加之缸体和柱塞的受力情况较好,它的容积效率和机械效率都会比同档次的直轴式柱塞泵要更高一些。
由于泄漏和摩擦的缘故,容积效率和机械效率相乘而得的总效率曲线为一种随压力和转速的增加先升高然后又降低的走势。
作者简介:苏剑坡(1984—),男,机械助理工程师,从事机械加工技术。
王旭(1967—),男,机械高级技师,从事机械加工技术。
0概述A10VSO-DFR/DFR1系列斜盘轴向柱塞泵是德国力士乐公司研制的新型柱塞泵,由于其结构紧凑、节能、工作稳定、寿命高等特点在工业生产中得到广泛的应用,特别是现在越来越多的公司都使用进口设备,进口设备中很多液压站都使用该液压泵,我公司主要使用SMS-Meer 西马克-梅尔设备,其中多台液压站就是使用这种A10VSO-DFR1液压泵(X 口与油箱无连接),下面就该液压泵原理、调节及负载敏感节能技术进行阐述。
该柱塞泵属于斜盘变量柱塞泵,流量正比于驱动转速和排量,并通过调节斜盘倾角实现无级变量。
除了压力控制功能外,借组于负载(如小孔)压差,可以改变泵的流量。
泵仅提供执行机构的实际流量。
图1A10VSO-DFR1原理图1工作原理负载敏感DFR 的原理,DFR 分两个部分,一个是压力控制DR,一个是流量控制FR。
DR 恒压控制,即通过阀控变量油缸来保证出口压力基本不变,就是压力控制阀(原理图下面的三通阀)控制变量油缸,出口压力在稳态时与压力控制阀右端的可调弹簧力相平衡,变量泵的变量压力PP 通过调节压力阀的弹簧设定,当系统压力没有达到调定的恒压压力时,泵排出最大流量,相当于一个定量泵。
当系统压力达到所调的恒压压力时,泵进入恒压工况,负载的速度进入可调阶段。
速度进入可调阶段,流量即发生变化,该变化是系统要求泵输出的流量要有所变化的。
例如开始阶段油缸是快速动作,泵提供最大流量例如150L/min,下一个阶段系统只要求50L/min 的流量就够了,这个时候,泵输出流量相当于负载的速度要求要大,如果泵不改变输出的150L/min 流量,就会出现供(150)过于求(50),根据压力流量基本公式,系统压力就会升高,在节流阀上的压力损失将增加,压力阀的弹簧被压缩,阀芯右移,泵主动变量缸推动斜盘使角度减小,输出流量相对减小,直到泵打出去的流量正好是50L/min,系统压力恢复到设定值,下面这个恒压控制阀就回到中位初始位置,泵稳定在输出50L/min 的斜盘位置上。
动画演示11种泵的工作原理,很直观易懂!更多好内容:化工707网下载此文档:化工707论坛在化工生产中,泵是一种特别重要的设备,了解泵的工作原理不仅能够预防和减少流体泄漏事故、冒顶事故、错流或错配事故。
还能够在泵运行故障中快速诊断。
因此了解泵的工作原理是一件非常重要的事,今天小七就带领大家了解一下各种泵的工作原理,希望能够对大家有所帮助。
液压泵工作原理液压泵是靠密封容腔容积的变化来工作的。
上图是液压泵的工作原理图。
当凸轮1由原动机带动旋转时,柱塞2便在凸轮1和弹簧4的作用下在缸体3内往复运动。
缸体内孔与柱塞外圆之间有良好的配合精度,使柱塞在缸体孔内作往复运动时基本没有油液泄漏,即具有良好的密封性。
柱塞右移时,缸体中密封工作腔a的容积变大,产生真空,油箱中的油液便在大气压力作用下通过吸油单向阀5吸入缸体内,实现吸油;柱塞左移时,缸体中密封工作腔a的容积变小,油液受挤压,便通过压油单向阀6输送到系统中去,实现压油。
如果偏心轮不断地旋转,液压泵就会不断地完成吸油和压油动作,因此就会连续不断地向液压系统供油。
