目标规划例题
- 格式:docx
- 大小:19.58 KB
- 文档页数:2
例1:生产计划问题某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。
若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。
现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。
试建立模型。
解:法1 设每个季度分别生产x1,x2,x3,x4则要满足每个季度的需求x4≥26x1+ x2≥40x1+ x2+ x3≥70x1+ x2+ x3+ x4=80考虑到每个季度的生产能力 0≤x1≤300≤x2≤400≤x3≤200≤x4≤10每个季度的费用为:此季度生产费用+上季度储存费用第一季度15.0x1第二季度14 x2 0.2(x1-20)第三季度15.3x3+0.2(x1+ x2-40)第四季度14.8x4+0.2(x1+ x2+ x3-70)工厂一年的费用即为这四个季度费用之和,得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26s.t.x1+ x2≥40x1+ x2+ x3≥70x1+ x2+ x3+ x4=8020≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。
法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨根据合同要求有:xll=20x12+x22=20x13+x23+x33=30x14+x24+x34+x44=10又根据每季度的生产能力有:xll+x12+x13+x14≤30x22+x23+x24≤40x33+x34≤20x44≤10第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。
minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44s.t. xll=20,x12+x22=20,x13+x23+x13=30,x14+x24+x34+x44=10,x1l+x12+x13+x14≤30,x22+x23+x24≤40,x33+x34≤20,x44≤10,xij≥0, i=1,…,4;j=1,…,4,j≥i。
第五章 目标规划§5.1重点、难点提要一、目标规划的基本概念与模型特征 (1)目标规划的基本概念。
当人们在实践中遇到一些矛盾的目标,由于资源稀缺和其它原因,这些目标可能无法同时达到,可以把任何起作用的约束都称为“目标”。
无论它们是否达到,总的目的是要给出一个最优的结果,使之尽可能接近制定的目标。
目标规划是处理多目标的一种重要方法,人们把目标按重要性分成不同的优先等级,并对同一个优先等级中的不同目标赋权,使其在许多领域都有广泛应用。
在目标规划中至少有两个不同的目标;有两类变量:决策变量和偏差变量;两类约束:资源约束(也称硬约束)和目标约束(也称软约束)。
(2)模型特征。
目标规划的一般模型:⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=≥==-+=≤⎪⎭⎫ ⎝⎛+=+-=+-===++--∑∑∑∑.,,2,1;0,;,,2,10,,2,1,,2,1..)(min 1111K k d d n j x K k g d d x c m i b x a t s d d P Z k k j n j k k k j kj i nj j ij Lr K k k rk k rk r ωω 其中r P 为目标优先因子,+-rk rk ωω,为目标权系数,+-k k d d ,为偏差变量。
1)正、负偏差变量,i i d d +-。
正偏差变量i d +表示决策值超过目标值的部分;负偏差变量i d -表示决策值未达到目标值的部分。
因为决策值不可能既超过目标值同时又未达到目标值,所以有0i i d d +-⨯=。
2)硬约束和软约束。
硬约束是指必须严格满足的等式约束和不等式约束;软约束是目标规划特有的。
我们可以把约束右端项看成是要努力追求的目标值,但允许发生正、负偏差,通过在约束中加入正、负偏差变量来表示努力的结果与目标的差距,于是称它们为目标约束。
3)优先因子与权系数。
一个规划问题通常有若干个目标,但决策者在要求达到这些目标时,是有主次或缓急之分的。
简单的线性规划典型例题篇一:典型例题:简单的线性规划问题典型例题【例1】求不等式|x-1|+|y-1|≤2表示的平面区域的面积.【例2】某矿山车队有4辆载重量为10 t的甲型卡车和7辆载重量为6 t的乙型卡车,有9名驾驶员此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?参考答案例1:【分析】依据条件画出所表达的区域,再根据区域的特点求其面积.【解】|x-1|+|y-1|≤2可化为或其平面区域如图:或或∴面积S=×4×4=8【点拨】画平面区域时作图要尽量准确,要注意边界.例2:【分析】弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.【解】设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z元,那么z=252x+160y,作出不等式组所表示的平面区域,即可行域,如图作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求.此时,z=252x+160y取得最小值,即x=2,y=5时,zmin=252×2+160×5=1304.