第5章《统计学原理》
- 格式:ppt
- 大小:678.50 KB
- 文档页数:38
《统计学原理》简答题答案第一章总论1.统计一词有几种含义?它们之间的关系?答:三种。
统计工作、统计资料、统计学。
(1)统计工作:即统计实践活动,是指从事统计业务的机关、单位利用科学的统计方法,搜集、整理分析和提供有关客观现象的数据资料、研究数据的内在特征,并预测事物的发展方向等一系列工作过程的总称。
(2)统计资料:是统计实践过程的取得的各项数据资料以及和它相联系的其他资料的总称。
(3)统计学:统计工作和统计资料的关系是统计活动即过程和统计成果的关系,统计工作和统计学的关系是统计实践和统计理论的关系2.社会经济统计的特点有哪些?答:社会经济统计是社会现象的一种调查分析活动,它具有以下特点:a)数量性 b)总体性 c)变异性 d)社会性3.什么是统计总体、统计单位、标志、变异、变量和变量值?并举例说明。
答:(1)统计总体,简称总体,是指客观存在的在同一性质基础上结合起来的许多个别事物的整体。
例如,研究某班学生的情况时,该班全体学生就是一个统计总体。
(2)统计单位,是指构成统计总体的个别事物。
例如,以我国全部普通高等院校为总体,每一个普通高等院校就是总体单位。
(3)标志,是指总体单位所共同具有的某种属性或特征。
例如,工人作为总体单位,他们都具备性别、工种、文化程度、工会、工资等属性或特征。
(4)变异是变动的标志,具体表现在各个单位的差异,包括量(数值)的变异和质(性质、属性)的变异。
如:性别表现为男、女,这是属性变异;年龄表现为18岁、25岁、28岁等这是数值上的变异。
(5)变量,就是可变的数量标志。
例如,商业企业的职工人数、商品流转额、流动资金占用额等数量标志,在各个商业企业的具体表现都是不尽相同的,是一个变动的量,这些变动的数量标志就称作变量。
(6)变量值,就是变量的具体表现,也就是变动的数量标志的具体表现。
例如,企业的职工人数是一个变量,甲企业职工人数100人,乙企业职工人数150人,丙企业职工人数200人等等,100人、150人、200人都是职工人数这个变量的变量值(标志值)。
第五章综合指标学习要点:了解各种指标的概念及作用,掌握相对指标、平均指标的特点及计算方法,变异指标的计算方法。
§1、总量指标§2、相对指标§3、平均指标§4、变异指标学习知识点:前言:1、总量指标是反映社会经济现象发展的总规模、总水平的综合指标。
将总体单位数相加或总体单位标志值相加,就可以得到说明在一定时间、空间条件下某种现象总体的总规模、总水平的指标,即总量指标。
如:2010年年年末为1339724852亿,反映是我国人口的总规模。
总量指标的作用:第一、总量指标可以用来反映一个国家的基本国情国力,反映一个地区、一个部门或一个单位的人力、物力和财力,是人们对客观事物认识的起点。
第二、总量指标可以用来作为制定政策、制定计划和实行科学管理的基本依据,也是检查政策、计划执行情况,反映社会经济活动绝对效果的重要指标。
第三、总量指标可以用来研究客观现象的数量表现及其发展的变化趋势。
第四、总量指标是计算相对指标和平均指标的基础。
一、总量指标的种类:1、按其反映现象总体内容的不同:• 总体单位总量(简称单位总量):指总体内所有单位的总数,表示总体本身规模的大小。
对于一个确定的统计总体,其总体单位总量是唯一确定的。
• 总体标志总量(简称标志总量):指总体中各单位标志值总和。
对于确定的统计总体,标志总量不是唯一的,而是随着标志的不同可计算不同的标志。
• 例:我们研究某市三级医院的基本情况,则全市三级医院的总数量是总体单位总量,而全部三级医院职工总人数、全部三级医院职工工资总额等就是总体指标总量。
2、按反映时间状况的不同,可分为时期指标和时点指标。
• 时期指标指反映某社会经济现象在一段时间活动结果的总量指标,它反映的是一段时间连续发生变化过程。
如产品总量、货物运输量、商品销售量、国内生产总量等。
• 时点指标是反映社会经济现象在某一时间(瞬间)状况上的总量指标。
如人口数、职工数、设备台数等。
《统计学原理》第五章习题河南电大贾天骐一.判断题部分题目1:从全部总体单位中按照随机原则抽取部分单位组成样本,只可能组成一个样本。
()答案:×题目2:在抽样推断中,全及指标值是确定的、唯一的,而样本指标值是一个随机变量。
()答案:√题目3:抽样成数的特点是:样本成数越大,则抽样平均误差越大。
()答案:×题目4:抽样平均误差总是小于抽样极限误差。
()答案:×题目5:在其它条件不变的情况下,提高抽样估计的可靠程度,则降低了抽样估计的精确程度。
()答案:√题目6:从全部总体单位中抽取部分单位构成样本,在样本变量相同的情况下,重复抽样构成的样本个数大于不重复抽样构成的样本个数。
