河南省新安县2018--2019学年九年级数学第一学期期末试卷
- 格式:docx
- 大小:503.72 KB
- 文档页数:5
2018-2019九年级上学期末考试数学试题一、精心选一选(每小题3分,共36分)1、下列图形中,既是轴对称又是中心对称图形的是( )MN 上移动时,矩形PAOB 勺形状、大小随之变化,贝U AB 的长度()A 变大B 变小C 不变D 不能确定&如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点 A (- 3,0),对称轴为直线x = - 1, 下列结论:① b 2>4ac :②2a + b = 0 ; @ a + b + c>0 ;④若 B (- 5,y 1 )、C (- 1,y ) 为函数图象上的两点,贝U %<y 2 •其中正确结论是( )A ②④B ①③④C ①④D ②③9、 如图,已知AB 是O O 的直径,AD 切O O 于点A ,点C 是EB 的中点,则下列结论: ①OC/ AE ②EC = BC ③/ DAE=Z ABE ④ACLOE 其中正确的有() A 1 个B 2 个C 3 个D 4 个10、 某种药品零售价经过两次降价后的价格为降价前的 81%则平均每场降价( )A 10%B 19%C 9.5%D 20%11、 如图,I 是厶ABC 的内心,AI 的延长线和△ ABC 的外接圆相交于点 连接BI ,BD DC 下列说法中错误的一项是( ) A 线段DB 绕点D 顺时针旋转一定能与线段DC 重合 B 线段DB 绕点D 顺时针旋转一定能与线段 DI 重合 C / CAD 绕点A 顺时针旋转一定能与/ DAB 重合A B C D 32、 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同,从中任意拿出一支笔 芯,则拿出黑色笔芯的概率为2 1 2 A -B1 C-3553、 用配方法解一元二次方程X 2-6X +6 = 0时,配方后得到的方程是()A (X - 3)2=6B (X +3)2=3C (X - 3)2 =3D (X - 3)2 =-34、 抛物线y 二a (x • 1)(x —3)(a = 0)的对称轴是直线(A X = 1B 5、 如图,四边形) x = -1 C x = 3 DABCD 是O O 的内接四边形,若/第5题 6、 已知:如图,则/ BPC 的度数是( 7、 如图,四边形PAOB 是扇形OMN 勺内接矩形,顶点P 在MN ,且不与M N 重合,当P 点在 四边形 第6题 ABCD 是O O 的内接正方形,点 第8题P 是劣弧上不同于点C 的任意一点, C 75° D 90° 尸x = -3B=110°,则/ ADE 的度数为( )D线段ID绕点I顺时针旋转一定能与线段IB重合(11题)12、用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()1 3A 丄B 1C -D 、2二、细心填一填(每小题3分,共15分)13、把抛物线y = -2(x-1)2+3向右平移2个单位再向下平移5个单位,得到抛物线解析式为_____________________ 。
2018—2019学年度第一学期期末考试九年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.关于x的方程ax2-3x+2=0是一元二次方程,则A.a>0 B.a≠0 C.a=1 D.a≥02.用配方法解方程3x2-6x+1=0,则方程可变形为A.(x-3)2=13B.3(x-1)2=13C.(x-1)2=23D.(3x-1)2=13.在平面直角坐标系中,将抛物线y=3x2+2先向左平移2个单位,再向上平移6个单位后所得到的抛物线的顶点坐标是A.(-2,6)B.(2,-6)C.(-2,8)D.(2,-8)4.下列事件中,是必然事件的是A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.掷一枚质地均匀的硬币,一定正面向上D.如果a2=b2,那么a=b5.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复以A.20 B.25 C.30 D.356.下列两个图形一定相似的是A.两个矩形B.两个等腰三角形 C .两个正方形 D .两个菱形 7.下列每张方格纸上都有一个三角形,只用圆规就能作出这个三角形的外接圆的是A .①②B .①③C .②④D .③④ 8.如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是 A.∠ADC =12∠AEC B.∠ADC =∠ABC C .AE >BE D .AD =BC9.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连接EF ,若∠BEC =65°,则∠EFD 的度数是 A .15° B .20° C .25° D .30° 10.如图,在平面直角坐标系中,已知点A (-3,6)、B (-9,-3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点B 的对应点B ′的坐标是 A .(-3,-1)B .(-1,2)C .(-9,1)或(9,-1)D .(-3,-1)或(3,1)11.在函数21a y x--=(a 为常数)的图象上有三点(-3,y 1),(1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是 A .y 2<y 3<y 1 B .y 3<y 2<y 1 C .y 3<y 1<y 2D .y 1<y 2<y 312.2则下面对于该函数性质的判断①该二次函数有最大值; ②不等式y >-1的解集是x <0或x >2;(第8题图) (第9题图) (第10题图)③方程ax 2+bx +c =0的两个实数根分别位于12-<x <0之间和2<x <52之间; ④当x >0时,函数值y 随x 的增大而增大.其中正确的是 A .②③ B .②④ C .①③D .③④第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.已知点M (a,N (2,b )关于原点对称,则ab = . 14.已知圆内接正六边形的边长是1,则这个圆的内接正方形的边长是 . 15.关于x 的方程x 2-2x +3=0的根的情况是 . 16.已知一个两位数,它的十位数字比个位数字小3,个位数字的平方恰好等于这个两位数.如果设它的个位数字是x ,则列得方程为 . 17.两个相似三角形的面积比为4∶25,则它们的相似比为 .18.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口时都是绿灯,但实际这样的概率是 .19.若75°的圆心角所对的弧长是2.5πcm ,则此弧所在圆的半径是 cm . 20.如图,在Rt △ABC 中,∠A =60°,AB =2,以点B 为圆心,BC 为半径的弧交AB 于点D ,以点A 为圆心,AC 为半径的弧交AB 于点E ,则图中阴影部分的面积为 . 21.如图,某水渠的横截面呈抛物线形,当水面宽8m 时,水深4m ,当水面下降1m 时,水面宽为 m .22.如图,在反比例函数10y x=(x >0)的图象上,有点P 1,P 2,P 3,P 4,…,它们的横坐标依次为2,4,6,8,…,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S 1,S 2,S 3,…,n S ,则123n S S S S ++++ = (用含n 的代数式表示)三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.如图,有一段15m 长的旧围墙AB ,现打算利用 该围墙的一部分(或全部)为一边,再用32m 长 的篱笆围成一块长方形场地CDEF .(1)怎样围成一个面积为126m 2的长方形场地?(第22题图)(第21题图) (第20题图)(第23题图)(2)长方形场地面积能达到130m 2吗?如果能,请给出方案,如果不能,请说明理由. 24.在一个箱子中有三个分别标有数字1,2,3的材质、大小都相同的小球,从中任意摸出一个小球,记下小球的数字x 后,放回箱中并摇匀,再摸出一个小球,又记下小球的数字y ,以先后记下的两个数字(x ,y )作为点P 的坐标. (1)求点P 的横坐标与纵坐标的和为4的概率;(2)求点P25.如图,□ABCD 中,E 为BC 边上一点,连接DE ,F 为线段DE 上一点,∠AFE =∠B . (1)求证:△ADF ∽△DEC ;(2)若AB =8,AD=AF=DE 的长.26.如图,在矩形OABC 中,OA =3,OC =2,点F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数ky x=的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EF A 的面积最大,最大面积是多少?27.如图,点E 在x 轴正半轴上,以点E 为圆心,OE 为半径的⊙E 与x 轴相交于点C ,直线AB 与⊙E 相切于点D ,已知点A 的坐标为(3,0),点B 的坐标为(0,4). (1)求线段AD 的长;(2)连接BE 、CD ,求证:BE ‖CD .28.