光纤的损耗和色散
- 格式:ppt
- 大小:1.20 MB
- 文档页数:45
光纤的传输特性光纤的传输特性包括损耗、色散、衰减、偏振和非线性效应等,其中,损耗和色散是光纤最重要的传输特性。
损耗限制系统的传输距离,色散限制系统的传输容量。
(1)光纤的损耗特性。
在光发射机和接收机之间由光缆吸收、反射、散射和辐射的信号功率被认为是损耗。
光纤损耗是光纤传输系统中限制中继距离的主要因素之一。
下表列出了3种石英光纤的典型损耗值。
(2)光纤的色散特性。
色散是光纤的一个重要参数,它会引起传输信号的畸变,使通信质量变差,限制通信容量与距离,特别是对高速和长距离光纤通信系统的影响更为突出。
光纤色散的产生涉及多方面的原因,这里只介绍模式色散、材料色散和波导色散。
①模式色散。
模式色散是指光在多模光纤中传输时会存在许多种传播模式,因为每种传播模式在传输过程中都具有不同的轴向传输速度,所以虽然在输入端同时发送光脉冲信号,但光脉冲信号到达接收端的时间却不同,于是产生了时延,使光脉冲发生展宽与畸变。
②材料色散。
材料色散是由构成纤芯的材料对不同波长的光波所呈现的不同折射率造成的,波长短则折射率大,波长长则折射率小。
就目前的技术水平而言,光源尚不能达到严格单频发射的程度,因此无论谱线宽度多么狭窄的光源器件,它所发出的光也会包含多根谱线(多种频率成分),只不过光波长的数量以及各光波长的功率所占的比例不同而已。
每根谱线都会受到光纤色散的作用,而接收端不可能对每根谱线受光纤色散作用所造成的畸变进行理想均衡,故会产生脉冲展宽现象。
③波导色散。
波导色散是指由光纤的波导结构对不同波长的光产生的色散作用。
波导结构是指光纤的纤芯与包层直径的大小、光纤的横截面折射率分布规律等。
这种色散通常很小,可以忽略不计。
光纤典型衰耗曲线
光纤的衰耗曲线描述了光信号随着传输距离而减弱的过程。
一般而言,光纤的衰耗主要包括两个主要成分:色散(Dispersion)和损耗(Attenuation)。
色散:色散是由于不同波长的光在光纤中传播速度不同而引起的。
它导致信号的波形发生扭曲。
有两种主要的色散:色散分为色散对波长的依赖性,即色散对光波长的敏感程度。
典型的色散曲线包括色散的两个主要类型:色散曲线和零色散波长。
损耗:损耗是光信号逐渐减弱的过程。
它可以分为吸收损耗、散射损耗和弯曲损耗等。
通常,损耗与传输波长有关,不同波长的光在光纤中会有不同的衰减情况。
典型的光纤损耗曲线是一个呈指数下降的曲线,以dB/km为单位。
在通信光纤中,损耗通常在0.2 dB/km到0.5 dB/km的范围内。
不同类型的光纤(如单模光纤和多模光纤)以及不同的制造工艺都会导致略微不同的损耗曲线。
需要注意的是,具体的衰耗曲线还取决于光纤的波长、纤芯直径、材料质量等多个因素。
因此,具体的数据可能需要查阅相关厂商提供的光纤规格表或参考文献。
1。
光纤的性能指标说明光纤是一种基于光信号传输的通信介质,具有很多独特的性能指标。
以下是对光纤的性能指标进行详细说明。
1.带宽:光纤的带宽指的是光纤传输的频率范围。
光纤的带宽决定了其传输数据的速率。
带宽的单位通常是兆赫兹(MHz)或千兆赫兹(GHz)。
带宽越高,数据传输速率越快。
2.损耗:光纤传输中的损耗是光信号在传输过程中损失的能量。
光纤的损耗通常以每单位长度的光强衰减来衡量,单位是分贝(dB)。
3.色散:色散是光纤传输中的一个重要问题,它导致不同频率的光信号的传播速度不同。
色散分为两种类型:色散的波长分散和色散的模式分散。
4.带宽补偿:由于色散引起的频率间隔,光纤的带宽会受到限制。
为了克服这种限制,光纤通常会采用带宽补偿技术。
5.折射率:光纤传输中的折射率决定了光信号在光纤中传播的速度。
折射率是光在光纤中传播时的速度与真空中的速度之比。
6.弯曲半径:光纤弯曲半径是指光纤在弯曲时所能容忍的最小半径。
光纤的弯曲半径对于光纤的安装和使用非常重要。
7.抗拉强度:抗拉强度是指光纤在拉伸力作用下所能承受的最大压力。
