2018中考数学,二次函数性质综合题.pptx
- 格式:pptx
- 大小:108.47 KB
- 文档页数:11
浙江省2018年中考数学复习第一部分考点研究第三单元函数第13课时二次函数的图像及性质(含近9年中考真题)试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学复习第一部分考点研究第三单元函数第13课时二次函数的图像及性质(含近9年中考真题)试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学复习第一部分考点研究第三单元函数第13课时二次函数的图像及性质(含近9年中考真题)试题的全部内容。
第一部分考点研究第三单元函数第13课时二次函数的图像及性质浙江近9年中考真题精选(2009-2017)命题点1抛物线的对称性及对称轴(杭州2017。
9,台州2015。
7,绍兴2016.9)1.(2016衢州7题3分)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x…-3-2-101…y…-3-2-3-6-11…则该函数图象的对称轴是()A. 直线x=-3B. 直线x=-2C. 直线x=-1D. 直线x=02.(2015台州7题4分)设二次函数y=(x-3)2-4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是( )A. (1,0)B. (3,0) C。
(-3,0) D。
(0,-4)3.(2014宁波12题4分)已知点A(a-2b,2-4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为( )A。
(-3,7) B。
(1,7) C。
(-4,10) D. (0,10)4.(2015宁波11题4分)二次函数y=a(x-4)2-4(a≠0)的图象在2<x<3这一段位于x 轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A。
2018中考数专题二次函数(共40题)线于点G .(1 )求抛物线 y= - x 2+bx+c 的表达式;(2)连接GB , E0,当四边形GEOB 是平行四边形时,求点 G 的坐标;(3)①在y 轴上存在一点 H ,连接EH , HF ,当点E 运动到什么位置时,以 A , E , 顶点的四边形是矩形?求出此时点 E , H 的坐标;②在①的前提下,以点 E 为圆心,EH 长为半径作圆,点 M 为O E 上一动点,求(x -3)与x 轴交于A , B 两点,与y 轴的正半轴交于点 C,其(1) 写出C, D 两点的坐标(用含 a 的式子表示); (2 )设 & BCD : Sz\ABD =k ,求 k 的值;(3)当厶BCD 是直角三角形时,求对应抛物线的解析式.1.如图,抛物线 y=- x 2+bx+c 与直线AB 交于A (- 4, - 4) , B (0, 4)两点,直线 -_ x 2-6交y 轴于点C .点E 是直线 AB 上的动点,过点 E 作EF 丄x 轴交AC 于点F , AC: y= 交抛物F ,H 为AM+CM 它 顶点为D .3.如图,直线y=kx+b ( k 、b 为常数)分别与 x 轴、y 轴交于点A (- 4, 0)、B (0, 3),抛 物线y=- X 1 2+2X +1与y 轴交于点 C . (1) 求直线y=kx+b 的函数解析式;(2) 若点P ( X , y )是抛物线y=- X 2+2X +1上的任意一点,设点 P 到直线AB 的距离为d , 求d 关于x 的函数解析式,并求 d 取最小值时点P 的坐标;(3)若点E 在抛物线y=- X 2+2X +1的对称轴上移动,点 F 在直线AB 上移动,求CE+EF 的最1 求此抛物线的解析式以及点 B 的坐标.2 动点M 从点O 出发,以每秒2个单位长度的速度沿 X 轴正方向运动,同时动点 N 从 点O 出发,以每秒3个单位长度的速度沿 y 轴正方向运动,当 N 点到达A 点时,M 、N 同 时停止运动.过动点 M 作X 轴的垂线交线段 AB 于点Q ,交抛物线于点 P ,设运动的时间为 t 秒. ① 当t 为何值时,四边形 OMPN 为矩形.② 当t >0时,△ BOQ 能否为等腰三角形?若能,求出 t 的值;若不能,请说明理由.(0, 3),与X 正半轴相交于点 B,对称轴是直线X =15.如图,抛物线y=-x2+bx+c与x轴分别交于A (- 1, 0), B (5, 0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5, CD=8,将Rt A ACD 沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点. 