从上述液压泵的工作过程可以看出,其基本工作条件是:1.具有密封的工作容腔;2. 密封工作容腔的容积大小是交替变化的,变大、变小时分别对应吸油、压油过程;3. 吸、压油过程对应的区域不能连通。
基于上述工作原理的液压泵叫做容积式液压泵,液压传动中用到的都是容积式液压泵。
齿轮泵的工作原理上图是外啮合齿轮泵的工作原理图。
由图可见,这种泵的壳体内装有一对外啮合齿轮。
由于齿轮端面与壳体端盖之间的缝隙很小,齿轮齿顶与壳体内表面的间隙也很小,因此可以看成将齿轮泵壳体内分隔成左、右两个密封容腔。
当齿轮按图示方向旋转时,右侧的齿轮逐渐脱离啮合,露出齿间。
因此这一侧的密封容腔的体积逐渐增大,形成局部真空,油箱中的油液在大气压力的作用下经泵的吸油口进入这个腔体,因此这个容腔称为吸油腔。
随着齿轮的转动,每个齿间中的油液从右侧被带到了左侧。
PV**HW 斜盘式轴向柱塞变量泵结构原理* PV**HW 斜盘式轴向柱塞政泵是一种高压、高速、耐冲击且集成化比较高的变量泵,动力由主轴通过渐开线花键带动转子旋转,均匀分布在转子上的九个柱塞通过球铰、压板将培训班塞组件的滑履压在斜盘的磨擦板平面上,由于斜盘平面对于旋转轴线有一个倾角,因此柱塞体不公与转子一起入放置运动,同时也沿转子的柱塞孔作往复运动,实现柱塞泵的吸油与供油。
* 手动伺服变量泵供油量的无级变化,是由补油泵输出人低压油,经手动伺服阀而进入到操纵油缸,推动变量活塞,从而改变斜盘倾角的大小来实现。
手动伺服阀的操纵手柄从中立位置向正反方向摇动时,便改变斜盘倾角方向,使油泵进出口油液流向互换。
* 补油泵的输出压力由低压溢流阀来调定。
* 压力限制阀的功能是当工作负载增大,使系统压力上升到设定值之后,切断手动伺服有能源,使油泵有排量自动减小,从而限制系统压力的继续上升。
在系统压力低于设定压力时,它是处于开启状态,是低压控制油手动伺服的一个通道,不影响变量泵的操纵。
压力限制阀的设定压力,可以通过改变弹簧弹力进行调整,即能改变系统过载压力。
* 原动机停止工作时,变量泵的斜盘在油缸回位弹簧力作用下能自动回到中位(倾角为零)。
MF**斜盘式轴向柱塞柱塞马达结构原理* MF**为定量排量轴向柱塞马达,芯部结构与PV**相同。
来自液压泵的高压油从马达的后盖通道进入配油盘,衬板的配油窗口,并进入转子的柱塞体,使它端头上的滑履紧压在斜盘平面上,由于斜盘平面相对于主轴线有一个倾角,滑履作用在斜面盘平面上所产生的切向分力促使滑履沿斜面滑动,并带动转子旋转,使主轴有转速及扭矩输出。
* 定排量液压马达MF**的输出转速与扭矩大小取决于液压泵供油力与流量。
液压泵改变方向后,马达的输出转向也将改变,即改变油泵斜盘的倾角方向与倾角大小,便改变马达转向与转速大小。
* 手动伺服变量也可应用到变量马达上,此时马达的型号为MV**HW,手动伺服马达与手动伺服泵不同之处是变量马达不带辅助泵,操纵手动伺服阀的能源来自手动伺服变量泵的操纵能源。
Rexroth 力士乐柱塞泵工作原理与说明Rexroth 柱塞泵是靠柱塞在缸体中作来去运动造成密封容积的变化来实现吸油与压油的液压泵,与齿轮泵和叶片泵对比,这种泵有很多长处。
第一,构成密封容积的部件为圆柱形的柱塞和缸孔,加工方便,可获得较高的配合精度,密封性能好,在高压工作仍有较高的容积效率;第二,只要改变柱塞的工作行程就能改变流量,易于实现变量;第三,柱塞泵中的主要部件均受压应力作用,资料强度性能可获得充足利用。
