上材料成型基础
- 格式:ppt
- 大小:2.45 MB
- 文档页数:86
材料成型技术基础教学设计一、前言材料成型技术作为机械制造专业中的一门基础课程,对于学生的专业学习和未来职业发展都有着至关重要的作用。
因此,本教学设计旨在全面、系统地介绍材料成型技术的基本概念、原理、方法和应用,让学生掌握相关知识和技能,提高其应用能力和创新思维,从而为未来的职业发展奠定坚实的基础。
二、教学目标1.掌握材料成型技术的基本概念、原理和方法;2.熟悉常用的材料成型工艺,包括锻造、轧制、挤压、拉伸等;3.熟练掌握材料成型的数学和物理基础知识;4.大致了解材料成型的应用领域和发展趋势;5.培养学生的实验操作能力和创新思维;6.增强学生的团队协作和沟通能力。
三、教学内容1. 材料成型技术的基本概念和原理1.1 材料成型工艺和其基本分类; 1.2 材料成型的基本原理和影响因素;1.3 材料成型的应力与应变分析; 1.4 材料成型中的材料流动与应变率; 1.5 材料成型的热力学和热物性。
2. 常用材料成型工艺2.1 锻造工艺及其应用; 2.2 冷、热轧制工艺及其应用; 2.3 挤压工艺及其应用; 2.4 拉伸工艺及其应用; 2.5 其他成型工艺。
3. 实验操作与创新设计3.1 典型成型工艺的实验操作; 3.2 材料成型过程中的应力与应变实验;3.3 材料成型过程中的温度与热变形实验; 3.4 根据实验数据进行分析和判断;3.5 在已有工艺基础上进行改进和创新设计。
4. 材料成型的数学和物理基础知识4.1 材料成型中常用的数学和物理模型; 4.2 材料成型中的数学理论分析;4.3 材料成型中的物理基础现象; 4.4 材料成型中的数学统计方法。
5. 材料成型的应用领域和发展趋势5.1 材料成型在工业制造中的应用; 5.2 材料成型技术的创新和发展; 5.3材料成型技术在未来的应用前景。
四、教学方法1.讲授理论知识,重点讲解材料成型技术的基本概念、原理及其应用;2.实验操作,重点让学生亲身体验实验,加深对理论知识的理解;3.技能培训,重点培养学生的实际操作能力和创新思维;4.案例分析,重点展示材料成型技术在实际应用中的成功案例及其经验;5.团队合作,重点培养学生的团队协作和沟通能力。
材料成型工艺基础材料成型工艺是制造业中非常重要的一环,它涉及到各种材料的成型加工,包括金属、塑料、陶瓷等材料。
在现代工业生产中,材料成型工艺的发展对产品质量、生产效率和成本控制都有着重要的影响。
因此,了解材料成型工艺的基础知识对于从事相关行业的人员来说是至关重要的。
首先,材料成型工艺的基础包括材料的物理性能和化学性能。
材料的物理性能包括硬度、强度、韧性、塑性等,而化学性能则包括材料的化学成分、腐蚀性等。
了解材料的这些基本性能对于选择合适的成型工艺以及调整工艺参数都有着重要的指导作用。
其次,材料成型工艺的基础还包括成型工艺的分类和特点。
根据成型工艺的不同特点,可以将它们分为传统成型工艺和先进成型工艺。
传统成型工艺包括锻造、铸造、焊接等,而先进成型工艺则包括注塑成型、激光切割、3D打印等。
每种成型工艺都有其独特的特点和适用范围,了解这些特点对于选择合适的成型工艺和优化工艺流程都至关重要。
另外,材料成型工艺的基础还包括成型模具的设计和制造。
成型模具是进行材料成型加工的重要工具,它的设计和制造质量直接影响到成型工艺的效率和产品质量。
因此,了解成型模具的设计原理和制造工艺对于提高成型工艺的水平和质量都至关重要。
最后,材料成型工艺的基础还包括成型工艺的控制和优化。
成型工艺的控制包括工艺参数的设定、设备的调试以及生产过程的监控等,而成型工艺的优化则包括提高生产效率、降低生产成本、改善产品质量等。
了解成型工艺的控制和优化方法对于提高生产效率和产品质量都有着重要的意义。
总之,材料成型工艺的基础知识对于从事相关行业的人员来说是非常重要的。