答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.【点拨】用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.篇二:不等式线性规划知识点梳理及经典例题及解析线性规划讲义【考纲说明】(1)了解线性规划的意义、了解可行域的意义;(2)掌握简单的二元线性规划问题的解法.(3)巩固图解法求线性目标函数的最大、最小值的方法;(4)会用画网格的方法求解整数线性规划问题.(5)培养学生的数学应用意识和解决问题的能力.【知识梳理】简单的线性规划问题一、知识点1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验. 3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一.1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B0时,Ax0+By0+C0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,即:1.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的同侧,则有(Ax1+By1+C)( Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)①二元一次不等式Ax+By+C>0(或②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
目标规划
某企业生产甲、乙两种产品,需要用到A,B,C 三种设备,关于产品的赢利
与使用设备的工时及限制如表 2 所示。
问该企业应如何安排生产,才能达到下列目标: 表 2
甲乙设备的生产能力(h )
A (h/件) 2 2 12
B (h/件) 4 0 16
C (h/件) 0 5 15
赢利(元/件) 200 300
(1)力求使利润指标不低于 1500 元;
(2)考虑到市场需求,甲、乙两种产品的产量比应尽量保持 1:2;
(3)设备 A 为贵重设备,严格禁止超时使用;
(4)设备C 可以适当加班,但要控制;设备B 既要求充分利用,又尽可能不加班。
在重要性上,设备B 是设备C 的 3 倍。
建立相应的目标规划模型并求解。
解设备 A 是刚性约束,其余是柔性约束。
首先,最重要的指标是企业的利润,
因此,将它的优先级列为第一级;其次,甲、乙两种产品的产量保持 1:2 的比例,列为 第二级;再次,设备B,C 的工作时间要有所控制,列为第三级。
在第三级中,设备B 的 重要性是设备C 的三倍,因此,它们的权重不一样,设备B 前的系数是设备C 前系数
的 3 倍。
设生产甲乙两种产品的件数分别为x1, x2, ,相应的目标规划模型为
min z = P1d1- + P2 ( d2+ + d2- ) + P3 ( 3d3+ + 3d3- + d4+ )
121211122213324412221220030015002040515,,,0(1,2,3,4...)i i x x x x d d x x d d x d d x d d x x d d i -+-+-+-+-++≤⎧⎪++-=⎪⎪-+-=⎪⎨+-=⎪⎪+-=⎪≥=⎪⎩
LINGO 程序编码
model:
sets:
level/1..3/:p,z,goal;
variable/1..2/:x;
h_con_num/1..1/:b;
s_con_num/1..4/:g,dplus,dminus;
h_con(h_con_num,variable):a;
s_con(s_con_num,variable):c;
obj(level,s_con_num)/1 1,2 2,3 3,3 4/:wplus,wminus;
endsets
data:
ctr=?;
goal=? ? 0;
b=12;
g=1500 0 16 15;
a=2 2;
c=200 300 2 -1 4 0 0 5;
wplus=0 1 3 1;
wminus=1 1 3 0;
enddata
min=@sum(level:p*z);
p(ctr)=1;
@for(level(i)|i#ne#ctr:p(i)=0);
@for(level(i):z(i)=@sum(obj(i,j):wplus(i,j)*dplus(j)+wminus(i,j)*
dminus(j)));
@for(h_con_num(i):@sum(variable(j):a(i,j)*x(j))<b(i));
@for(s_con_num(i):@sum(variable(j):c(i,j)*x(j))+dminus(i)-dplus(i)=g(i));
@for(level(i)|i #lt# @size(level):@bnd(0,z(i),goal(i)));
End
程序解释
当程序运行时,会出现一个对话框。
在做第一级目标计算时,ctr 输入1,goal(1)和goal(2)输入两个较大的值,表明这
两项约束不起作用。
求得第一级的最优偏差为0,进行第二轮计算。
在第二级目标的运算中,ctr 输入2。
由于第一级的偏差为0,因此goal(1)的输入值
为0,goal(2)输入一个较大的值。
求得第二级的最优偏差仍为0,进行第三级计算。
在第三级的计算中,ctr 输入3。
由于第一级、第二级的偏差均是0,因此,goal(1) 和goal(2)的输入值也均是0。
最终结果是:x1=2, x2=4最优利润是1600 元,第三级的最优偏差为29。