因为柱塞泵压力高,构造紧凑,效率高,流量调理方便,故在需要高压、大流量、大功率的系统中和流量需要调理的场合,如龙门刨床、拉床、液压机、工程机械、矿山冶金机械、船舶上获得宽泛的应用。
柱塞泵按柱塞的摆列和运动方向不一样,可分为径向柱塞泵和轴向柱塞泵两大类Rexroth 柱塞泵工作原理与说明柱塞泵原理一、径向柱塞泵特色:各柱塞摆列在传动轴半径方向,即柱塞中心线垂直于传动轴中心线 1. 径向柱塞泵的工作原理构造:定子、转子、柱塞、配油轴等↓ ↓偏爱固定工作原理: V 密形成——同上上半周,吸油 V 密变化——转子顺转 < 下半周,压油排量 V =πd22ez/4 2)流量 qt = Vn = πd22ezn/4 q = Vnηpv = πd22eznηpv/4 变量原理:径向柱塞泵的排量和流量改变偏爱距的大小和方向,即能够改变输出油液的大小和方向。
阀配流径向柱塞泵的工作原理径向柱塞泵的特色:流量大,压力高,便于作成多排柱塞的形式,工作靠谱但径向尺寸大,自吸能力差,配流轴径向力不均衡,易磨损,空隙不可以赔偿,故限制了转速和压力的提升。
1. 轴向柱塞泵的工作原理轴向柱塞泵是将多个柱塞配置在一个共同缸体的圆周上, 并使柱塞中心线和缸体中心线平行的一种泵。
轴向柱塞泵有两种形式, 直轴式( 斜盘式 ) 和斜轴式 ( 摆缸式 ),二、轴向柱塞泵特色:柱塞轴线平行或倾斜于缸体的轴线1.轴向柱塞泵的工作原理1)斜盘式轴向柱塞泵构成:配油盘、柱塞、缸体、倾斜盘等工作原理: V 密形成——柱塞和缸体配合而成右半周,V密增大,吸油 V 密变化,缸体逆转< 左半周, V 密减小,压油吸压油口分开—配油盘上的封油区及缸体底部的通油孔2)斜轴式轴向柱塞泵特色:传动轴轴线与缸体轴线倾斜一γ角。
目录第1章绪论第2章斜盘式轴向柱塞泵工作原理与性能参数2.1 斜盘式轴向柱塞泵工作原理2.2 斜盘式轴向柱塞泵主要性能参数第3章斜盘式轴向柱塞泵运动学及流量品质分析3.1 柱塞运动学分析3.1.1 柱塞行程s3.1.2 柱塞运动速度v3.1.3 柱塞运动加速度a3.2 滑靴运动分析3.3 瞬时流量及脉动品质分析3.3.1 脉动频率3.3.2 脉动率第4章柱塞受力分析与设计4.1 柱塞受力分析4.1.1 柱塞底部的液压力P b4.1.2 柱塞惯性力P g4.1.3 离心反力P l4.1.4 斜盘反力N4.1.5 柱塞与柱塞腔壁之间的接触力P1和P24.1.6 摩擦力p1f和P2f4.2 柱塞设计4.2.1 柱塞结构型式4.2.2 柱塞结构尺寸设计4.2.3 柱塞摩擦副比压p、比功pv验算第5章滑靴受力分析与设计5.1 滑靴受力分析5.1.1 分离力P f5.1.2 压紧力P y5.1.3 力平衡方程式5.2 滑靴设计5.2.1 剩余压紧力法5.2.2 最小功率损失法5.3 滑靴结构型式与结构尺寸设计5.3.1 滑靴结构型式5.3.2 结构尺寸设计第6章配油盘受力分析与设计6.1 配油盘受力分析6.1.1 压紧力P y6.1.2 分离力P f6.1.3 力平横方程式6.2 配油盘设计6.2.1 过度区设计6.2.2 配油盘主要尺寸确定6.2.3 验算比压p、比功pv第7章缸体受力分析与设计7.1 缸体地稳定性7.1.1 压紧力矩M y7.1.2 分离力矩M f7.1.3 力矩平衡方程7.2 缸体径向力矩和径向支承7.2.1 径向力和径向力矩7.2.2 缸体径向力支承型式7.3 缸体主要结构尺寸的确定7.3.1 通油孔分布圆半径R f´和面积Fα7.3.2 缸体内、外直径D1、D2的确定7.3.3 