如图,过点A (-1,0)、B (3,0)的抛物线2y x bx c =-++与y 轴交于点C ,它的对称轴与x 轴交于点E . (1)求抛物线解析式; (2)求抛物线顶点D 的坐标;(3)若抛物线的对称轴上存在点P 使3PCBPOC SS=,求此时DP 的长.(第25题图)(第26题图)(第28题图) (第27题图)2018—2019学年第一学期九年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.13; 14 15.无实数根 ; 16.210(3)x x x =-+;17.2∶5; 18. 18; 19.6; 20;21. 22.1010n -.三、解答题:(共74分)23. 解:(1)设CD =x m ,则DE =(32﹣2x )m ,依题意得:x (32﹣2x )=126,…………………………………………………2分 整理得 x 2﹣16x +63=0,解得 x 1=9,x 2=7, …………………………………………………4分 当x 1=9时,(32﹣2x )=14当x 2=7时 (32﹣2x )=18>15 (不合题意舍去)∴能围成一个长14m ,宽9m 的长方形场地. ………………………5分 (2)设CD =y m ,则DE =(32﹣2y )m ,依题意得 y (32﹣2y )=130 …………………………………………………7分 整理得 y 2﹣16y +65=0△=(﹣16)2﹣4×1×65=﹣4<0故方程没有实数根, …………………………………………………9分 ∴长方形场地面积不能达到130m 2.…………………………………………10分 24. 解:(1…………………5分则点M 坐标的所有可能的结果有9个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),和为4的有(1,3)、(2,2)、(3,1)这3种, ……………………………………7分故P (和为4)=31=93. ……………………………………8分(2)∵点M∴x 2+y 2<10,这样的点M 有4种形式(1,1)、(1,2)、(2,1)、(2,2), ……………………………………10分∴点M P =49.……………………………………12分25. (1)证明:∵四边形ABCD 是平行四边形,∴AB ‖DC ,AD ‖BC , ……………………………………2分∴∠C +∠B =180°,∠ADF =∠DEC .……………………………………4分 ∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C , ………………………………………………………6分 ∴△ADF ∽△DEC .………………………………………………………7分 (2)∵四边形ABCD 是平行四边形,AB =8,∴CD =AB =8, ………………………………………………………8分 ∵△ADF ∽△DEC , ∴AD DEAF DC =, ………………………………………………………10分又CD =8,AD =AF =∴=12AD CD DE AF ⋅==. ………………………………………12分 26.解:(1)∵在矩形OABC 中,OA =3,OC =2,∴B (3,2), ………………………………………………………2分 ∵F 为AB 的中点,∴F (3,1), ………………………………………………………3分∵点F 在反比例函数ky x=的图象上, ∴k =3, ………………………………………………………5分∴该函数的解析式为3y x=; ………………………………………6分(2)由题意知E ,F 两点坐标分别为E (2k ,2),F (3,3k),………7分∴111(3)2232EFA kS AF BE k ∆==⨯- ………………………………9分=2133)124k --+( ………………………………11分 当k =3时,△EF A 的面积最大,最大面积是34. ………………13分27.(1)解:∵A 的坐标为(3,0),点B 的坐标为(0,4),∴OA =3,OB =4,…………………………………………………………2分∴AB ,………………………………………………………3分 ∵以点E 为圆心,OE 为半径的⊙E 与x 轴相交于点C ,且BO ⊥OC , ∴OB 与⊙E 相切于点O ,………………………………………………4分 又直线AB 与⊙E 相切于点D ,∴DB =OB = 4, ………………………………………………………6分 ∴AD =5-4=1. ………………………………………………………7分(2)证明:连接ED 、OD . ∵AB 与⊙E 相切于点D , OB 切⊙E 于点O ,∴OB =BD ,∠OBE =∠DBE ,………9分 ∴BE ⊥OD , ………………………10分 ∵OC 为直径,∴∠ODC =90°,……………………11分 ∴CD ⊥OD ,………………………12分 ∴BE ‖CD . …………………………13分28. 解:(1)将A (﹣1,0),B (3,0)代入2y x bx c =-++得10930b c b c --+=⎧⎨-++=⎩, ………………………………2分解得 b =2,c =3,∴抛物线解析式为y =﹣x 2+2x +3. ………………………………4分 (2)∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4). ………………………………6分 (3)设BC 与抛物线的对称轴交于点F ,如图所示:则点F 的横坐标为1, ∵y =﹣x 2+2x +3当x =0时,y =3,∴OC =3, ……………………………………………7分∴△POC 的面积=12×3×1=32,……8分又△PCB 的面积=△PCF 的面积+△PBF 的面积=12PF (1+2)=32PF , ∴32PF =3×32, 解得 PF =3, ………………………………9分设直线BC 的解析式为y =kx +a ,则 330a k a =⎧⎨+=⎩, ………………………………10分 解得 a =3,k =-1,∴直线BC 的解析式为y =-x +3, ……………………………11分 当x =1时,y =2, ∴F 的坐标为(1,2),∴EF =2, ……………………………………12分 当点P 在F 的上方时,PE =PF +EF =5,∴DP =5-4=1; ……………………………………13分 当点P 在F 的下方时,PE =PF -EF =3-2=1, ∴DP =4+1=5;(第28题答案图)综上所述,DP的长为1或5.…………………………………14分。
2018-2019学年第一学期九年级期末测试数 学 试 题 卷一、选择题:本题有 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1. 用配方法解一元二次方程x 2 4x 5 0时,方程变形正确的是( )A .x 225 B .x 227 C .x 221D .x 22. 已知△ABC 中,∠C =90°.若AC = 3,BC =1则 sin A的值是( )A .B .C .D .23. 如图所示,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE 的是( )B .C AED C . D . BA .第 3 题图第 6 题图4. 如果一个正多边形的中心角为 72°,那么这个多边形的边数是( )A .4B .5C .6D .75. 已知△ABC 中,∠C =90°,AC =3,BC =4,点 P 为边 AB 的中点.以点 C 为圆心,长度r 为半径画圆,使得点 A ,P 在⊙C 内,点 B 在⊙C 外,则半径 r 的取值范围是( ) A .r 4 B .r 3 C .3r 4 D .r 3 6. 如图,△ABC 中,∠A =78°,AB =4,AC =6.将△ABC 沿图示的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .7. 如图,点 A ,B ,C 在⊙O 上,∠A =36°,∠B =64°,则∠C 的度数为( )A .28°B .32°C .44°D .52°B .C .D .2 23AB BC AD DEABACADAE8. 如图,在△ABC 中,CD ⊥AB 于点 D .已知 AC =a ,∠A =,∠B =,则 BC 的长是( )asin α a cos αA .B .C .a sin αtan βD .a cos αtan β sin β tan β第 7 题图第 8 题图第 9 题图9. 如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子 OA ,OB 在 O 点钉在一起,并使它们保持垂直,在测直径时,把 O 点靠在圆周上,读得刻度 OE =8 个单位,OF =6 个单位,则圆的直径为( )A .15 个单位B .12 个单位C .10 个单位D .4 个单位10.已知三角形两边长分别为 3 和 9,第三边长为一元二次方程x 214x 48 0的一个根,则这个三角形的周长为( )A .18B .19C .20D .18 或 2011.