试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.6 .我们知道,经过原点的抛物线可以用y=ax2+bx (a丰0)表示,对于这样的抛物线:(1 )当抛物线经过点(-2,0)和(-1,3)时,求抛物线的表达式;(2 )当抛物线的顶点在直线y=- 2x上时,求b的值;(3)如图,现有一组这样的抛物线,它们的顶点人、A2、…,A n在直线y=- 2x上,横坐标依次为-1,- 2,- 3,…,-n (n为正整数,且n< 12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,如果这组抛物线中的某一条经过点D n,求此时满足条件的正方形A n B n C n D n的边长.7 .如图,在平面直角坐标系中,二次函数的图象交坐标轴于 A (- 1, 0),B (4, 0), C( 0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点卩,使厶POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△ PBC面积最大,求出此时P点坐标和厶PBC的最大面积.&如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E 的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△ EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.y 丄x+2与x 轴交于点A ,与y 轴交于点C ,抛物线y= -_x 2+bx+c 经过A 、C 两点,与x 轴的另一交点为点B (1) 求抛物线的函数表达式;(2 )点D 为直线AC 上方抛物线上一动点;①连接BC CD,设直线BD 交线段AC 于点E, △ CDE 的面积为 0, △ BCE 的面积为 9 , 求^ 的最大值;②过点D 作DF 丄AC,垂足为点F ,连接CD,是否存在点 D ,使得△ CDF 中的某个角恰好等①当b=1时,求这个二次函数的对称轴的方程;③若二次函数的图象与 x 轴交于点A ( x i , 0) , B ( x 2, 点M ,以AB 为直径的半圆恰好过点 M ,二次函数的对称轴I与x 轴、直线BM 、直线AM 分 斗丄,求二次函数的表达式.②若c=- 〒b 2-2b ,问:b 为何值时,二次函数的图象与x 轴相切?0),且x i v X 2,与y 轴的正半轴交于 别交于点D 、E 、F ,且满足请说明理由.10 .已知二次函数 y= - x 2+bx+c+1,点Q 在坐标平面内,以线段 MN 为对角线作正方形 MPNQ ,请写出点 12•抛物线 y=ax 2+bx+3 经过点 A (1, 0)和点 B (5, 0). (1) 求该抛物线所对应的函数解析式;(2 )该抛物线与直线 y 二x+3相交于C 、D 两点,点P 是抛物线上的动点且位于 x 轴下方,E直线PM / y 轴,分别与x 轴和直线CD 交于点M 、N .① 连结PC PD ,如图1,在点P 运动过程中,△ PCD 的面积是否存在最大值?若存在,求 出这个最大值;若不存在,说明理由;② 连结PB,过点C 作CQ 丄PM ,垂足为点 Q ,如图2,是否存在点 P,使得△ CNQ 与厶PBM 相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由.\>1iNC,点B 坐标为(6, 0),点C 坐标为(0, 6),点D 是抛物线的顶点,过点 D 作x 轴的垂线,垂足为E,连接BD.当/ FBA=/ BDE 时,求点 F 的坐标; (3) 若点M 是抛物线上的动点,过点 M 作MN // x 轴与抛物线交于点N ,点P 在x 轴上,Q 的坐标. A 和点B ,与y 轴交于点点F 是抛物线上的动点, (2)13.如图,在平面直角坐标系中,抛物线y=ax2+bx+c (a丰0)与y轴交与点C (0, 3),与x轴交于A、B两点,点B坐标为(4, 0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△ MBN为直角三角形?若存在,求出t14•如图,已知抛物线y=ax2+bx+c过点A (- 3, 0),B (- 2,3),C ( 0, 3 ),其顶点为D.