缸体高度H结论摘要斜盘式轴向柱塞泵是液压系统中的主要部件,斜盘式轴向柱塞泵是靠柱塞在柱塞腔内的往复运动,改变柱塞腔内容积实现吸油和排油的,是容积式液压泵,对于斜盘式轴向柱塞泵柱塞、滑靴、配油盘缸体是其重要部分,柱塞是其主要受力零件之一,滑靴是高压柱塞泵常采用的形式之一,能适应高压力高转速的需要,配油盘与缸体直接影响泵的效率和寿命,由于配油盘与缸体、滑靴与柱塞这两对高速运动副均采用了一静压支承,省去了大容量止推轴承,具有结构紧凑,零件少,工艺性好,成本低,体积小,重量轻,比径向泵结构简单等优点,由于斜盘式轴向柱塞泵容易实现无级变量,维修方便等优点,因而斜盘式轴向柱塞泵在技术经济指标上占很大优势。
A10V型斜盘式轴向柱塞泵是一种常见的液压泵,广泛应用于工程机械、农业机械、工业机械等领域。
由于其参数种类繁多,本文将对A10V型斜盘式轴向柱塞泵的参数进行详细介绍,以便读者更好地了解该型号泵的特性和适用范围。
A10V型斜盘式轴向柱塞泵的参数主要包括流量、压力、转速、效率、重量等,下面将逐一对这些参数进行说明:1. 流量:A10V型斜盘式轴向柱塞泵的流量范围较广,一般来说从5ml/r到1000ml/r不等,用户可以根据具体需求选择合适的流量参数。
2. 压力:A10V型斜盘式轴向柱塞泵的工作压力一般在280bar到350bar之间,当然也有些特殊型号可以达到更高的工作压力。
3. 转速:A10V型斜盘式轴向柱塞泵的转速范围一般在1000rpm到3000rpm之间,不同的转速会对泵的工作效率和噪音产生影响。
4. 效率:A10V型斜盘式轴向柱塞泵的效率取决于其设计的先进程度和制造工艺,一般来说,其效率可以达到90以上。
5. 重量:A10V型斜盘式轴向柱塞泵的重量也是一个重要的参数,不同的规格和型号对应的重量会有所不同,用户在选型时需要考虑设备的载重能力。
A10V型斜盘式轴向柱塞泵作为液压系统中的关键元件,其参数的选择对系统的性能和使用效果具有重要影响。
用户在选型时除了要考虑以上参数外,还应该结合具体的工作环境和工作要求,选择合适的A10V 型斜盘式轴向柱塞泵,以确保系统的稳定性和可靠性。
由于A10V型斜盘式轴向柱塞泵的应用场景和工况各不相同,用户在选型和使用时,还需要在参数的基础上进行进一步的调整和优化,以满足特定的工程需求。
比如在流量和压力的选择上要考虑系统的功率和扭矩要求,在效率和转速的选择上要考虑系统的能效和噪音要求,在重量的选择上要考虑设备的运输和安装要求等。
A10V型斜盘式轴向柱塞泵的参数包括流量、压力、转速、效率、重量等,这些参数的选择和优化对液压系统的性能和稳定性具有重要影响。
用户在选型和使用时应该根据具体的工作要求和工程环境,灵活调整和优化这些参数,以确保系统的性能和可靠性。
第十章 轴向柱塞泵柱塞泵用柱塞和油缸体作为主要工作构件。
当柱塞在缸体的柱塞孔中作往复运动时,由柱塞与缸孔组成密闭工作容腔发生容积变化,完成吸、排油过程。
根据柱塞在缸体中的不同排列形式,柱塞泵分为径向式和轴向式两大类。
径向柱塞泵由于结构复杂、体积较大,在许多场合已逐渐被轴向柱塞泵替代。
在本章的最后一节,仅对具有一定特点的阀配流径向柱塞泵作简要的叙述。
轴向柱塞泵的柱塞中心线平行(或基本平行)于油缸体的轴线。
此类泵的密封性好,具有工作压力高(额定工作压力一般可达32~40Mpa ),在高压下仍能保持相当高的容积效率(一般在95%左右)及总效率(一般在90%以上),容易实现变量以及单位功率的重量轻等优点。
它的缺点是结构较为复杂,有些零件对材质及加工工艺的要求较高,因而各类容积式泵中,柱塞泵的价格最高。