如图,AB 为⊙O 的直径,C 为⊙O 外一点,过点 C 作⊙O 的切线,切点为 B ,连结AC 交⊙O 于 D ,∠C =38°.点 E 在 AB 右侧的半圆上运动(不与 A 、B 重合),则∠AED 的大小是( )A .19°B .38°C .52°D .76°第 11 题图第 12 题图12.如图,连结正五边形的各条对角线 AD ,AC ,BE ,BD ,CE .给出下列结论:①∠AME =108°;②五边形 PFQNM ∽五边形 ABCDE ;③AN 2 AM AD .其中正确的是( )A .①②B .①③C .②③D .①②③二、 填空题:本题有 6 个小题,每小题 3 分,共 18 分.13.已知,则锐角的度数为 . 14.如图,已知直线 a ∥b ∥c ,另外两条直线分别交 a 、b 、c 于点 A 、AB 4DE3cos 2 αB、C、D、E、F;,则.BC 3 DF15.设x1,x2是一元二次方程x2 x 1009 0的两个根,则x12 x22 .16.A,B 是 O上的两点,OA 1, AB的长是AOB 的度数是.17.如图,四边形ABCD 内接于⊙O,∠DAB=130°,连接OC,点P 是半径OC 上任意一点(P 可与O,C 重合),连接DP,BP,则∠BPD 可能为度(写出一个即可).第7 题图第9 题图18.如图,一根长为a 的竹竿AB 斜靠在墙上,竹竿AB 的倾斜角为α;当竹竿的顶端A 下滑到点Aʹ时,竹竿的另一端 B 向右滑到了点Bʹ,此时倾斜角为β.(1)线段AAʹ的长为;(2)当竹竿AB 滑到AʹBʹ位置时,AB 的中点P 滑到了Pʹ位置,则点P 所经过的路线长为.(两小题均用含a,α,β的代数式表示)三、解答题:本题有6 小题,共66 分.解答应写出文字说明或推演步骤.19.(本小题满分8 分)解方程:(1) x2 6x 20;(2) 3x1 2 x 1.20.(本小题满分10 分)一长方形木箱沿斜面下滑,当木箱滑至如图所示位置时,AQ=m.已知木箱高PQ=h,斜面坡角满足tanα.求木箱顶端P 离地面AB 的高度PC.21.(本小题满分10 分)如图,在△ABC 中,D,E 分别是AB,AC 上的点,∠AED=∠ABC.∠BAC 的平分线AF 交DE 于点G,交BC 于点F.(1)试写出图中所有的相似三角形,并说明理由; AAG 3 GE DE(2)若,求 和 的值. GF 2 BF BCB FC 22.(本小题满分 12 分)在⊙O 中,已知弦 BC 所对的圆周角∠BAC 与圆心角∠BOC 互补. (1)求∠BOC 的度数;(2)若⊙O 的半径为 4,求弦 BC 和劣弧B C 组成的弓形面积.23.(本小题满分 12 分)某品牌手机销售商试销某一品牌手机,已知出厂价为 2 000 元⁄台.当以 3 000 元⁄台销售时,一月份平均销售 100 台,由于品牌质量好,口碑不断提高,销售量持续增长,经二月份的市场调查,三月份销售后,月销售额达到 43.2 万元. (1)求一月份到三月份销售额的月平均增长率; (2)求三月份该品牌手机的利润.24.(本小题满分 14 分)如图,△ABC 中,AC =BC ,∠ACB =Rt ∠.点 P 是线段 BC 延长线上任意一点,以 AP 为直角边作等腰直角△APD ,且∠APD =Rt ∠,连结 BD .AC AB(1)求证:.AP AD(2)在点 P 运动过程中,试问∠PBD 的度数是否会变化?若不变,请求出它的度数;若变化,请说明它的变化趋势.(3)已知 AB CP =x ,S △PBDS .①试求 S 关于 x 的函数表达式. ②当S 时,求△BPD 的外接圆半径.DEG。
2018--2019九年级第一学期期末试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.下列根式中,不是最简二次根式的是( )2.在△ABC 中,∠A =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,则下列选项中不正确的是( A. SinB=b a B. sinC=c a C. COSB=b c D tanB=b c3.如图,如果★的坐标是(6,3),◆的坐标是(4,7),那么⊙的坐标是( )A.(7,4)B.(5,7)C.(8,4)D.(8,5)4.下列说法正确的是( )A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机取出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%6的时间会下雨C.某地发行一种福利彩票,中奖概率是千分之一,那么买这种彩票1000张,一定会中奖D.连续掷一枚质地均匀硬币,若5次都是正面朝上,则第6次仍然可能正面朝上5,已知关于x 的一元二次方程x 2-6x+k+1=0的两个实数根是x1,x2,且x12+x22=24,则k 的值是( )A.5B.-7C.6D.86.如图所示,AB ∥CD ,AE ∥FD ,AE ,FD 分别交BC 于点C ,H ,则图中共有相似三角形( )A.7对B.6对C.5对D.4对7. 已知x2-3x-4=0,则代数式24x x x --的值是( ) A.3 B.2 C.13 D.128.质地均匀的微千六个面分別刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生的可能性最大的是( )A.点数都是偶数B.点数的和是奇数C.点数的和小于13D.点数的和小于29.有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( ) A.12x(x-1)=45 B.12x(x+1)=45 C 、x(x-1)=45 D.x(x+1)=45 10.如图是二次函数y =a 2+bx+c 图象的一部分,其对称轴为x =-1,且过点(-3,0).下列说法:abc <0;②2a-b=0;③4a+2b+c <0;④若(-5,y 1),(52,y 2)是抛物线上两点,则y1>y 2,其中说法正确的s 是( ) A.①② B.②③ C.①②④ D.②③④二、填空题(本大题共5个小题,每小题3分,共15分)11.如果43x y =,那么x y y+的值是12.如图,若点A 的坐标为(1,则sin ∠1=13.将抛物线y =x 2-2向上平移4个单位,再向右平移3个单位,得到新的抛物线,那么新的抛物线的表达式是14.如图,在△ABC 中,中线BD ,CE 相交于点O ,若S =4,则S △ABC =4,则S △DOE =15.如图,折叠矩形ABCD 的一边AD,使点D 落在BC 边的点F 处,已知折痕AE=,且tan ∠EFC=34,那么矩形ABCD 的周长为 cm 。
2018—2019年度第一学期期末考试九年级数学试题(试卷满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题选对得4分,共48分.1.下面四个几何体中,主视图与其它几何体的主视图不同的是()2.下列一元二次方程中,有两个相等的实数根的是()A.x2-4x-4=0 B.4x2+4x+1=0C. x2-36x+36=0 D.x2-2x-1=03.如图,将Rt△ABC(∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°4.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°5.不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.112B.16C.14D.126.已知关于x的函数y=k(x-1)和y=-kx(k≠0),它们在同一坐标系内的图象大致是()7.如图,在△ABC中,已知点D,E分别是边AC,BC上的点,DE∥AB,且CE:EB=2:3,则DE:AB等于()A.2:3 B.2:5 C.3:5 D.4:58.在△ABC中,∠A,∠B都是锐角,tanA=1,2,你认为△ABC最确切的判断是()A.等腰三角形B.等腰直角三角形C.直角三角形D.锐角三角形9.二次函数213y x x222=-++的图象如图所示,当-1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.010.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的12后得到线段CD,则点A的对应点C的坐标为()A.(5,1)B.(4,3)C.(3,4)D.(1,5)11、如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.A.30+30B.30+10C.10+30D.3012、如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题4分.13.cos604530︒︒+︒=.14.关于x的方程x2-3x+m=0有一个根是1,则方程的另一个根是.15.如图,点A在曲线y=3x(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.如图,AB为⊙O的直径,C为圆上(除A、B外)一动点,∠ACB的角平分线交⊙O于D,若AC=8,BC=6,则BD的长为.17.