()答案:√题目7:抽样平均误差反映抽样误差的一般水平,每次抽样的误差可能大于抽样平均误差,也可能小于抽样平均误差。
()答案:√题目8:在抽样推断中,抽样误差的概率度越大,则抽样极限误差就越大于抽样平均误差。
()答案:√题目9:抽样估计的优良标准有三个:无偏性、可靠性和一致性。
()答案:×题目10:样本单位数的多少与总体各单位标志值的变异程度成反比,与抽样极限误差范围的大小成正比。
()答案:×题目11:抽样推断的目的是,通过对部分单位的调查,来取得样本的各项指标。
()答案:×题目12:用来测量估计可靠程度的指标是抽样误差的概率度。
()答案:√题目13:总体参数区间估计必须具备三个要素即:估计值、抽样误差范围和抽样误差的概率度。
()答案:×二.单项选择题部分题目1:抽样平均误差是()。
A、抽增指标的标准差B、总体参数的标准差C、样本变量的函数D、总体变量的函数答案:A题目2:抽样调查所必须遵循的基本原则是()。
A、准确性原则B、随机性原则C、可靠性原则 C、灵活性原则答案:B题目3:在简单随机重复抽样条件下,当抽样平均误差缩小为原来的1/2时,则样本单位数为原来的()。
第五章思考与练习答案一、单项选择题1. A(算术平均数)、H(调和平均数)和G(几何平均数)的关系是:( D )A、A≤G≤H;B、G≤H≤A;C、H≤A≤G;D、H≤G≤A2.位置平均数包括( D )A、算术平均数;B、调和平均数;C、几何平均数;D、中位数、众数3.若标志总量是由各单位标志值直接总和得来的,则计算平均指标的形式是( A )A、算术平均数;B、调和平均数;C、几何平均数;D、中位数4.平均数的含义是指( A )A、总体各单位不同标志值的一般水平;B、总体各单位某一标志值的一般水平;C、总体某一单位不同标志值的一般水平;D、总体某一单位某一标志值的一般水平5.计算和应用平均数的基本原则是( C )A、可比性;B、目的性;C、同质性;D、统一性6.由组距数列计算算术平均数时,用组中值代表组内变量值的一般水平,假定条件是( C )。
A.各组的次数相等 B.组中值取整数C.各组内变量值不同的总体单位在组内是均匀分布的D.同一组内不同的总体单位的变量值相等7.已知3个水果店香蕉的单价和销售额,则计算3个水果店香蕉的平均价格应采用( C )A.简单算术平均数 B.加权算术平均数 C.加权调和平均数 D.几何平均数8.如果统计资料经过分组,并形成了组距分配数列,则全距的计算方法是( D )A.全距=最大组中值—最小组中值B.全距=最大变量值—最小变量值C.全距=最大标志值—最小标志值D.全距=最大组上限—最小组下限9.已知两个总体平均数不等,但标准差相等,则( A )。
A.平均数大的,代表性大 B.平均数小的,代表性大C.平均数大的,代表性小 D.以上都不对10.某企业2006年职工平均工资为5000元,标准差为100元,2007年平均工资增长了20%,标准差增大到150元。
职工平均工资的相对变异( A )。
A、增大B、减小C、不变D、不能比较二、多项选择题1.不受极值影响的平均指标有( BC )A、算术平均数;B、众数;C、中位数;D、调和平均数;E、几何平均数2.标志变动度( BCDE )A、是反映总体各单位标志值差别大小程度的指标;B、是评价平均数代表性高低的依据;C、是反映社会生产的均衡性或协调性的指标;D、是反映社会经济活动过程的均衡性或协调性的指标;E、可以用来反映产品质量的稳定程度。
统计学原理-《统计学》第五章统计量及其抽样分布试题1、智商的得分服从均值为100,标准差为16的正态分布。
从总体中抽取一个容量为n的样本,样本均值的标准差为2,样本容量为____________。
2、样本均值与总体均值之间的差被称作____________。
3、从均值为50,标准差为5的无限总体中抽取容量为30的样本,则抽样分布的超过51的概率为____________。
4、某校大学生中,外国留学生占10%。
随机从该校学生中抽取100名学生,则样本中外国留学生比例的标准差为____________。
5、假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( )。
A.服从非正态分布B.近似正态分布C.服从均匀分布D.服从x²分布6、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差( )。
A.保持不变B.增加C.减小D.无法确定7、总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分别为( )。
A.50,8B.50,1C.50,4D.8,88、某厂家生产的灯泡寿命的均值为60小时,标准差为4小时。