只有深入了解材料成型工艺的基础知识,才能更好地选择合适的成型工艺,优化工艺流程,提高生产效率和产品质量。
希望本文所述内容能对相关行业的从业人员有所帮助。
材料成型技术基础课程设计一、课程设计背景与目的随着工业的发展,材料成型技术在人们的生活、生产中扮演着越来越重要的角色。
掌握材料成型技术的基本理论和工艺技能,是现代制造业人才的基本素质之一。
而材料成型技术基础课程则是培养学生掌握材料成型技术基本理论和基本操作的重要课程。
基于对学生的培养目标和课程目标的考虑,本次课程设计旨在:1.通过课程设计,让学生掌握材料成型技术相关的基本理论知识;2.通过实践操作,让学生掌握材料成型技术的基本操作技能;3.通过项目实战,让学生能够熟悉材料成型技术实际应用场景,增强其综合素质。
二、课程内容1. 材料成型技术基础理论•材料成型工艺分类;•各种类型材料的成型原理;•成型工艺中的加热、冷却、应力等关键问题;•成型工艺流程及其控制等。
2. 材料成型技术基础操作•材料成型技术基本操作流程;•成型材料的选择及其处理;•成型工具的选择及其使用;•成型工艺的后续处理。
3. 项目案例实战•通过案例实战,让学生了解材料成型技术在实际应用场景中的应用;•培养学生解决实际问题的能力;•提高学生的团队合作能力。
三、课程设计流程1. 理论学习(1周)•学生通过教师授课、资料阅读、讨论等方式学习材料成型技术相关的基本理论知识;•教师通过出题测试等方式对学生的知识掌握情况进行评估。
2. 实践操作(2周)•学生通过实践操作,掌握材料成型技术的基本操作技能;•教师引导学生深入探讨操作过程中遇到的关键问题,并进行讲解和解答;•教师通过考核实习成绩等方式对学生的实践操作情况进行评估。
3. 项目案例实战(3周)•学生以小组形式完成一项材料成型技术项目实战任务;•教师通过对项目进度、成果等方面的考核,对学生的综合素质进行评估;•学生针对项目进行收尾报告,形成项目实践总结。
四、考核及评估方式为确保课程设计效果,教师将针对不同环节制定考核及评估方式:•期中考试:考核学生对材料成型技术基础理论的掌握情况,占总评成绩的30%;•实践操作成绩:考核学生对材料成型技术基础操作技能的掌握情况,占总评成绩的30%;•项目实战成绩:考核学生运用材料成型技术解决实际问题的能力及团队协作能力,占总评成绩的40%。
材料成型技术基础材料成型技术是指将原材料通过一定的加工方式,制造成为具有特定形状、尺寸和性能的产品的过程。
材料成型技术是现代工业制造的基础,它在各个领域都有着广泛的应用,如汽车、机械、电子、建筑等。
本文将对材料成型技术的基础知识进行介绍。
1. 基本概念材料成型技术包括各种加工方式,如锻造、铸造、挤压、拉伸、滚压、剪切、锯切等。
这些加工方式都是通过对原材料的物理和化学变化,使其得到所需的形状和性能,从而实现产品的制造。
2. 锻造锻造是一种通过对金属材料进行加热和压制,使其改变形状和性能的加工方式。
锻造可以分为自由锻造和模锻造两种。
自由锻造是指将金属材料加热至一定温度后,用锤头或压力机对其进行压制,从而使其改变形状和性能。
模锻造是指将金属材料放入特定的模具中进行加热和压制,从而使其得到所需的形状和性能。
3. 铸造铸造是一种通过将液态金属材料倒入特定的模具中,使其冷却固化后得到所需的形状和性能的加工方式。
铸造可以分为压力铸造和重力铸造两种。
压力铸造是指将液态金属材料通过高压喷射进入模具中,从而得到所需的形状和性能。
重力铸造是指将液态金属材料倒入模具中,通过重力作用使其冷却固化,从而得到所需的形状和性能。
4. 挤压挤压是一种通过将金属材料通过模具中的小孔挤出,从而得到所需的形状和性能的加工方式。
挤压可以分为冷挤压和热挤压两种。
冷挤压是指将金属材料在室温下通过模具中的小孔挤出,从而得到所需的形状和性能。
热挤压是指将金属材料加热至一定温度后,通过模具中的小孔挤出,从而得到所需的形状和性能。
5. 拉伸拉伸是一种通过将金属材料拉伸,使其改变形状和性能的加工方式。