已知抛物线y=ax2-2ax+3与x轴的一个交点是(-1,0),则该抛物线与x轴的另一个交点坐标为________.18.如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD =AC时,tanα1=;如图2,当CD =AC时,tanα2=;如图3,当CD =AC时,tanα3=;……依此类推,当CD =AC(n为正整数)时,tanαn=.三、解答题:本大题共7小题,共78分.19.(本题满分10分)已知:如图,在坐标平面内△ABC的顶点坐标分别为A(0,2),B(3,3),C(2,1),(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC关于原点对称的△A1B1C1,并直接写出点C1点的坐标;(2)画出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2,并直接写出C2点的坐标.20.(本题满分10分)由我国完全自主设计、自主建成的首艘国产航母于2018年5月成功完成第一次海上试验任务,如果,航母由西向东航行,到达A处时,测得小岛B位于它的北偏东30°方向,且与航母相距80海里,再航行一段时间后到达C处,测得小岛B位于它的西北方向,求此时航母与小岛的距离BC的长.21.(12分)某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图.请根据图中信息,解决下列问题:(1)两个班共有女生多少人?(2)将频数分布直方图补充完整;(3)求扇形统计图中E部分所对应的扇形圆心角度数;(4)身高在170≤x<175(cm)的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队.请用列表法或画树状图法,求这两人来自同一班级的概率.22.(本题满分12分)如图,点A (,4),B(3,m)是直线AB与反比例函数y =(x>0)图象的两个交点,AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,B C.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2.求S2﹣S1.23.(本题满分12分) 如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=BF=2,求⊙O的半径.24.在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当α=60°时,的值是,直线BD与直线CP相交所成的较小角的度数是.(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D 在同一直线上时的值.九年级数学试题 共3页 第5页页)数学试题25.(本题满分 12 分)已知抛物线 y = ax 2 + bx - 4经过点 A (2,0)、 B (-4,0),与 y 轴交于点C .(1)求这条抛物线的解析式;(2)如图 1,点 P 是第三象限内抛物线上的一个动点,当四边形 ABPC 的面积最大时, 求点 P 的坐标;(3)如图 2,线段 AC 的垂直平分线交 x 轴于点 E ,垂足为 D ,M 为抛物线的顶点,在直线 DE 上是否存在一点 G ,使△CMG 的周长最小?若存在,求出点 G 的坐标;若不存在,请说明理由.第 8 页(共 6(第 25 题图 1)(第 25 题图 2)。
2018—2019学年第一学期期末复习九 年 级 数 学 试 卷一、选择题(本题共 10 题,每小题 3 分,共 30 分)下列各题均有四个备选答案, 其中有且仅有个答案是正确的, 请用2B 铅笔在答题卡上将正确的答案代号涂黑.1.下列四个图形中,不是中心对称图形的是( )A .①③B .②④C .①④D .②③2.如图,ABC △内接于O ⊙,OD ⊥BC 于D ,若70A ∠=︒,则OCD ∠的大小为 ( )A .35°B .30°C .25°D .20°3.一元二次方程230x x -=的根为( )A .x =3B .x =-3C .x 1=0,x 2=3D .x 1=0,x 2=-34.若函数1k y x -=的图象与直线y x =没有交点,则k 的取值范围是( )A .k >1B .k <1C .k >-1D .k <-15.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( )A .112B .61C .41 D .13 6.已知⊙O 的半径为5cm ,弦AB 长为8cm ,则这条弦的中点到弦所对劣弧的中点的距离为( )A .1B .2C .3D .47.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( )A .21B .41C .61D .81 8.在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10π BCD .π9.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴, 垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( ) A. BC. D .5(第2题图) (第8题图) (第9题图)10.如图,二次函数c bx ax y ++=2(a ≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中一1<x 1<0,1<x 2<2, 下列结论:①c b a ++24<0;②b a +2<0;③a b 82+>4ac ;④a <-1.其中结论正确的个数有( )A .1个B .2个C .3个D .4个二、填空题:(本题有6个小题,每小题3分,共18分)11.如图,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P BA ',则∠PBP '的度数是 .12.十张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则(P 摸到数字大于4)= .13.某种型号的笔记本电脑,原售价7500元/台,经连续两次降价后,现售价为4800元/台,则平均每次降价的百分率为 .14.将抛物线222y x x =-+沿y 向下平移1个单位,则所得的抛物线的顶点坐标是 .15.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于E .则阴影部分面积为 (结果保留π).16.如图,正方形ABCD 的边BC 在x 轴上,E 是对角线AC 、BD 的交点,反比例函数y = 2 x(x >0)的图象经过A 、E 两点,则点D的坐标为____________.三、解答题(本题有9个小题,共72分)17.(本题满分6分) 用公式法解方程:230x x --=18.(本题满分6分)从男女学生共48人的班级中,选一名班长,假设任何人都有同样的当选机会,如果选得男生的概率为32,求男女学生人数. 19.(本题满分7分) 如图,AB 是⊙O 的直径,直线PQ 过⊙O 上的点C ,PQ 是⊙O 的切线.求证:∠BCP =∠A .(第15题图) (第10题图)1 2 (第16题图) (第11题图) (第19题图)20.(本题满分7分) 某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑. 东沟中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)若各种选购方案被选中的可能性相同,求选中A 型号电脑的概率;(2)已知东沟中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台.21.(本题满分7分)已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.22.(本题满分8分)如图,正比例函数12y x =的图象与反比例函数k y x=第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1..(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使P A +PB 最小.23.(本题满分9分)武当超市购进一批每千克价格为6元的新上市西瓜,在超市试销中发现:销售单价x (元/千克)与每天销售量y (千克)之间满足如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)写出每天的利润w 与销售单价x 之间的函数关系式,为了缩短西瓜销售期,规定每千克销售单价不超过12元,若你是超市负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?(第22题图)(第23题图)E24.(本题满分10分) 如图,在△ABC中,AB= AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点, 交AD于点G,交AB于点F.