光纤的抗拉强度对于光纤的安装和维护非常重要。
8.附加损耗:附加损耗是光纤连接器或接头引入的损耗。
附加损耗要尽量减少,以保证光信号的传输质量。
9.环境适应性:光纤应能适应不同的环境和工作条件。
光纤应具有抗湿度、抗温度变化、抗腐蚀等特性,以保证其长期稳定的性能。
10.可靠性:光纤应具有高度的可靠性,能够在长期使用中保持其性能稳定。
光纤的可靠性取决于其材料的质量和制造工艺。
11.安装和维护:光纤的安装和维护应简便、方便。
安装和维护的复杂性会影响到光纤的使用成本和可行性。
12.成本效益:光纤的成本效益是指光纤在使用中的性价比。
光纤的成本效益应综合考虑其性能、可靠性、安装和维护成本等因素。
总结:光纤具有高带宽、低损耗、高可靠性和良好的环境适应性等优点,已经广泛应用于通信、医疗、军事和工业领域等。
光纤的性能指标对于充分发挥光纤的优势具有重要意义,并且也是制定光纤标准和规范的基础。
光纤的基本特性衰耗、色散1、光纤的损耗光纤的衰减或损耗是一个非常重要的、对光信号的传播产生制约作用的特性。
光纤的损耗限制了没有光放大的光信号的传播距离。
光纤的损耗主要取决于吸收损耗、散射损耗、弯曲损耗三种损耗。
1)吸收损耗光纤吸收损耗是制造光纤的材料本身造成的,包括紫外吸收、红外吸收和杂质吸收。
a:红外和紫外吸收损耗光纤材料组成的原子系统中,一些处于{氐能的电子会吸收光波能量而跃迁到高能级状态,这种吸收的中心波长在紫外的0.16μm处,吸收峰很强,其尾巴延伸到光纤通信波段,在短波长区,吸收峰值达ldB/km,在长波长区则小得多,约O.O5dB∕km.在红外波段光纤基质材料石英玻璃的Si-O键因振动吸收能量,这种吸收带损耗在9.1μm,12.5μm及21μm处峰值可达IOdB∕km以上,因此构成了石英光纤工作波长的上限。
红外吸收带的带尾也向光纤通信波段延伸。
但影响小于紫外吸收带。
在λ=L55μm时,由红外吸收引起的损耗小于0.01dB∕kmβb:氢氧根离子(OH-)吸收损耗在石英光纤中,O-H键的基本谐振波长为2.73μm,与Si-O键的谐振波长相互影响,在光纤的传输频带内产生一系列的吸收峰,影响较大的是在1.39、1.24及0.95μm波长上,在峰之间的低损耗区构成了光纤通信的三个传输窗口。
目前,由于工艺的改进,降低了氢氧根离子(OH-)浓度,这些吸收峰的影响已很小。
c:金属离子吸收损耗光纤材料中的金属杂质,如:金属离子铁(Fe3+)、铜(Cu2+)、镒(Mn3+)、镇(Ni3+)、钻(Co3+)、铭(Cr3+)等,它们的电子结构产生边带吸收峰(0.5~Llμm),造成损耗。
现在由于工艺的改进,使这些杂质的含量低于10-9以下,因此它们的影响已很小。
在光纤材料中的杂质如氢氧根离子(OH・)、过渡金属离子(铜、铁、铭等)对光的吸收能力极强,它们是产生光纤损耗的主要因素。
因此要想获得低损耗光纤,必须对制造光纤用的原材料二氧化硅等进行十分严格的化学提纯,使其纯度达99.9999%以上。
光纤通信中的光衰减与色散机制光纤通信是一种高速、远距离传输信息的技术,运用的是利用光纤进行信息传输的原理,它比传统的电信技术具有更快的传输速度和更高的带宽能力。
但是,光纤通信也有一些不利因素,例如光衰减和色散。
这些因素会影响通信质量和距离,因此,研究光衰减和色散机制是非常重要的。
一、光纤通信中的光衰减机制在光纤通信中,光信号需要通过光纤进行传输。
在传输过程中,光信号会受到衰减,这是因为光纤材料本身的吸收和散射作用。
另外,由于光信号的传输距离越长,信号衰减就越严重。
1.光纤本质吸收光纤本质吸收是由于光纤的材料通过分子、原子的振动、旋转和电子跳跃过程中发生的能量吸收引起的。
这种吸收是光信号的主要衰减来源之一,会随着光纤的纯度提高而降低。
2.弯曲损耗当光纤被弯曲时,由于光线传输路径发生变化,会导致光信号发生衰减。
这种损耗叫做弯曲损耗,通常在弯曲半径小于光纤直径的1-2倍时最为严重。
这就要求我们在光纤的安装和使用过程中要尽量避免弯曲和扭曲。