拉伸可以分为冷拉伸和热拉伸两种。
冷拉伸是指将金属材料在室温下拉伸,从而得到所需的形状和性能。
热拉伸是指将金属材料加热至一定温度后,拉伸,从而得到所需的形状和性能。
6. 滚压滚压是一种通过将金属材料通过辊轮的滚动,使其改变形状和性能的加工方式。
滚压可以分为冷滚压和热滚压两种。
材料成型基础课程设计一、课程目标知识目标:1. 学生能理解并掌握材料成型的基本概念、分类及原理;2. 学生能了解不同材料成型技术的特点、适用范围及其在工业生产中的应用;3. 学生能掌握材料成型过程中常见质量问题及解决方法。
技能目标:1. 学生能运用所学知识,分析并解决材料成型过程中遇到的问题;2. 学生具备初步的材料成型工艺设计和优化能力;3. 学生能够熟练操作相关设备,完成简单的材料成型实验。
情感态度价值观目标:1. 学生培养对材料成型技术及其在工业生产中应用的兴趣,激发创新意识;2. 学生树立正确的质量观念,关注材料成型过程中的质量控制;3. 学生培养团队合作精神,提高沟通协调能力。
本课程针对高中年级学生,结合学科特点,注重理论知识与实际操作相结合。
在教学过程中,充分考虑学生的认知水平、兴趣和需求,采用案例教学、实验操作等形式,提高学生的实践能力和综合素质。
通过本课程的学习,使学生掌握材料成型基础知识和技能,为后续相关课程的学习打下坚实基础,同时培养其情感态度价值观,全面发展学生的能力。
二、教学内容1. 材料成型基本概念:介绍成型、材料成型定义,分类及其在制造业中的应用。
教材章节:第一章第一节2. 常用材料成型技术:讲解金属成型、塑料成型、陶瓷成型等常用技术及其特点。
教材章节:第一章第二、三节3. 材料成型原理:分析不同成型技术的原理,如压力成型、拉伸成型、注射成型等。
教材章节:第一章第四节4. 材料成型工艺及设备:介绍成型工艺流程,设备结构及其操作方法。
教材章节:第二章5. 材料成型质量控制:讲解成型过程中常见质量问题及解决方法,如收缩、变形、应力等。
教材章节:第三章6. 材料成型工艺设计与优化:分析工艺设计原则,介绍优化方法及实例。
教材章节:第四章7. 实践操作:组织学生进行简单材料成型实验,巩固理论知识,提高实际操作能力。
教学内容按照教学大纲安排,注重理论与实践相结合,确保学生在掌握基础理论知识的同时,能够进行实际操作,提高其解决实际问题的能力。
材料成型技术基础知识点总结第一章铸造铸造是一种制造零件的方法,它将液态金属填充到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件。
填充铸型的过程称为充型,而液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力被称为充型能力。
影响充型能力的因素包括金属液本身的流动能力(合金流动性)、浇注条件(浇注温度、充型压力)以及铸型条件(铸型蓄热能力、铸型温度、铸型中的气体、铸件结构)。
流动性是熔融金属的流动能力,是液态金属固有的属性。
影响合金流动性的因素包括合金种类(与合金的熔点、导热率、合金液的粘度等物理性能有关)、化学成份(纯金属和共晶成分的合金流动性最好)以及杂质和含气量(杂质增加粘度,流动性下降;含气量少,流动性好)。
金属的凝固方式包括逐层凝固方式、体积凝固方式或称“糊状凝固方式”以及中间凝固方式。
收缩是液态合金在凝固和冷却过程中,体积和尺寸减小的现象。
收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。
合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。
液态收缩和凝固收缩通常以体积收缩率表示,是铸件产生缩孔、缩松缺陷的基本原因。
合金的固态收缩通常用线收缩率来表示,是铸件产生内应力、裂纹和变形等缺陷的主要原因。