(1)求证:BC与⊙O相切;(2)当∠BAC=120°,AD=3时,求BF的长.25.(本题满分12分)如图,已知抛物线2(1)y a x=-+a≠0)经过点(2)A-,0,抛物线的顶点为D,过O作射线OM AD∥.过顶点D作平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()t s.问当t为何值时,四边形DAOP分别为直角梯形?等腰梯形?(3)若OC OB=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.参考答案一、选择题(10×3分=30分)1.C;2.D;3.C;4.A;5.B;6.B;7.B;8.C;9.C;10.D.二、填空题(6×3分=18)11.60°;12.12;13.20%;14.(1,0);15.6π-;16.(3,2) .三、解答题(72分)17.(6分)解:a=1, b=1-, c=3-.------------ 1分(第24题图)(第25题图)方程有两个不等的实数根x == ------------ 5分即12x x == ----------- 6分 18.(6分)解:设该班男生人数为x 人,依题意得: -2483x = ------------ 4分 解得:x =32, 48-x =16 ------------ 5分即该班男生人数为32人,女生人数为16人. ------------ 6分19.(7分)证明:连OC ,则OC ⊥PQ∴∠BCP +∠BCO =90° ------------ 2分又∵AB 是直径, ∴∠ACB =90°∴∠A +∠B =90° ------------ 4分∵OB =OC∴∠B =∠BCO ------------ 6分∴∠BCP =∠A ------------ 7分20.(7分)解:(1)画树形图:------------ 2分∴21(63P A ==选中型号电脑) ------------ 3分 (2) 设购买A 型号电脑x 台,由(1)知,则购买D 型号电脑或E 型号电脑(36-x )台. 依题意得:①6000x +5000(36-x )=100000 ------------ 4分方程解不合题意,舍去. ------------ 5分②6000x +2000(36-x )=100000 ------------ 6分解得:x =7 ------------7分综合①、②知购买A 型号电脑7台.21.(7分)解:(1)由题知△=2241(24)0k -⨯⨯->, ------------ 2分 解得:52k < ------------ 3分 (2)由(1)知52k <,又k 为正整数,∴k =1或k =2 ------------ 4分 ①当k =1时,原方程可化为:2220x x +-=该方程的两根都不是整数,不合题意,舍去. ------------ 5分②当k =2时,原方程可化为:220x x +=该方程的两根都是整数,符合题意. ------------ 6分∴k =2. ------------ 7分22.(8分)解:(1)设A (a ,b ) 由11122OAM S OM AM ab ∆=== 得:2ab = ------------ 2分∴2k ab == ------------ 3分∴反比例函数解析式为:2y =(2)由122y x y x ⎧=⎪⎪⎨⎪=⎪⎩解得点A 的坐标为A (2,1) ------------ 4分由题知B (1,2) ------------ 5分延长AM 到A ',使AM =A 'M ,连A 'B 交x 轴于点P ,则P 为所求由B (1,2),(2,1)A '-求得直线A 'B 的解析式为:35y x =-+ ------------ 6分在35y x =-+中,令y =0,得x =53 ------------ 7分 ∴所求点P 坐标为P (53,0). ------------ 8分 23.(8分)解:(1)设所求函数关系式为:y kx b =+由图象知:360830010k b k b =+⎧⎨=+⎩,解得:30300k b =-⎧⎨=⎩∴所求函数关系式为:y =-30x +600 ------------ 3分(2) 2(6)30(13)1470w y x x =-=--+ ------------ 5分∵a =-30<0,对称轴为x =13 ------------ 6分∴当x ≤13时,w 随x 增大而增大 ------------ 7分∴当x =12时,w 值最大,且最大值为1440元. ------------ 8分24.(10分)(1)证明:连OE .∵AB =AC ,D 是BC 中点∴AD ⊥BC ------------ 1分∵OA =OE , ∴∠OAE =∠OEA∵AE 平分∠BAD , ∴∠DAE =∠OAE∴∠DAE =∠OEA ------------ 2分∴OD ∥AC∴OE ⊥BC ------------ 3分又∵点E 在⊙O 上∴BC 与⊙O 相切. ------------ 4分(2)解:∵AB =AC ,D 是BC 中点∴AD ⊥BC ,∠BAD =∠CAD∵AE 平分∠BAD , ∠BAC =120°∴∠DAE =∠EAF =∠B =30° ------------ 5分在Rt △DAE 中:由2222(2)AD DE AE DE +==,得:2223(2)DE DE +=解得:DE------------ 7分∴AE =2 DE =在Rt △AEF 中,由勾股定理,同上可得:EF =2 ------------ 8分∴AF =2 EF =4在Rt △ABD 中,∵∠B =30°∴AB =2 AD =6 ------------ 9分∴BF =AB -AF =2. ------------ 10分25.(12分)解:(1)把A (-2,0)代入y =a (x -1)2+33,得0=a (-2-1)2+33.∴a =-33 ∴该抛物线的解析式为y =-33(x -1)2+33 ------------ 2分即y =-33x 2+332x +338. (2)设点D 的坐标为(x D ,y D ), 则x D =-)(-332332 =1,y D =-33×1 2+332×1+338=33. ∴顶点D 的坐标为(1,33). ------------ 3分 如图,过点D 作DN ⊥x 轴于N ,则DN =33,AN =3,∴AD =22333)+(=6.∴∠ADN =60°∴∠DAO =60° ------------ 4分 ∵OM ∥AD①当DP ⊥OM 时,四边形DAOP 为直角梯形.过点O 作OE ⊥AD 轴于E .在Rt △AOE 中,∵AO =2,∠EAO =60°,∴AE =1.∵四边形DEOP 为矩形,∴OP =DE =6-1=5.∴t =5(s ) ------------ 5分②当PD =OA 时,四边形DAOP 为等腰梯形,此时OP =AD -2AE =6-2=4.∴t =4(s ) ------------ 6分综上所述,当t =5s ,4s 时,四边形DAOP 分别为直角梯形,等腰梯形.(3)由题知DAOC 是平行四边形.∵∠DAO =60°,OM ∥AD ,∴∠COB =60°.又∵OC =OB ,∴△COB 是等边三角形,∴OB =OC =AD =6.∵BQ =2t ,∴OQ =6-2t (0<t <3) ------------ 7分过点P 作PF ⊥x 轴于F ,则PF =23t . ∴S 四边形BCPQ =S △COB -S △POQ=21×6×33-21×(6-2t )×23t =23(t -23)2+8363 ------------ 10分 ∴当t =23(s )时,S 四边形BCPQ 的最小值为8363. ------------ 11分 此时OQ =6-2t =6-2×23=3,OP =23,OF =43, ∴QF =3-43=49,PF =433.∴PQ =22QF PF +=2249433)+()(=233. ------------ 12分。
2018-2019学年九年级数学上册期末试题一、选择题(每小题3分,共30分)1、在下列四个图案中,不是中心对称图形的是()A.B.C.D.2、一元二次方程x2-6x-5=0配方后可变形为()A. (x-3)2=14B. (x-3)2=4C. (x+3)2=14D. (x+3)2=43、若二次函数y=x2-mx+1的图象的顶点在x轴上,则m的值是()A. 2B. -2C. 0D. ±24、下列事件中,属于随机事件的有()①任意画一个三角形,其内角和为360°;②投一枚骰子得到的点数是奇数;③经过有交通信号灯的路口,遇到红灯;④从日历本上任选一天为星期天.A. ①②③B. ②③④C. ①③④D. ①②④5、已知一元二次方程有一个根为2,则另一根为()A. -4B. -2C. 4D. 26、已知⊙O的半径是6 cm,点O到同一平面内直线m的距离为5 cm,则直线m与⊙O的位置关系是( )A.相交B.相切C.相离D.无法判断7、已知抛物线y=﹣2(x﹣3)2+5,则此抛物线()A. 开口向下,对称轴为直线x=﹣3B. 顶点坐标为(﹣3,5)C. 最小值为5D. 当x>3时y随x的增大而减小8、如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A. 30°B. 45°C. 60°D. 67.5°9、某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A. 50(1+x)2=182B. 50+50(1+x)+50(1+x)2=182C. 50(1+2x)=182D. 50+50(1+x)+50(1+2x)2=18210、二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(共8小题,每小题3 分,共24 分)11.在平面直角坐标系内,点P(-2,3)关于原点O对称的点P/的坐标为.12.从长度分别为3,5,6,9的四条线段中任取三条,则能组成三角形的概率为.13.如图,可以看作是一个基础图形绕着中心旋转次而生成的,则每次旋转的度数是.14.一个底面直径是80,母线长为的圆锥的侧面展开图的圆心角的度数为______。