3.连接损耗在光纤通信系统中,由于需要进行光纤的连接,连接之间也会引起信号的衰减,这种衰减叫做连接损耗。
其大小取决于连接器和适配器的精度和质量。
4.杂散散射杂散散射是指光线在光纤中碰到颗粒、气泡等物质时释放出的光信号,这些光信号与主信号相互干扰,导致信号衰减。
因此,在光纤通信中,要尽量避免在环境中存在这样的杂散物质。
5.色散色散是指由于光的色散性质,在光纤中传输时引起的信号的扩散和失真。
关于色散的机制将在下面的内容中讨论。
二、光纤通信中的色散机制光的色散是指在介质中传播时,由于波长和群速度的不同,导致光速的差异而引起的信号失真。
光纤通信中的色散可以分为两种类型:色散和色散。
以下将对这两种色散机制作简要介绍。
1.色散色散是指不同波长的光信号,在光纤中的传播速度不同,导致信号扩散和形变的现象。
这种色散又可分为两种类型:多模色散和单模色散。
*多模色散多模光在光纤中传播时,会发生信号的色散现象。
光纤的传输特性光纤的传输特性主要包括光纤的损耗特性,色散特性和非线性效应。
光纤的损耗特性*************************************************************概念:光波在光纤中传输,随着传输距离的增加光功率逐渐下降。
衡量光纤损耗特性的参数:光纤的衰减系数〔损耗系数〕,定义为单位长度光纤引起的光功率衰减,单位为dB/km。
其表达式为:式中求得波长在λ 处的衰减系数; Pi 表示输入光纤的功率, Po 表示输出光功率, L 为光纤的长度。
(1)光纤的损耗特性曲线•损耗直接关系到光纤通信系统的传输距离,是光纤最重要的传输特性之一。
自光纤问世以来,人们在降低光纤损耗方面做了大量的工作,1.31μm光纤的损耗值在0.5dB/km以下,而1.55μm的损耗为0.2dB/km以下,接近了光纤损耗的理论极限。
总的损耗随波长变化的曲线,叫做光纤的损耗特性曲线—损耗谱。
•从图中可以看到三个低损耗“窗口〞:850nm波段—短波长波段、1310nm波段和1550nm波段—长波长波段。
目前光纤通信系统主要工作在1310nm波段和1550nm波段上。
(2)光纤的损耗因素光纤损耗的原因主要有吸收损耗和散射损耗,还有来自光纤结构的不完善。
这些损耗又可以归纳以下几种:1、光纤的吸收损耗光纤材料和杂质对光能的吸收而引起的,把光能以热能的形式消耗于光纤中,是光纤损耗中重要的损耗。
包括:本征吸收损耗;杂质离子引起的损耗;原子缺陷吸收损耗。
2、光纤的散射损耗光纤部的散射,会减小传输的功率,产生损耗。
散射中最重要的是瑞利散射,它是由光纤材料部的密度和成份变化而引起的。
物质的密度不均匀,进而使折射率不均匀,这种不均匀在冷却过程中被固定下来,它的尺寸比光波波长要小。
光在传输时遇到这些比光波波长小,带有随机起伏的不均匀物质时,改变了传输方向,产生散射,引起损耗。
另外,光纤中含有的氧化物浓度不均匀以与掺杂不均匀也会引起散射,产生损耗。
光纤的损耗及色散一、光纤的损耗光纤的损耗是光纤的重要特性,它是光在光纤中传输一定距离后其能量损失的程度,用单位长度的光纤对光信号损失的分贝数表示,单位为dB/k。
光纤的损耗与光的波长有关,在石英类光纤的损耗与传输光的光波长的变化曲线中,有三个极小值,常把这三个波长称为石英光纤传输的三个窗口。
这三个波长中,0.85μm处损耗最大,1.31um处损耗次之,1.55μm处损耗最小。
光纤损耗产生的原因,一是光纤材料本身的吸收、散射的内因,二是与制造工艺有关的外因,例如材料不纯、水汽、气泡的原因,以及结构不齐的原因。
有一种无水峰光纤。
性能比较好。
光纤的温度系统很小,光纤损耗随温度的变化可以不予考虑,但在较低温度下,损耗有明显增加。
二、光纤的色散光纤的色散是指输入信号中包含的不同频率或不同模式的光在光纤中传播的速度不同:不能同时到达输出端,使输出波形展宽变形、形成失真的现象。
色散是时域上的反映,带宽是频域上的反映。