影响收缩的因素包括化学成分(碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减)、浇注温度(浇注温度愈高,过热度愈大,合金的液态收缩增加)、铸件结构(铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍)以及铸型和型芯对铸件的收缩也产生机械阻力。
缩孔和缩松是铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。
缩孔的形成主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。
缩松的形成主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状晶体分隔开的液体区难以得到补缩所致。
合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。
第一章金属液态成形1.①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2.浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,称作同时凝固。
材料成型技术基础知识点总结材料成型技术是指利用压力、温度和时间等因素,通过给予物质以一定的形状,以获得具备特定功能和要求的制品的一种技术方法。
材料成型技术在各个行业的制造过程中起着重要的作用。
下面将对材料成型技术的基础知识点进行总结。
1.材料成型的分类:材料成型可分为热成型和冷成型两类。
热成型是指在高温下进行的成型过程,包括热压、热拉伸、热挤压等。
冷成型是指在常温下进行的成型过程,包括冷弯、冷挤压、冷拔等。
2.材料成型的原理:材料成型的基本原理是通过对材料施加力和热量,使其发生塑性变形,进而得到所需形状和尺寸的制品。
材料成型的力学过程包括拉伸、挤压、弯曲、剪切等。
热量作用主要是为了降低材料的硬度,提高其变形能力。
3.材料成型工艺:材料成型的工艺包括模具设计、加工设备的选择与调试、成型过程的操作等。
模具是材料成型的关键工具,模具的设计要考虑到材料的特性、形状和尺寸的要求。
加工设备的选择与调试要根据材料的成型要求和加工量来确定。
成型过程的操作要严格控制力和热的加工参数,保证制品的质量。
4.材料成型的性能影响因素:材料成型的性能受到许多因素的影响,包括材料的物理和化学性质、成型工艺的参数、设备的性能等。
材料的性能对成型工艺的选择和制品的质量有着重要影响。
成型工艺的参数如温度、压力、速度等也会对成品的性能产生影响。
设备的性能如精度、刚度、压力等也会影响到成型的结果。
5.材料成型的应用:材料成型技术广泛应用于诸多领域,如汽车制造、航空航天、电子、建筑等。
汽车制造中的车身、发动机零部件等都需要经过冲压成型、挤压成型等工艺。
航空航天中的飞机壳体、涡轮叶片等也需要通过成型工艺进行制作。
电子产品中的外壳、散热器等也需要通过成型技术来获得所需的形状。
建筑领域中的钢结构、混凝土构件等亦需要经过成型工艺来生产。
综上所述,材料成型技术是制造过程中不可或缺的一部分。
通过了解材料成型的分类、原理、工艺、性能影响因素和应用,可以更好地理解和应用材料成型技术,提高制品的质量和生产效率。
材料成型技术基础材料成型技术基础材料成型技术是现代工业的核心技术之一,是将材料加工成所需形状、结构和性能的过程。
材料成型技术分为传统成型技术和先进成型技术两种。
前者包括热加工、冷加工、焊接等,后者则包括快速成型、激光加工、注塑成型等。
无论是哪种成型技术,都需要掌握材料成型技术基础知识才能熟练地操作和完成任务。
1.材料成型技术原理材料成型技术在原理上是通过施加压力,改变材料外观和性质。
采用不同的成型方法和工艺流程,可获得所需的形态和性能。