如果从中随机抽取30只灯泡进行检测,则样本均值( )。
A.抽样分布的标准差为4小时B.抽样分布近似等同于总体分布C.抽样分布的中位数为60小时D.抽样分布近似等同于正态分布,均值为60小时9、假设某学校学生的年龄分布是右偏的,均值为23岁,标准差为3岁。
如果随机抽取100名学生,下列关于样本均值抽样分布描述不正确的是( )。
A.抽样分布的标准差等于3B.抽样分布近似服从正态分布C.抽样分布的均值近似为23D.抽样分布为非正态分布10、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的数学期望是( )。
A.150B.200C.100D.25011、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的标准差是( )。
第五章平均指标和标志变异指标一、单项选择题1.平均指标反映( )。
A. 总体分布的集中趋势B. 总体分布的离散趋势C. 总体分布的大概趋势 D. 总体分布的一般趋势2.平均指标是说明( )。
A. 各类总体某一数量标志在一定历史条件下的一般水平B. 社会经济现象在一定历史条件下的一般水平C. 同质总体内某一数量标志在一定历史条件下的一般水平D. 大量社会经济现象在一定历史条件下的一般水平3.计算平均指标最常用的方法和最基本的形式:()A.中位数 B. 众数C. 调和平均数D. 算术平均数4.算术平均数的基本计算公式( )。
A.总体部分总量与总体单位数之比B.总体标志总量与另一总体总量之比C. 总体标志总量与总体单位数之比D. 总体标志总量与权数系数总量之比5.加权算术平均数中的权数为()。
A. 标志值B. 权数之和C. 单位数比重 D. 标志值总量6.权数对算术平均数的影响作用决定于()。
A. 权数的标志值 B. 权数的绝对值C. 权数的相对值 D. 权数的平均值7.加权算术平均数的大小()。
A. 主要受各组标志值大小的影响,而与各组次数的多少无关B. 主要受各组次数大小的影响,而与各组标志值的多少无关C. 既受各组标志值大小的影响,又受各组次数多少的影响D. 既与各组标志值的大小无关,也与各组次数的多少无关8.在变量数列中,若标志值较小的组权数较大时,计算出来的平均数()。
A. 接近于标志值小的一方B. 接近于标志值大的一方C. 接近于平均水平的标志值 D. 不受权数的影响9.假如各个标志值都增加5个单位,那么算术平均数会:( )。
A. 增加到5倍B. 增加5个单位C. 不变D. 不能预期平均数的变化10.各标志值与平均数离差之和()。
A.等于各变量平均数离差之和B. 等于各变量离差之和的平均数C. 等于零 D. 为最大值11.当计算一个时期到另一个时期的销售额的年平均增长速度时,应采用哪种平均数?( )A. 众数B. 中位数C. 算术平均数D. 几何平均数12.众数是()。
统计学第五章课后习题答案一、选择题1:B 、C 【解析】所谓概率抽样,就是要求对总体的每次观察(每一次抽取)都是随机试验,并且有总体相同的分布。
2:D3:A 【解析】221226'42z n n α==∆⎛⎫ ⎪⎝⎭4:B 【解析】一致性是指随着样本容量不断增大,样本统计量接近总体参数的可能性就越来越大。
或者,对于任意给定的偏差控制水平,两者间偏差高于此控制水平的可能性越来越小,接近于0。
5:AC二、计算题 1: x =425 s n 21-=72.049 s 14=8.488s =n s =15488.8=2.1448 ∆=ns n t )1(2-α=2,1448⨯2.1916=4.70 所求μ的置信区间为425-4.701<μ<425+4.70即(420.30,429.70) 2: x =1209 s n 21-=0.005 s 15 =0.0707x s =n s =160707.0=0.017671 )116(05.0-t =2.131)1(2-=∆∂n t n s =2.131×0.017671=0.04所求μ的置信区间为12.09-0.04<μ<12.09+0.04即(12.05,12.13)3:n=600,p=0.1.np=60≥5,可以认为频数n 充分大,∂=0.05.z 2α=z 25.00=1.96 ∆=1.96600.90.10⨯=0.024,因此所求一次投掷中一只概率的置信区间是0.1-0.024<ρ<0.1+0.024,即(0.076,0.124)4: N 16,p ,np 75,,n 0.05====可认为频数充分大,,2z α=0.025 1.96z =0.2431∆== 因此,所求零件长度不合格的置信区间为0.4375—0.2431<ρ<0.4375+0.2431,即(0.19,0.68)5:114820ni i y ==∑, 1114820494(30n i i y y n μ=====∑分钟) 6. n=80 ,p=0.1,np=8≥5,可以认为n 充分大,ɑ≥0.05,96.1025.02==z z α 0657.096.1809.01.0==∆⨯因此,无上网经历的学生所占比率的置信区间为0.1—0.0657<ρ<0.1+0.0657,即(0.0343,0.1657)。