由于色散的存在,光信号在传输一定距离后,就会使展宽波形到不可辨认的程度,严重影响模拟信号的传输。
在数字信号传输时,由于色散会使脉冲变形。
色散的存在限制了光信号一次传输的距离,在传输距离相同的情况下,色散越大,单位时间内传输的信息容量越小,还会引起二次失真。
色散常用色散常数D来描写。
是指单位波长间隔的光传输单位距离的群时延差(群时延是波束的群速度的倒数,也就是波束传输单位距离所需的时间)。
色散常数表达式,如下:色散的种类有模式色散、材料色散、结构色散:1)模式色散一不同模式的光传输时间不同。
2)材料色散一折射率、波长不同,引起传输速度不同。
3)结构色散一光进入包层而造成的。
根据色散的不同,有不同的光纤,例如色散位移光纤、色散平坦光纤、折射率渐变型光纤。
实验十八 测量光纤的色散和衰减实验序号 No:225046测量光纤的色散和衰减Measurement of Fiber Dispersion and Attenuation 实验简介色散是光纤的传输特性之一,不同波长的光脉冲在光纤中具有不同的传播速 度,色散反应了光脉冲沿光纤传播时的展宽。
光纤的色散现象对光纤通信极为不 利。
光纤数字通信传输的是一系列脉冲码,传输中的脉冲展宽,导致了脉冲与脉 冲相重叠现象,形成传输码的失误差错。
为避免误码出现,就要拉长脉冲间距, 导致传输速率降低,减少了通信容量。
光纤脉冲的展宽程度随着传输距离的增长 而越来越严重,为了避免误码,光纤的传输距离也要缩短。
一、实现目的1、通过测量单模光纤的 13/15 之间以及 1550 窗口内两点之间的色散值,了解并掌握相移法 测量单模光纤色散的方法。
2, 通过测量单模光纤的衰减值,了解测量光纤损耗的常用方法之一:插入法(实际测量中 很多器件的插损、损耗都使用这种方法)。
二、实验原理(一)、色散概述色散是光纤的传输特性之一。
由于不同波长的光脉冲在光纤中具有不同的传播速度,因 此,色散反应了光脉冲沿光纤传播时的展宽。
光纤的色散现象对光纤通信极为不利。
光纤数 字通信传输的是一系列脉冲码,光纤在传输中的脉冲展宽,导致了脉冲与脉冲相重叠现象, 即产生了码间干扰,从而形成传输码的失误,造成差错。
为避免误码出现,就要拉长脉冲间 距,导致传输速率降低,从而减少了通信容量。
另一方面,光纤脉冲的展宽程度随着传输距 离的增长而越来越严重。
因此,为了避免误码,光纤的传输距离也要缩短。
光纤的色散可分 为:1.模式色散又称模间色散:光纤的模式色散只存在于多模光纤中。
每一种模式到达光纤终 端的时间先后不同,造成了脉冲的展宽,从而出现色散现象。
2.材料色散:含有不同波长的光脉冲通过光纤传输时,不同波长的电磁波在玻璃中的折射 率 ) (l n 不相同,传输速度不同就会引起脉冲展宽,导致色散。
光纤线路衰减
光纤线路衰减是指光信号在传输过程中由于各种因素而减弱的现象。
光纤线路衰减的主要原因包括:
1. 吸收损耗:光信号在光纤中会与材料内部的原子或分子发生相互作用,导致能量被吸收。
这种损耗主要由材料的特性和工作波长决定。
2. 散射损耗:光信号在光纤中会受到光束的散射,使得信号沿着光纤的方向扩散,导致光强减弱。
这种损耗通常与光纤中的不均匀性有关。
3. 弯曲损耗:当光纤被弯曲时,光信号会因为弯曲而产生额外的衰减。
这种损耗与光纤的曲率半径和光纤的折射率有关。
4. 色散损耗:色散是指不同波长的光在传输中传播速度不同,从而导致光信号的波形发生变化。
这可能导致光信号的衰减。
5. 连接损耗:连接点、插接点或者其他连接器会引入额外的衰减。
这种损耗通常是由于不完美的连接、插座的污染或者连接部件的损坏引起的。
6. 光纤的长度:光纤的长度也会影响光信号的衰减程度,衰减通常随着光纤长度的增加而增加。
衰减通常以分贝(dB)为单位进行表示。
在设计光纤通信系统时,需要考虑光纤的特性以及各种因素对衰减的影响,以确保光信号在传输过程中能够保持足够的强度。
使用低损耗的光纤、定期检查连接器
和连接点、以及选择适当的传输波长等方法都可以帮助减小光纤线路的衰减。