2018—2019上学期期末检测九年级数 学 试 题(一)一.选择题:(1—8每小题3分,9—10每小题4分,共40分)1.实数x 满足方程(x 2+x )2-(x 2+x )-2=0,则x 2+x 的值等于( )A .2B .1-C .2或1-D .1或2-2.若△ABC 的一边a 为4,另两边b 、c 分别满足b 2-5b +6=0,c 2-5c +6=0,则△ABC 的周长为( )A .9B .10C .9或10D .8或9或103.二次函数y=ax 2+bx+c (a ≠0)图象如图,下列结论:①abc >0;②2a+b =0;③当m ≠1时,a+b >am 2+bm ;④a ﹣b+c >0;⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,x 1+x 2=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤4.如图,AB 、AC 是⊙O 的两条弦,∠BAC=25°,过点C 的切线与OB 的延长线交于点D ,则∠D 的度为( )A .25°B .30°C .35°D .40°5.如图,两个半圆中,长为16cm 的弦CD 与直径AB 平行且与小半圆相切,那么图中阴影部分的面积等于( ).A .64π2cm B .32π2cm C .16π2cm D .128π2cm6.有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),以小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各掷一次所确定的点P 落在抛物线24y x x =-+上的概率为( ) A .118 B .112 C .19 D .167.下列图形中阴影部分的面积相等的是( )A .②③B .③④C .①②D .①④8.已知二次函数y=ax 2+bx+c (a ,b ,c 是常数,且a ≠0)的图象如图所示,则一次函数2by cx a=+与反比例函数aby x=在同一坐标系内的大致图象是( ) A. B . C . D .9.如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE ∥AC ,若S △BDE :S △CDE =1:4, 则S △BDE :S △ACD =( )A. 1:16B. 1:18C. 1:20D. 1:2410.如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5, 将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4;③∠AOB=150°;④‘四边形AOBO S =6+3;⑤S △AOC +S △AOB =6+.其中正确的结论是( )A .①②③⑤B .①②③④C .②③④⑤D .①②④⑤11.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为 (1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过 的面积为( ) A .4B .8C .16D .12.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4, , 则点P 2014的坐标是( ).A .(2014,2) B.(2014,2-) C .(2012,2-) D .(2012,2)第9题图 第10题图 第12题图第3题图 第4题图 第5题图二.填空题:(每小题4分,共24分)13.已知a 是方程2201510x x -+=的一个根,则代数式22201520141a a a -++=__________. 14.如图,水平地面上有一面积为30πcm 2的扇形AOB ,半径OA=6cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为 .15.如图,在平面直角坐标系中有一正方形AOBC,反比例函数ky x=经过正方形AOBC对角线的交点,半径为(4-的圆内切于△ABC ,则k 的值为________。
期末数学试卷1(总分:100分时间:90分钟)一、选择题(本题包括10小题,每小题3分,共30分。
每小题只有1个选项符合题意)1.观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个2.解方程2(5x﹣1)2=3(5x﹣1)的最适当的方法是()A.直接开平方法B.配方法C.公式法D.分解因式法3.二次函数y=(x+3)2+7的顶点坐标是()A.(﹣3,7)B.(3,7)C.(﹣3,﹣7)D.(3,﹣7)4.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°5.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC=()A.30°B.40° C.50° D.60°6.下列语句中,正确的有()A.在同圆或等圆中,相等的圆心角所对的弧相等B.平分弦的直径垂直于弦C.长度相等的两条弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴7.如图,将△ABC绕点C旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为()A.πB.πC.6πD.π8.若函数y=2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2 D.y1、y2、的大小不确定9.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于()A.13 B.12 C.11 D.1010.已知:关于x的一元二次方程x2﹣(R+r)x+d2=0有两个相等的实数根,其中R、r 分别是⊙O1、⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是()A.外离 B.外切 C.相交 D.内含二、填空题(本题包括5小题,每空2分,共10分)11.(2分)方程kx2﹣9x+8=0的一个根为1,则k= .12.(2分)甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.13.(2分)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染给个人.14.(2分)抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.15.(2分)如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于cm.三、解答题(本大题共8小题,共60分)16.(7分)解方程:(1)2x2=x(2)x2+4x﹣1=0(用配方法解)17.(7分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.18.(7分)如图,点A的坐标为(3,3),点B的坐标为(4,0).点C的坐标为(0,﹣1).(1)请在直角坐标系中画出△ABC绕着点C逆时针旋转90°后的图形△A′B′C;(2)直接写出:点A′的坐标(,),点B′的坐标(,).19.(7分)已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0),与y 轴相交于点C(0,3).(1)求抛物线的函数关系式;(2)若点D(,m)是抛物线y=ax2+bx+c上的一点,请求出m的值,并求出此时△ABD 的面积.20.(8分)如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.21.(8分)如图,在等边△ABC中,已知AB=8cm,线段AM为BC边上的中线.点N在线段AM上,且MN=3cm,动点D在直线AM上运动,连接CD,△CBE是由△CAD旋转得到的.以点C为圆心,以CN为半径作⊙C与直线BE相交于点P,Q两点.(1)填空:∠DCE= 度,CN= cm,AM= cm;(2)如图,当点D在线段AM上运动时,求出PQ的长.22.(8分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣.期末数学试卷1参考答案一、选择题(每小题3分,共30分)1.【解析】第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形。