(1)求抛物线的解析式;(2)设点M (1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△ APC的面积的最大值;(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E作EF// ND 交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.15•如图,已知二次函数 y=ax 2+bx+c (0)的图象经过 A (- 1, 0 )、B (4, 0)、C (0, 2) 三占 - 八、、♦(1) 求该二次函数的解析式; (2) 点D 是该二次函数图象上的一点,且满足/ DBA=/ CAO (O 是坐标原点),求点D 的坐标;(3)点P 是该二次函数图象上位于第一象限上的一动点,连接PA 分别交BC 、y 轴于点E 、16•如图,抛物线 y=/+bx+c 经过B (- 1 , 0), D (-2, 5)两点,与x 轴另一交点为 A , 点H 是线段AB 上一动点,过点 H 的直线PQ 丄x 轴,分别交直线 AD 、抛物线于点 Q , P . (1) 求抛物线的解析式;(2) 是否存在点P ,使/ APB=90 ,若存在,求出点 P 的横坐标,若不存在,说明理由; (3) 连接BQ , 一动点M 从点B 出发,沿线段BQ 以每秒1个单位的速度运动到 Q ,再沿线 段QD 以每秒一:个单位的速度运动到 D 后停止,当点Q 的坐标是多少时,点M 在整个运动 过程中用时t 最少?9,求Si -住的最大值.17. 如图1,抛物线C i: y=x2+ax与Q:y=- x2+bx相交于点0、C, C i与C2分别交x轴于点B、A,且B为线段A0的中点.(1)求亘的值;b(2 )若0C丄AC,求厶0AC的面积;(3)抛物线C2的对称轴为I,顶点为皿,在(2)的条件下:①点P为抛物线C2对称轴I上一动点,当△ PAC的周长最小时,求点P的坐标;②如图2,点E在抛物线C2上点0与点M之间运动,四边形0BCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由18. 如图,已知直角坐标系中,A、B、D三点的坐标分别为A (8, 0) , B ( 0, 4), D (- 1,0),点C与点B关于x轴对称,连接AB、AC.(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点0出发,以每秒2个单位的速度向右运动,过点E作x轴的垂线,交抛物线于点P,交线段CA于点M,连接PA PB,设点E运动的时间为t ( O V t V 4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得△ ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.19. 如图1,在平面直角坐标系中,已知抛物线y=ax2+bx- 5与x轴交于A (- 1, 0), B( 5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)若点D是y轴上的一点,且以B, C, D为顶点的三角形与△ ABC相似,求点D的坐标;(3)如图2, CE// x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC, CE分别相交于点F, G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;(4)若点K为抛物线的顶点,点M (4, m)是该抛物线上的一点,在x轴,y轴上分别找点P, Q,使四边形PQKM的周长最小,求出点P, Q的坐标.20. 如图,已知抛物线y=ax2+bx+c (a* 0)的图象的顶点坐标是(2, 1),并且经过点(4,2),直线ypx+1与抛物线交于B, D两点,以BD为直径作圆,圆心为点C,圆C与直线m 交于对称轴右侧的点M (t, 1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2 )证明:圆C与x轴相切;(3)过点B作BE X m,垂足为E,再过点D作DF丄m,垂足为F,求BE: MF的值.21 •如图1,抛物线y」-/+bx+c经过A (- , 0)、B ( 0,- 2)两点,点C在y轴上,△ ABC为等边三角形,点D从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,设运动时间为t秒(t>0),过点D作DE丄AC于点E,以DE为边作矩形DEGF使点F若存在,求出所有点P的坐标;若不存在,请说明理由.23 .如图1,点A坐标为(2, 0),以OA为边在第一象限内作等边△ OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边△ BCD,连接AD交BC于E.