例如,金属冷加工依靠的是材料的塑性变形,而激光切割则是利用激光的高能量和热量来割断材料。
因此,不同成型技术的原理不同,工艺流程也不同。
2.材料成型技术分类材料成型技术主要可以分为常规材料成型技术和高级材料成型技术两类。
常规材料成型技术包括热加工、冷加工、铸造、焊接、切削等。
这些技术在工业生产中应用广泛,可以制造出各种形态的零部件和产品。
高级材料成型技术是在常规成型技术基础上,运用现代科技和工程技术发展起来的成型技术。
例如,金属材料的选择性激光烧结技术(SLS)、三维打印技术、激光切割技术和注塑成型技术等。
这些技术通常被用于制造高性能、高单价、高品质的工业产品。
3.常规材料成型技术热加工热加工技术是利用高温对材料进行塑性变形的加工方式。
通过热处理,可以使金属变得更加容易软化和延展。
热加工适合于制造大量的同样尺寸和形状的零件,例如轴、齿轮等机械元件。
冷加工冷加工技术是不需要高温处理的制造加工方法。
冷加工一般用于金属加工,由于没有热变形,冷加工一般具有更好的精度和表面光洁度。
冷加工应用广泛,例如冷拔、冷轧、冷环等。
铸造铸造是利用熔化的金属,将其注入模具中成型制品的加工方法。
铸造可以生产出各种不同尺寸和形状的零件,应用范围广泛,例如钢铁、铝合金、铜、铜合金等材料。
焊接焊接是将两个物体连接在一起的加工方式。
焊接广泛应用在车辆工业、建筑工业、航空航天工业等领域,例如电弧焊、气体保护焊、激光焊等技术。
材料成型工艺基础成型工艺是工业生产中常用的一种加工方法,它是将原材料通过一系列的加工步骤,使其成为所需的形状、尺寸和性能的工件的过程。
成型工艺的基础包括以下几个方面:1. 材料的选择:成型工艺的第一步是选择合适的材料。
材料的性能直接影响成型工艺的可行性和成品的质量。
在选择材料时,需要考虑材料的强度、硬度、耐磨性、耐腐蚀性、热膨胀系数等因素。
2. 模具设计:在成型工艺中,常常需要使用模具。
模具的设计直接决定了成品的形状和尺寸。
模具的设计过程包括模具的结构设计、材料选择、模具零件的加工工艺等。
模具应具有足够的强度和刚性,以确保成型过程中不变形或破裂。
3. 成型工艺的选择:成型工艺有很多种,如压力成型、注塑成型、挤出成型、铸造等。
在选择成型工艺时,需要考虑材料的性质、成型工件的形状和尺寸、生产效率等因素。
不同的成型工艺适用于不同的材料和成型要求。
4. 成型工艺的加工步骤:成型工艺一般包括材料预处理、模具装配、成型、冷却、脱模等步骤。
在加工过程中,需要控制加工参数,如温度、压力、速度等,以确保成品的质量和尺寸精度。
5. 成型工艺的质量控制:成型工艺中常常需要进行质量控制,以确保成品符合要求。
质量控制包括原材料的质量检验、加工过程中的检查和控制、成品的检验和测试等。
质量控制的目标是减少不合格品率,提高生产效率和产品质量。
以上是成型工艺的基础知识,了解和掌握这些知识可以帮助工程师和技术人员选择合适的成型工艺,提高产品的质量和生产效率。
同时,不断学习和创新成型工艺,可以推动工业生产的发展,满足市场需求。
成型工艺是工业生产中常用的一种加工方法,它是将原材料通过一系列的加工步骤,使其成为所需的形状、尺寸和性能的工件的过程。
成型工艺的基础涉及到材料的选择、模具设计、成型工艺的选择、成型工艺的加工步骤和质量控制等方面。
首先,材料的选择是成型工艺的基础。
材料的选择影响了成型工艺的可行性和成品的质量。
在选择材料时,需要考虑到材料的强度、硬度、耐磨性、耐腐蚀性、热膨胀系数等因素。
第一章铸造1 铸造通常是将液态金属浇注到与零件的形状、尺寸相适应的铸型型腔中,待其冷却凝固后,以获得毛坯或零件的生产方法。
2 铸造的特点(1)较强的适应性(铸件形状、质量、尺寸、材料不受限制)(2)良好的经济性(3)铸件力学性能较差、质量不够稳定(4)铸造生产条件和环境差(铸造生产过程中、混沙、造型、清沙过程中产生大量的粉尘,熔炼浇注温度很高,铸造过程中还有大量的烟雾、刺激性气体产生,工人劳动强度很大)3 铸件被广泛应用于国防军工、航空航天、矿山冶金、交通运输工具、石化通用设备、农业机械、建筑机械等领域。