柱塞泵对油液的污染比较敏感,对使用、维修的要求也较为严格。
泵的最高允许转速受汽蚀、对磨零件以及轴承的寿命等因素限止,一般不超过4000r/min ,小排量规格可达8000~10000r/min 。
轴向柱塞泵作为中高压及高压油源,广泛地用于各个工业部门。
§ 10-1 轴向柱塞泵的工作原理及分类一、基本工作原理如图10-1所示,柱塞4安放在缸体5中均布的若干柱塞孔中(图中只画了两个柱塞)。
在柱塞底部弹簧的作用下,柱塞头部始终紧贴斜盘3。
当传动轴1带动缸体按图示方向转动时,位于A A -剖面右半部的柱塞向外伸,柱塞和缸孔组成的工作容腔增大,通过配流盘6的吸油槽吸油。
位于A A -剖面左半部的柱塞朝里缩,进行排油。
由于起密封作用的柱塞和缸孔为圆柱形滑动配合,可以达到很高的加工精度,并且油缸体和配流盘之间的端面密封采用液压自动压紧,所以泵的泄漏可以得到严格控制,因此这种泵可以适应在高压下工作,容积效率较高。
传动轴每转一周,柱塞在缸孔中往复运动一次,完成吸油和排油。
其行程为 γtan 2R S = 因此,泵的理论排量为γπtan 212ZR d q = (10-1) 式中 d ——柱塞直径;R ——柱塞孔在缸体中分布圆半径; Z ——柱塞数;γ——斜盘的倾斜角。
A2F系列斜轴式轴向柱塞定量泵技术参数及工作原理A2F系列斜轴式定量泵/马达是目前国内外较先进的液压元件。
它与国外相同型号、规格的产品能完全互换,A2F系列斜轴式定量泵/马达是一种可逆元件,配以不同的配流盘和后盖,可满足各种液压系统的需要。
因此它广泛应用于冶金、矿山、石油、建筑、工程机械、铁道、船舶、塑料加工、轻工、机床等机械的开式、闭式液压系统。
工作原理:1.泵工况泵的作用是将机械能转变为液压能。
当电动机带动泵的主轴旋转时,通过连杆柱塞带动缸体旋转,由于缸体轴线与主轴轴线成一夹角,柱塞在缸体内作往复运动,此时缸体内的柱塞孔发生容积变化。
当容积由小变大时,介质从泵的吸入口吸入,经配流盘的低压窗口进入柱塞孔;当容积由大变小时,介质经配流盘的高压窗口从泵的排出口排出。
这样主轴旋转一周,每个柱塞孔完成一次吸入,排出的过程。
2.马达工况马达的作用是将液压能转变为机械能.当高压油从马达的进油口通过配流盘高压窗口进入缸体柱塞孔内, 推动柱塞运动, 由于缸体轴线与主轴轴线成一夹角,液压力通过连杆作用于主轴上, 产生一个切向力, 推动主轴旋转, 输出扭矩。
同时工作过的油液借助于缸体的惯性旋转,被挤出柱塞孔,通过配油盘的低压窗口,从马达排油口排出。
使用:1.使用条件a.油温:A2F系列泵/马达的正常工作温度一般在-25℃~80℃,最高不超过90℃。
当温度低于10℃时,应采取加热措施。
b.介质粘度:工作介质使用粘度范围应在16~43mm2/s(厘池)。
当季节温差太大时,满足不了粘度要求,则应更换工作介质。
c.滤油精度:最佳滤油精度5~10um,最低不超过25um。
2.泵/马达的常用工作压力不应超过额定值,而常用工作转速推荐不超过最高值60%。
瞬时不应超过最高值。
最高值一般连续使用不超过1分钟,且每班累计不超过10%的工作时间。
3.壳体内腔泄漏油允许压力为0.1Mpa。
4.安装要求a.泵、马达与原动机或角载联接采用弹性联轴节,联接同轴度不应超过0.1mm。
b.安装联轴节时,忌用锤击,应合理选用配合。
c.按装泵、马达的支架应有足够的刚度,以防止振动。
d.安装泵、马达时必须使泄漏油口处于最高位置,泄漏油管必须高于泵、马达的最高点,以保证泵、马达壳内充满油液。