如图2,设BC 交抛物线的对称轴于点 F ,作直线CD,点M 是直线CD 上的动点,点N 是平面内一点,当以点 B , F , M , N 为顶点的四边形是菱形时,请直接写出点 M 的坐标.25 .抛物线y=x 3+bx+c 与x 轴交于A (1, 0) , B ( m , 0),与y 轴交于C.如图1,在(1)的条件下,设抛物线的对称轴交x 轴于D ,在对称轴左侧的抛物线上—& ACD,求点E 的坐标;(3) 如图2,设F (- 1, - 4), FG 丄y 于G ,在线段0G 上是否存在点 P ,使/ OBP=/ FPG ? 若存在,求m 的取值范围;若不存在,请说明理由.26. 如图,O M 的圆心M (- 1, 2), O M 经过坐标原点 0,与y 轴交于点A .经过点A 的 一条直线l 解析式为:y=-二x+4与x 轴交于点B ,以M 为顶点的抛物线经过 x 轴上点D( 2,x 轴交于点E ,第四象限的抛物线上有一点卩,将厶EBP 沿直线 EP 折叠,使点B 的对应点 B'落在抛物线的对称轴上,求点P 的坐标;(3) m=- 3,求抛物线的解析式,并写出抛物线的对称轴;如图1,抛物线的对称轴与(2) (1) 若0)和点C (- 4, 0).(1)求抛物线的解析式;(2)求证:直线I是O M的切线;(3)点P为抛物线上一动点,且PE与直线I垂直,垂足为E;PF// y轴,交直线I于点F, 是否存在这样的点卩,使厶PEF的面积最小.若存在,请求出此时点P的坐标及厶PEF面积的最小值;若不存在,请说明理由.27. 如图,抛物线y=ax"+bx+4交y轴于点A,并经过B (4, 4)和C (6, 0)两点,点D的坐标为(4, 0),连接AD, BC,点E从点A出发,以每秒甘勺个单位长度的速度沿线段AD 向点D运动,到达点D后,以每秒1个单位长度的速度沿射线DC运动,设点E的运动时间为t 秒,过点E作AB的垂线EF交直线AB于点F,以线段EF为斜边向右作等腰直角厶EFG.(1)求抛物线的解析式;(2)当点G落在第一象限内的抛物线上时,求出t的值;(3)设点E从点A出发时,点E, F, G都与点A重合,点E在运动过程中,当△ BCG的面(2)有一点E,使&AC28.抛物线y=ax2+bx+c过A (2, 3), B (4, 3) , C (6,- 5)三点.(2)如图①,抛物线上一点D在线段AC的上方,DE丄AB交AC于点E,若满足斗二一, 求点D的坐标;(3)如图②,F为抛物线顶点,过A作直线I丄AB,若点P在直线I上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得以B P、Q为顶点的三角形与△ ABF相似,若存在,求P、Q的坐标,并求此时△ BPQ的面积;若不存在,请说明理由.29.如图,已知抛物线y=a/+—x+c与x轴交于A, B两点,与y轴交于丁C,且A (2 , 0),5C (0, - 4),直线I: y=-寺x-4与x轴交于点D,点P是抛物线y=ax2^-x+c上的一动点,(1 )试求该抛物线表达式;(2)如图(1),过点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH丄y轴,垂足为H,连接AC.①求证:△ ACD是直角三角形;②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ ACD相似?30•如图,已知抛物线y=ax2-出ax-9a与坐标轴交于A, B, C三点,其中C ( 0, 3), / BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线I与射线AC, AB分别交于点M , N .(1 )直接写出a 的值、点A 的坐标及抛物线的对称轴; (2)点P 为抛物线的对称轴上一动点,若△ PAD 为等腰三角形,求出点 P 的坐标; (3) 证明:当直线I 绕点D 旋转时, + 丄均为定值,并求出该定值.AM AN【操作】将图①中抛物线在 x 轴下方的部分沿x 轴折叠到x 轴上方,将这部分图象与原抛物 线剩余部分的图象组成的新图象记为G ,如图②•直接写出图象 G 对应的函数解析式.【探究】在图②中,过点 B (0, 1)作直线I 平行于x 轴,与图象G 的交点从左至右依次为 点C, D, E , F ,如图③.求图象 G 在直线I 上方的部分对应的函数 y 随x 增大而增大时x 的取值范围.【应用】P 是图③中图象 G 上一点,其横坐标为 m ,连接PD, PE.直接写出厶PDE 的面积32 .