4 液态金属的充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力5 影响充型能力的主要因素有:液态金属的流动性、铸型性质、浇注条件以及铸件结构等6 金属的凝固方式:逐层凝固、体积凝固、中间凝固。
7 铸件在冷却过程中,体积和尺寸缩小的现象叫做收缩,收缩性是铸造合金固有的物理性质。
8 金属从液态冷却到室温,要经历三个相互联系的收缩阶段(1)液态收缩-----从浇注温度冷却至凝固开始温度之间的收缩(2)凝固收缩-----从凝固开始温度冷却至凝固结束温度之间的收缩(3)固体收缩-----从凝固完毕时的温度冷却至室温之间的收缩9 影响铸件收缩的主要因素有:化学成分、浇注温度、铸件结构、铸型条件等。
10 铸造的内应力分为:热应力、相变应力、收缩应力。
(1)热应力是铸件在凝固和冷却过程中,不同部位由于收缩不均衡而引起的应力(2)相变应力是由于固态相变,各部分体积发生不均衡变化引起的应力(3)收缩应力是由于铸型、型芯等阻碍铸件的收缩产生的应力,收缩应力一般使铸件产生拉伸或剪切应力。
11热裂是在铸件凝固末期高温下形成的裂纹;12冷裂是铸件在低温时形成的裂纹。
13防止冷裂和热裂的主要方法是减小铸造内应力。
14灰口铸铁的性能特点:熔点较低,凝固温度范围小,流动性好,凝固收缩小,具有良好的铸造性能,综合机械性能低,抗压强度比抗拉强度高3-4倍。
材料成型技术基础材料成型技术是指通过一系列的加工方法,将原材料加工成所需形状和尺寸的工件的技术。
它是制造业中最基础、最重要的一环,直接影响着产品的质量、成本和生产效率。
材料成型技术包括铸造、锻造、焊接、切削加工、塑性加工等多种加工方法,本文将对这些方法进行简要介绍。
首先,铸造是指将金属或非金属熔化后,借助重力或压力,注入模具中,冷却后得到所需形状的工件的一种加工方法。
铸造方法简单、成本低,适用于制造大型、复杂形状的零件,但其工件的力学性能一般较差。
其次,锻造是指将金属加热至一定温度后,放入模具中进行挤压、冲击或冲裁等加工方法,得到所需形状的工件。
锻造工件的晶粒结构致密,力学性能优良,适用于制造高强度、高耐磨的零件。
接下来,焊接是指利用高温将金属或非金属熔化,使两个或多个工件连接在一起的方法。
焊接方法种类繁多,包括电弧焊、气体保护焊、激光焊等。
焊接工艺灵活,适用于各种形状、材质的工件连接,但焊接工件的热影响区较大,容易产生焊接变形和裂纹。
再者,切削加工是指利用刀具对工件进行切削、镗削、铣削等加工方法,得到所需形状和尺寸的工件。
切削加工精度高,表面质量好,适用于制造高精度、复杂形状的零件,但加工过程中产生的废屑多,效率较低。
最后,塑性加工是指利用金属材料的塑性变形特性,通过压力、拉力或弯曲力等加工方法,将金属板材或棒材加工成所需形状的工件。
塑性加工适用范围广泛,适用于各种形状、材质的工件加工,但工件的尺寸精度和表面质量较难控制。
总的来说,不同的材料成型技术各有优势和局限,应根据具体的工件要求和生产条件选择合适的加工方法。
在实际生产中,还可以通过组合应用多种加工方法,充分发挥各种加工方法的优点,实现工件的高效加工和优质制造。
希望本文对材料成型技术有所帮助,谢谢阅读。
材料成型基础课程报告电弧是一种气体导电(放电)现象。
焊接电弧则是两个电极之间强烈而持久的放电现象。
电弧产生的条件就是气体要成为导电体。
通常气体是不导电的,气体成为导体则需要两个条件,即①阴极电子发射和②气体电离。
带电粒子的性质中性的气体原子在受到电场或热能作用时,气体原子中电子获得足够的能量,克服原子核对电子的引力,而成为自由电子。
中性原子因失去带负电荷的电子而成为带正电荷的正离子的过程,就叫做气体电离。