2018—2019学年度九年级数学第一学期期末质量检测试卷一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个 1.已知∠A 为锐角,且sin A =12,那么∠A 等于 A .15° B .30° C .45° D .60° 2.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为A .40°B .30°C .80°D .100°3.已知△ABC ∽△'''A B C ,如果它们的相似比为2∶3,那么它们的面积比是A .3:2B . 2:3C .4:9D .9:4 4.下面是一个反比例函数的图象,它的表达式可能是 A .2y x = B .4y x=C .3y x =-D . 12y x =5.正方形ABCD 内接于O ,若OA .1B .2CD.6.如图,线段BD ,CE 相交于点A ,DE ∥BC .若BC =3,DE =1.5,AD =2,则AB 的长为 A .2 B .3 C .4 D .522D EC BA第6题图第8题图 第2题图第4题图第5题图A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度8. 如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(-2,-3),(1,-3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为 A.-1 B.-3 C.-5 D.-7 二、填空题(本题共16分,每小题2分)9.二次函数241y x x =++-2图象的开口方向是__________. 10.Rt△ABC 中,∠C=90°,AC=4,BC=3,则tanA 的值为 .11. 如图,为了测量某棵树的高度,小颖用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点. 此时竹竿与这一点距离相距6m ,与树相距15m ,那么这棵树的高度为 .12.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是 . 13.如图所示的网格是正方形网格,则sin ∠BAC 与sin ∠DAE 的大小关系是 .14.写出抛物线y=2(x-1)2图象上一对对称点的坐标,这对对称点的坐标 可以是 和 .15.如图,为测量河内小岛B 到河边公路l 的距离,在l 上顺次取A ,C ,D 三点,在A 点测得∠BAD=30°,在C 点测得∠BCD=60°,又测得AC=50米,则小岛B 到公路l 的距离为 米.16.在平面直角坐标系xOy 内有三点:(0,-2),(1,-1),(2.17,0.37).则过这三个点 (填“能”或“不能”)画一个圆,理由是 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.已知:53a b =. 求:a bb+.18.计算:2cos30-4sin 45︒︒211题图13题图CB A(1)将y = x 2-2x -3化成y = a (x -h )2 + k 的形式; (2)求该二次函数图象的顶点坐标.20.如图,在△ABC 中,∠B 为锐角, AB=BC =7,sin 2B =,求AC 的长.21. 如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 在AB 上,AD =1,AE =2,BC =3,BE =1.5. 求证:∠DEC =90°.22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知: △ABC .求作: 在BC 边上求作一点P , 使得△P AC ∽△ABC .作法:如图,①作线段AC 的垂直平分线GH ;②作线段AB 的垂直平分线EF,交GH 于点O ;E DCBA ABC④以点C为圆心,CA为半径画弧,交⊙O于点D(与点A不重合);⑤连接线段AD交BC于点P.所以点P就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明: ∵CD=AC,∴CD= .∴∠=∠.又∵∠=∠,∴△P AC∽△ABC ( )(填推理的依据).23.在平面直角坐标系xOy中,直线y=x+2与双曲线kyx相交于点A(m,3).(1)求反比例函数的表达式;(2)画出直线和双曲线的示意图;(3)若P是坐标轴上一点,当OA=P A时.直接写出点P的坐标.24. 如图,AB是O的直径,过点B作O的切线BM,点A,C,D分别为O的三等分点,连接AC,AD,DC,延长AD交BM于点E,CD交AB于点F.(1)求证://CD BM;(2)连接OE,若DE=m,求△OBE的周长.B25. 在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为x cm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小聪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y,y与x的几组对应值;(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为cm.26. 在平面直角坐标系xOy 中,抛物线22y ax ax c =++(其中a 、c 为常数,且a <0)与x 轴交于点A ()3,0-,与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4. (1)求抛物线的表达式; (2)求CAB ∠的正切值;(3)如果点P 是x 轴上的一点,且ABP CAO ∠=∠,直接写出点P27. 在菱形ABCD 中,∠ADC=60°,BD 是一条对角线,点P 在边CD 上(与点C ,D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,在BD 上取一点H ,使HQ=HD ,连接HQ ,AH ,PH . (1) 依题意补全图1;(2)判断AH 与PH 的数量关系及∠AHP 的度数,并加以证明;(3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路. (可以不写出计算结果.........) A BDP图1A BCD备用图28.在平面直角坐标系xOy中,点A(x,0),B(x,y),若线段AB上存在一点Q满足12QAQB=,则称点Q是线段AB的“倍分点”.(1)若点A(1,0),AB=3,点Q是线段AB的“倍分点”.①求点Q的坐标;②若点A关于直线y= x的对称点为A′,当点B在第一象限时,求' QA QB;(2)⊙T的圆心T(0,t),半径为2,点Q在直线y x=上,⊙T上存在点B,使点Q是线段AB的“倍分点”,直接写出t的取值范围.评分标准一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个9.下10.3411. m712.32π13.sin∠BAC>sin∠DAE14.(2,2),(0,2)(答案不唯一)15.能,因为这三点不在一条直线上.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:∵53ab=,∴1a b ab b+=+=53+1=83.………………………5分=22⨯18.解:原式………………………3分4分5分19.解:(1)y=x2-2x-3=x2-2x+1-1-3……………………………2分=(x-1)2-4.……………………3分(2)∵y=(x-1)2-4,∴该二次函数图象的顶点坐标是(1,-4).………………………5分20.解:作AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵sin2B=∴∠B=∠BAD=45°.………………2分∵AB=∴AD=BD=3.…………………………3分∵BC=7,∴DC=4.∴在Rt△ACD中,5AC=.…………………………5分21.(1)证明:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=90°.∴∠A=∠B.………………2分∵AD=1,AE=2,BC=3,BE=1.5,∴121.53=.∴AD AEBE BC=∴△ADE∽△BEC.∴∠3=∠2.………………3分∵∠1+∠3=90°,∴∠1+∠2=90°.∴∠DEC=90°.………………5分22.(1)补全图形如图所示:………………2分B(2)AC ,∠CAP=∠B ,∠A CP=∠A CB ,有两组角对应相等的两个三角形相似.………………5分23.解:(1)∵直线y=x+2与双曲线ky x=相交于点A (m ,3). ∴3=m+2,解得m=1.∴A (1,3)……………………………………1分 把A (1,3)代入ky x=解得k=3, 3y x=……………………………………2分(2)如图……………………………………4分(3)P (0,6)或P (2,0) ……………………………………6分 24.