如图,在平面直角坐标系中,矩形0ABC 的边0A 、0C 分别在x 轴、y 轴上,点B 坐标为(4, t ) (t >0),二次函数y=x 2+bx (b v 0)的图象经过点 B ,顶点为点D . (1 )当t=12时,顶点D 到x 轴的距离等于 __________ ;(2 )点E 是二次函数y=x 2+bx ( b v 0 )的图象与x 轴的一个公共点(点 E 与点O 不重合), 求OE?EA 的最大值及取得最大值时的二次函数表达式;(3)矩形OABC 的对角线OB 、AC 交于点F ,直线I 平行于x 轴,交二次函数y=x 2+bx ( b v 0)31•《函数的图象与性质》拓展学习片段展示: 【问题】如图①,在平面直角坐标系中,抛物线一个交点为 A ,贝U a= _____ .y=a (x — 2) 2峙经过原点0,与x 轴的另圏① 圏② 图③的图象于点M、N,连接DM、DN,当厶DMN◎△ FOC时,求t的值.y/\OV1P 133.在平面直角坐标系中,直线y=-「x+1交y轴于点B,交x轴于点A,抛物线y=-・x2+bx+c4 2经过点B,与直线y=- x+1交于点C (4,- 2).4(1)求抛物线的解析式;(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作ME// y轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求△ DEM的周长.(3)将厶AOB绕坐标平面内的某一点按顺时针方向旋转90°得到△ A1O1B1,点A, O, B的对应点分别是点A1, O1, B1,若△ A1O1B1的两个顶点恰好落在抛物线上,请直接写出点B两点,与y轴交于点C,抛物线的对称轴是直线x=1, D为抛物线的顶点,点E在y轴C点的上方,且CE丄.(1) 求抛物线的解析式及顶点D的坐标;(2) 求证:直线DE是厶ACD外接圆的切线;(3) 在直线AC上方的抛物线上找一点P,使ACD,求点P的坐标;2(4) 在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ ACD相似,直接写出点M的坐标.35.如图①,在平面直角坐标系中,二次函数y=- +bx+c的图象与坐标轴交于A, B, C 三点,其中点A的坐标为(-3, 0),点B的坐标为(4, 0),连接AC, BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点0出发,在线段0B上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b= _______ , c= _______ ;(2)在点P, Q运动过程中,△ APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t ;若不存在,请说明理由;(4)如图②,点N的坐标为(-£, 0),线段PQ的中点为H,连接NH,当点Q关于直线36. 如图,已知直线y=- x+3与x轴、y轴分别交于A, B两点,抛物线y=- /+bx+c经过A, B两点,点P在线段0A上,从点0出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒.个单位的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△ APQ为直角三角形;(3)过点P作PE// y轴,交AB于点E,过点Q作QF// y轴,交抛物线于点F,连接EF,当EF// PQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP, BM, MQ,问:是否存在t的值,使以B, Q, M为顶点的三角形与以O, B, P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说37. 如图,直线y=-x+3与x轴,y轴分别相交于点B, C,经过B, C两点的抛物线y=ax2+bx+c 与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.(1)求该抛物线的函数表达式;(2)请问在抛物线上是否存在点Q,使得以点B, C, Q为顶点的三角形为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由;(3)过S(0, 4)的动直线l交抛物线于M , N两点,试问抛物线上是否存在定点T,使得不过定点T的任意直线I都有/ MTN=90 ?若存在,请求出点T的坐标;若不存在,请说明(1 )直接写出抛物线C1的对称轴是,用含a的代数式表示顶点P的坐标=ax2+2ax (a>0)与x轴交于点A,顶点为点P.(2 )把抛物线C1绕点M (m , 0)旋转180。