当有阴极电子发射,电子高速运动与气体原子相互碰撞,如果撞击的能量大于气体原子核与电子间的引力时,则发生气体电离;或者在高温下,气体原子的运动速度加快,原子间相互碰撞,也会引起气体电离。
气体电离(1)撞击电离。
是指在电场中,被加速的带电粒子(电子、离子)与中性点(原子)碰撞后发生的电离。
(2)热电离。
是指在高温下,具有高动能的气体原子(或分子)互相碰撞而引起的电离。
(3)光电离。
是指气体原子(或分子)吸收了光射线的光子能而产生的电离。
阴极电子发射(1)热发射。
物体的固体或液体表面受热后,其中某些电子具有大于逸出功的动能而逸出到表面外的空间中去的现象称为热发射。
热发射在焊接电弧中起着重要作用,它随着温度上升而增强。
(2)光电发射。
物质的固体或液体表面接受光射线的能量而释放出自由电子的现象称为光电发射。
对于各种金属和氧化物,只有当光射线波长小于能使它们发射电子的极限波长时,才能产生光电发射。
(3)重粒子撞击发射。
能量大的重粒子(如正离子)撞到阴极上,引起电子的逸出,称为重粒子撞击发射。
重粒子能量越大,电子发射越强烈。
(4)强电场作用下的自发射。
物质的固体或液体表面,虽然温度不高,但当存在强电场并在表面附近形成较大的电位差时,使阴极有较多的电子发射出来,这就称为强电场作用下的自发射,简称自发射。
电场越强,发射出的电子形成的电流密度就越大。
自发射在焊接电弧中也起着重要作用,特别是在非接触式引弧时,其作用更加明显。
铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。
1、铸造的实质利用了液体的流动形成。
2、铸造的特点A 适应性大(铸件分量、合金种类、零件形状都不受限制);B 成本低C 工序多,质量不稳定,废品率高D 力学性能较同样材料的锻件差。
力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松, 成份不均匀3、铸造的应用铸造毛胚主要用于受力较小,形状复杂(特别是腔内复杂)或者简单、分量较大的零件毛胚。
1、铸件的凝固(1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程.它由晶核的形成和长大两部份组成。
通常情况下,铸件的结晶有如下特点:A 以非均质形核为主B 以枝状晶方式生长为主.结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒. 晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或者混合组织等.(2)铸件的凝固方式逐渐的凝固方式有三种类型:A 逐层凝固B 糊状凝固C 中间凝固2、合金的铸造性能(1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。
它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。
生产上改善合金的充型能力可以从一下各方面着手:A 选择挨近共晶成份的趋于逐层凝固的合金,它们的流动性好;B 提高浇注温度,延长金属流动时间;C 提高充填能力D 设置出气冒口,减少型内气体,降低金属液流动时阻力。
(2)收缩性A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中.对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。
适当控制凝固顺序,让铸件按远离冒口部份最先凝固,然后朝冒口方向凝固, 最后才是冒口本身的凝固(即顺序凝固方式) ,就把缩孔转移到最后凝固的部位—- 冒口中去,而去除冒口后的铸件则是所要的致密铸件。
材料成形技术基础材料成形技术是将原材料通过加工和加热等方式进行形状改变的一种工艺技术。
它是现代工业生产中最为基础的一种技术,广泛应用于汽车制造、航空航天、电子设备、建筑等众多领域。