e.当泵是自吸时,泵的安装位置应低于油箱最低液面。
f.与泵、马达联接的管首,管件等应严格清洗,不允许管内留有杂物、铁锈等。
试运转:1.运转前的检查a.检查泵、马达是否完好,手转主轴是否均匀。
如泵、马达储藏时间过长,应先拆洗。
b.检查系统各种管道、油箱、元件是否清洗干净。
c.检查泵、马达的安装系统联接是否正确、可靠;泵、马达的支架是否有足够的刚性。
d.检查泵、马达的转向是否与原动机、负载转向相符,进出油口的联接与转向是否正确。
e.检查介质牌号是否满足粘度要求;滤油器的精度是否满足要求。
f.检查泵、马达的内腔是否充满介质;泄漏管路是否符合要求。
2.试动转a.将压力控制阀旋松,使泵在空载下起动。
马达则降低负载至额定值的10%下起动。
b.泵、马达在空载或低负载,低转速下启动。
起动时注意泵、马达的运转,系统是否出现异常现象。
c.排除系统内的空气,闭式系统可通过排气孔排气,开式系统可通过空运转一段时间排除管内空气。
d.确定泵、马达和系统运转正常的情况下,空载(在额定压力的10%压力工况下)运行30分钟左右,再逐级升压、升速运行,直至额定工况为止。
e.检查泵、马达和系统是否出现外渗漏、噪音、振动、温升等等常现象。
如不正常,应即停车检查,直至修复后进行试运转。
f.试运转结束应从新更换介质,清洗滤油器后,再投入正常运转。
维护保养:1.为了使泵/马达发挥最佳的效率和最长的使用寿命,泵/马达在正常工作过程中,用户应根据工况条件,合理制定检查介质的品质周期和更换介质,清洗滤油器、油箱的周期,以保持系统介质的品质和清洁。
一般更换介质和清洗滤油器、油箱的周期推荐3~6个月。
更换介质时,禁止新、旧介质混合使用。
2.主机检修时,用户切勿自行拆检泵/马达,必要时应由专业人员进行拆检保养。
1-5系列定量柱塞泵/马达1.) 缸体轴线与主轴轴线成一不变的角度即弯轴结构的轴向柱塞元件,具有固定排量。
在开式或者闭式液压系统中作为泵工况或者马达工况进行液压传动工作。
2.) 当作为泵工况时,流量与驱动转速和排量成正比。
3.) 当作为马达工况时,输出转速与输入流量成正比。
而与排量成反比。
输出扭矩随高压侧与低压侧成正比。
4.) 球面配流盘的结构,对于旋转组件来说具有良好的对中特点,且转速稳、噪声低。
5.) 由于采用径向推力轴承,能承受一定的径向载荷。
6.) 符合ISO标准的安装法兰,通用性强。
7.) 系统采用合理的清洁的抗麿、抗燃液压油介质,可延长使用寿命,增加使用场合。
每半年应更换液压油。
输出轴:平键、花键可自由选择!A2F规格及技术参数(表内数据适用于吸油口S有绝对压力、并用矿物油介质时)规格项目A2F(1-5)系列斜轴式柱塞泵/马达6 10 12 16 23 28 32 45 55 63 80 90 107 125 160 180 200 250 355 500 710 1000转速(r/min) 3000 3000 3000 3000 2500 2500 2500 2500 2500 2500 2240 2240 2000 2000 17501750 1750 1500 1200 1200 950 950压力(Mpa) 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 31.5 31.5 31.5 31.5 31.5 31.5泵理论输入功率(KW)10.3 17.2 20.5 27.5 