证明:(1)∵点A 、C 、D 为O 的三等分点,∴AD DC AC == , ∴AD=DC=AC. ∵AB 是O 的直径,∴AB ⊥CD.∵过点B 作O 的切线BM , ∴BE ⊥AB.∴//CD BM .…………………………3分(2) 连接DB.①由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解得BE=2m ,②在Rt △ADB 中利用30°角,解得,…………………4分 ③在Rt △OBE 中,由勾股定理得出………………………………5分 ④计算出△OB E 周长为2………………………………6分25.(1)3.00…………………………………1分∴(2)…………………………………………4分 (3)1.50或4.50……………………………2分26.解:(1)由题意得,抛物线22y ax ax c =++的对称轴是直线212ax a=-=-.………1分 ∵a <0,抛物线开口向下,又与x 轴有交点,∴抛物线的顶点C 在x 轴的上方.由于抛物线顶点C 到x 轴的距离为4,因此顶点C 的坐标是()1,4-. 可设此抛物线的表达式是()214y a x =++,由于此抛物线与x 轴的交点A 的坐标是()3,0-,可得1a =-. 因此,抛物线的表达式是223y x x =--+.………………………2分 (2)点B 的坐标是()0,3.联结BC .∵218AB =,22BC =,220AC =,得222AB BC AC +=. ∴△ABC 为直角三角形,90ABC ∠=.所以1tan 3BC CAB AB ∠==. 即CAB ∠的正切值等于13.………………4分(3)点p 的坐标是(1,0).………………6分 27.(1)补全图形,如图所示.………………2分 (2)AH 与PH 的数量关系:AH =PH ,∠AHP =120°. 证明:如图,由平移可知,PQ=DC. ∵四边形ABCD 是菱形,∠ADC=60°, ∴AD=DC ,∠ADB =∠BDQ =30°.∴AD=PQ.∵HQ=HD ,∴∠HQD =∠HDQ =30°.∴∠ADB =∠DQH ,∠D HQ=120°.∴△ADH ≌△PQH.∴AH =PH ,∠A HD =∠P HQ .∴∠A HD+∠DHP =∠P HQ+∠DHP . ∴∠A HP=∠D HQ . ∵∠D HQ=120°,∴∠A HP=120°.………………5分 (3)求解思路如下:A BCDP HQa.在△ABH中,由∠A HB=81°,∠A BD=30°,解得∠BA H=69°.b.在△AHP中,由∠A HP=120°,AH=PH,解得∠PA H=30°.c.在△ADB中,由∠A DB=∠A BD= 30°,解得∠BAD=120°.由a、b、c可得∠DAP=21°.在△DAP中,由∠A DP= 60°,∠DAP=21°,AD=1,可解△DAP,从而求得DP长.…………………………………7分28.解:(1)∵A(1,0),AB=3∴B(1,3)或B(1,-3)∵12 QA QB=∴Q(1,1)或Q(1,-1)………………3分(2)点A(1,0)关于直线y= x的对称点为A′(0,1)∴Q A =Q A′∴QBA Q'21=………………5分(3)-4≤t≤4………………7分x。
2018--2019九年级第一学期期末试卷
一、选择题(本大题共10个小题,每小题3分,共30分)
1.下列根式中,不是最简二次根式的是( )
2.在△ABC 中,∠A =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,则下列选
项中不正确的是( A. SinB=b a B. sinC=c a C. COSB=b c D tanB=b c
3.如图,如果★的坐标是(6,3),◆的坐标是(4,7),那么⊙的坐标是( )
A.(7,4)
B.(5,7)
C.(8,4)
D.(8,5)
4.下列说法正确的是( )
A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机取出一个球,一定是红球
B.天气预报“明天降水概率10%”,是指明天有10%6的时间会下雨
C.某地发行一种福利彩票,中奖概率是千分之一,那么买这种彩票1000张,一定会中奖
D.连续掷一枚质地均匀硬币,若5次都是正面朝上,则第6次仍然可能正面朝上
5,已知关于x 的一元二次方程x 2-6x+k+1=0的两个实数根是x1,x2,且x12+x22=24,则k 的值是( )
A.5
B.-7
C.6
D.8
6.如图所示,AB ∥CD ,AE ∥FD ,AE ,FD 分别交BC 于点C ,H ,则图中共有相似三角形( )
A.7对
B.6对
C.5对
D.4对
7. 已知x2-3x-4=0,则代数式24
x x x --的值是( ) A.3 B.2 C.13 D.12
8.质地均匀的微千六个面分別刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生的可能性最大的是( )
A.点数都是偶数
B.点数的和是奇数
C.点数的和小于13
D.点数的和小于2
9.有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( ) A.12x(x-1)=45 B.12
x(x+1)=45 C 、x(x-1)=45 D.x(x+1)=45 10.如图是二次函数y =a 2+bx+c 图象的一部分,其对称轴为x =-1,且过点(-3,0).下列说法:abc <0;②2a-b
=0;③4a+2b+c <0;④若(-5,y 1),(52
,y 2)是抛物线上两点,则y1>y 2,其中说法正确的s 是( ) A.①② B.②③ C.①②④ D.②③④
二、填空题(本大题共5个小题,每小题3分,共15分)
11.如果43x y =,那么x y y
+的值是
12.如图,若点A 的坐标为(1,则sin ∠1=
13.将抛物线y =x 2-2向上平移4个单位,再向右平移3个单位,得到新的抛物线,那么新的抛物线的表达
式是
14.如图,在△ABC 中,中线BD ,CE 相交于点O ,若S =4,则S △ABC =4,则S △DOE =
15.如图,折叠矩形ABCD 的一边AD,使点D 落在BC 边的点F 处,已知折痕AE=,且tan ∠EFC=
34
,那么矩形ABCD 的周长为 cm 。
三、解答题(本题共8个小题,满75分)
16.计算:
(1)
((2)2
⨯- 17.(9分)如图,在Rt△ABC 中,∠ACB=90°,已知CD⊥AB,BC =1
(1)如果∠BCD=30°,求AC
(2)如果tan∠BCD=1
3,求CD.
18.(10分)已知关于x的方程x2-3x+m-4=0(m为常数)
(1)求证:方程有两个不相等的实数根;
(2)设x1,x2是方程的两个实数根,且x1+x2=4,请求出方程的这两个实数根.
19.(10分)如图,已知二次函数y=a2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.
(1)求二次函数的解析式;
(2)通过配方,写出抛物线的对称轴和顶点坐标;
(3)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;
(4)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时
次函数的值大于二次函数的值.
20.(9分)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3.转盘B的四个扇形面积相等,分别标有数字1,2,3,4,转动A,B转盘各一次,当袋盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落
在两个扇形的文线上时,重新转动盘)
(1)用树状图或列表法列出所有可能出现的结果;
(2)求两个数字的积为奇数的概率.
21.(9分)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B
处时,测得该岛位于正北方向)海里的C处,为了防止某国巡警干抗,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西300的方向上,求A,C之何的距离.(结
果精确到1
1.414
)
22.(9分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为点D,B,AD与BE相交子点F.
(1)求证:△ACD∽△BFD;
(2)当tan∠ABD=1,AC=3时,求BF的长.
23、(11分)如图、直线与x轴交于点C,与y轴交于点B,抛物线
2
10
3
y ax x c
=++
经过A,B,
C三点。
(1)求抛物线的解析式;
(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;
(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连结AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.。