材料成形技术的基础包括材料性质、成形工艺、模具设计和材料成型设备等方面。
首先,了解材料的性质对于材料成形技术至关重要。
不同的材料在成形过程中的行为和特性会有所不同,因此在进行材料成形之前,首先需要对材料进行分析和测试,了解其力学性能、热学性能以及变形性能等方面的特点。
这些性能对于选择适当的成形工艺和加工参数具有重要影响。
其次,成形工艺是材料成形技术的关键。
成形工艺是指通过施加力和温度等条件改变材料形状的过程。
常见的成形工艺包括铸造、锻造、轧制、挤压、拉伸、剪切等。
不同的成形工艺适用于不同类型的材料和形状要求,因此需要根据具体的情况选择适当的成形工艺。
第三,模具设计是材料成形技术中的重要环节。
模具是将材料成形成所需形状的关键工具。
模具设计需要根据材料性质、成形工艺和产品要求等因素合理设计模具的结构和形状。
同时,模具的加工精度和表面光洁度对于成形工艺的控制也具有重要影响,因此在模具设计中需要考虑这些因素。
最后,材料成型设备是实施材料成形技术的基础。
不同的材料成形工艺需要相应的设备,如高温炉、锻压机、挤压机、轧机等。
这些设备需要具备相应的功率、控制精度和稳定性,以保证材料能够按照预定的工艺要求进行成形。
总结起来,材料成形技术基础包括材料性质、成形工艺、模具设计和材料成型设备等方面。
了解材料性质、选择适当的成形工艺、合理设计模具和使用符合要求的成型设备是确保材料成形质量的关键。
随着科学技术的发展,材料成形技术的研究不断推进,使得各种新材料和新工艺得以应用,推动了工业生产的进一步发展。
《材料成型理论基础》课程教学大纲一、课程名称(中英文)中文名称:材料成型理论基础英文名称:Fundamentals for Materials Processing二、课程编码及性质课程编码:0809554课程性质:专业核心课,必修课三、学时与学分总学时:56学分:3.5四、先修课程工程材料学、传热学、流体力学、材料成形工艺基础五、授课对象本课程面向材料成型及控制工程专业学生开设,也可以供材料科学与工程专业和电子封装技术专业学生选修。
六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)本课程是本专业的核心课程之一,其教学目的主要包括:1.让学生对液态成形、连接成形、固态塑性成形及高分子材料成形的基本过程有较全面、深入的理解,掌握其基本原理和规律。
2.了解液态金属的结构和性质;掌握液态金属凝固的基本原理,冶金处理及其对产品性能的影响。
3.掌握材料成形中化学冶金基本规律和缺陷的形成机理、影响因素及防止措施。
4.掌握塑性成形过程中的应力与应变的基础理论,金属流动的基本规律及其应用。
5.了解高分子材料的组织转变及流动、成形的基本规律。
表1 课程目标对毕业要求的支撑关系七、教学重点与难点:教学重点:1)本课程以材料成形工艺的理论基础为主线,根据成形加工过程中材料所处或经历的状态,分为液态凝固成形、固态塑性成形、连接成形、塑料注射成形等几类,学习材料在成形过程中的组织结构、性能、形状随外在条件的不同而变化的规律性知识。
2)本课程着重利用前期所学的物理、化学等基础理论,以及传热学、流体力学等专业基础理论知识,学习液态成形、塑性成形、连接成形等基本材料成形技术的内在规律和物理本质,包括共性原理,同时也要注重个性规律性认识。
3)课程将重点或详细介绍三种主要材料成形方法中的主要基础理论和专门知识,阐述这些现象的本质,揭示变化的规律。
而对次要成形方法的基本原理或发展状况等只作简要介绍或自学。
4)重点学习的章节内容包括:第4章“单相合金与多相合金的凝固”(6学时)、第5章“铸件凝固组织的形成与控制”(6学时)、第7章“焊缝及其热影响区的组织和性能”(6学时)、第8章“成形过程的冶金反应原理”(6学时)、第11章“应力与应变理论”(4学时)、第12章“屈服准则”(6学时)。