32.9 40 46 65 79 90 103 116 123 143 160 180 181 193 219 309 353 489n=1450r/minp=35Mpa(31.5Mpa)功率(KW)5 8.2 10 13.3 19 24 27 37 45.6 52.2 66.3 74.6 89 104 132 149 (150) (187) (一)(一)(一)(一)马达理论输出扭矩(N.m) 33.4 55.7 66.8 89 127 155 178 250 306 350 445 500 595 695 890 1001 1001 1252 1778 2504 3556 5008重量(kg) 5 5 5 9 12 12 12 23 23 33 33 33 44 44 63 63 88 88 138 185 373 3736.1系列定量柱塞泵/马达A2F6.1系列斜轴式定理泵、马达,具有国际现代先进水平的产品。
可作为开式系统和闭式系统中的泵和马达使用。
该系列共有十四个公称规格,其中七个为I系列产品,七个为II 系列产品。
I系列产品具有与A2F1-4系列相同的连接油口,法兰,轴伸尺寸。
II系列产品与相近规格I系列产品的法兰连接尺寸相同。
(I)系列规格12 23 28 56 80 107 160(II)系列规格16 32 45 63 90 125 180A2F6.1系列是由A2F1-4系列发展而成的,除具有A2F1-4系列结构特点以外,尚具有如下的结构特点:*40°大倾角,故尺寸更紧凑、单位重量的功率大。
*整体锥形柱塞,采用两只柱塞环密封,故效率高,经济性好。
*采用大锥角圆锥滚子轴承,安装方便,使用寿命长。
*缸体部件采用无铰传动。
输出轴:平键、花键可自由选择!A2F规格及技术参数(表内数据适用于吸油口S有绝对压力、并用矿物油介质时)规格项目A2F6.1系列斜轴式柱塞泵/马达6 10 12 16 23 28 32 45 55 63 80 90 107 125 160 180 200 250 355 500 710 1000转速(r/min) 3000 3000 3000 3000 2500 2500 2500 2500 2500 2500 2240 2240 2000 2000 1750 1750 1750 1500 1200 1200 950 950压力(Mpa) 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 31.5 31.5 31.5 31.5 31.5 31.5泵理论输入功率(KW)10.3 17.2 20.5 27.5 32.9 40 46 65 79 90 103 116 123 143 160 180 181 193 219 309 353 489n=1450r/minp=35Mpa(31.5Mpa)功率(KW)5 8.2 10 13.3 19 24 27 37 45.6 52.2 66.3 74.6 89 104 132 149 (150) (187) (一)(一)(一)(一)马达理论输出扭矩(N.m) 33.4 55.7 66.8 89 127 155 178 250 306 350 445 500 595 695 890 1001 1001 1252 1778 2504 3556 5008重量(kg) 5 5 5 9 12 12 12 23 23 33 33 33 44 44 63 63 88 88 138 185 373 373。