可编辑修改精选全文完整版统计学原理第一章基础第一节统计的定义统计是从数据中获取信息的一种方法。
第二节主要统计概念一、总体总体就是统计工作者研究对象的全体。
对总体的描述性测度称为参数,如均值,最大值、最小值等。
二、样本样本就是从总体中抽取的若干数据的集合。
对样本的描述性测度量是统计量。
三、统计推断统计推断是运用样本数据对总体进行估计、预测和决策的过程。
可靠性测度共有两种:置信水平和显著性水平。
三个例子:企业多元化战略:多元化企业和非多元化企业的绩效差异。
普通学生和学生干部:就业和收入差异。
男生和女生:成绩差异。
第三节:数据的类型一、定距数据定距数据是实数:如身高、距离、收入等二、定性数据定性数据的取值是类别:如男性、女性。
三、定序数据定序数据也表现为定性的,但是取值是有顺序的。
例如,不好、一般、好、很好、优秀。
定性数据和定序数据的区别在于后者的取值是有顺序的。
第四节数据的描述方法一、图表描述方法计算机命令1.将数据输入或导入列中。
2.选择数据列。
3.单击图表向导(Chart Wizard)、线图(Line)和完成(Finish)。
4.如果想做某些改变,则鼠标右键单击图表,选择图表选项。
二、数字描述方法1.中心位置的测度(1)算术平均数求和:SUM平均值:average(2)中位数:中位数是通过把观测值按顺序排列而计算得到的。
处于中间位置的观测值即为中位数。
中值:median,如果数据有n个,若n为单数,取值为中间的数值;若n为偶数,取值为中间两个数的均值。
众数:mode 。
注意:在不只有一个众数的情况下,Exce 只显示最小的,不显示是否有其它众数。
最大值:max ;最小值:min ;平方根:sqrt数据分析:分析工具库是Excel 所附的一组统计函数,它可以通过菜单栏找到。
单击工具,找到“数据分析”;如果“数据分析”不存在,点击“加载宏”,然后选择分析工具库。
找一台安装有数据分析的电脑,进入excel 安装目录(一般是C:\Program Files\Microsoft Office)进入OFFICE10文件夹拷贝Library 文件夹到你的电脑同名文件夹里,然后执行前面的加载宏步骤就可以了。
《统计学原理》国开(电大)形成性考核答案集第一章统计学导论1.1 统计学的定义与应用问题1: 统计学的定义是什么?{统计学是研究数据收集、整理、分析和解释的科学,旨在通过量化的方法来揭示和理解现象的规律性和内在联系。
}问题2: 统计学在哪些领域中有应用?{统计学在众多领域中都有应用,包括但不限于经济学、生物学、医学、工程学、心理学、社会科学和商业管理等。
}1.2 统计数据的类型问题3: 定量数据和定性数据的区别是什么?{定量数据是数值化的,可以进行数学运算的数据,而定性数据则是非数值化的,通常表现为类别或属性。
}1.3 统计数据的来源问题4: 描述性统计和推理性统计的区别是什么?{描述性统计旨在对数据进行总结和描述,而推理性统计则通过样本数据来对总体进行推断和预测。
}第二章数据的收集与整理2.1 调查问卷设计问题5: 如何设计一个有效的调查问卷?{设计有效的调查问卷需要明确调查目的,选择合适的调查方法,确保问题的清晰性和逻辑性,避免引导性问题,并考虑隐私和伦理问题。
}2.2 数据整理与图表展示问题6: 什么是频数和频率分布表?{频数是指某个数值出现的次数,频率分布表则是将数据按照一定的区间分组,列出每个组的频数和频率。
}第三章描述性统计分析3.1 频数与频率分布问题7: 如何计算累积频率?{累积频率是指将数据从小到大排序后,从最小值开始累加各个数值的频率,直到该累计频率达到或超过某个指定的概率。
}3.2 统计量度问题8: 什么是众数、中位数和平均数?{众数是一组数据中出现次数最多的数值,中位数是将数据从小到大排列后位于中间位置的数值,平均数则是所有数值加和后除以数值的个数。
}3.3 离散程度的度量问题9: 方差和标准差的定义是什么?{方差是衡量数据分布离散程度的统计量,它是各个数值与其平均数差值的平方的期望值;标准差是方差的平方根,用于衡量数据分布的离散程度。
}第四章推理性统计分析4.1 概率论基础问题10: 什么是随机变量和概率分布?{随机变量是一个将试验的所有可能结果映射到实数上的函数,概率分布则是描述随机变量取各种可能值的概率。