第1讲-汽车轮胎动力学与建模方法
- 格式:ppt
- 大小:1.80 MB
- 文档页数:73
汽车轮胎动力学模型的研究摘要:在我们研究汽车轮胎的动力学方面的问题时,对轮胎的动力学进行建模成为了至关重要的一部。
本论文主要是对汽车动力学仿真中的轮胎数学模型现状进行了分析,简要说明了轮胎动力学建模的新方法并进行了展望。
Abstract:When we studied the kinetic aspects of the automobile tire, the tire dynamics modeling has become a crucial part. In this thesis, tire mathematical model of vehicle dynamics simulation of the status quo analysis, a brief description of the tire dynamics modeling and prospects.关键词: 车辆轮胎动力学动力学模型轮胎是汽车上最重要的组成部件之一,它支持车辆的全部重量,传送牵引和制动的扭力,保证车轮与路面的附着力,减轻和吸收汽车在行驶时的震动和冲击力,保证行驶的安全性、操纵稳定性、舒适性和节能经济性。
因此,轮胎动力学特性的研究,对研究车辆性能来说是非常必要的。
车辆运动依赖于轮胎所受的力,如纵向制动力和驱动力、侧向力和侧倾力、回正力矩和侧翻力矩等。
所有这些力都是滑转率、侧偏角、外倾角、垂直载荷、道路摩擦系数和车辆运动速度的函数,如何有效地表达这种函数关系,即建立精确的轮胎动力学数学模型,一直是轮胎动力学研究人员所关心的问题。
轮胎的动力学特性对车辆的动力学特性起着至关重要的作用,特别是对车辆的操纵稳定性、制动安全性、行驶平顺性具有重要的影响。
1 轮胎侧偏特性研究由于轮胎的结构十分复杂,在侧偏和纵滑时其受力和变形难于确定,另外,轮胎和路面之间的摩擦耦合特性也具有不稳定的多变性。
在目前阶段,很难根据轮胎的物理特性和真实的边界条件来精确地计算轮胎的偏滑特性。
为方便具有轮胎非线性分析需求的用户熟悉Marc(Marc Mentat)中轮胎建模的方法和流程,针对某汽车轮胎的装配、充气、在路面承受后轮胎的变形和应力分析进行描述。
一、使用Marc Mentat建立轮胎二维轴对称模型模拟装配到轮辋和充气过程首先根据轮胎的结构和尺寸参数在Mentat中建立下图所示的有限元模型(195/65R15汽车轮胎),用户可以使用Marc Mentat直接创建轮胎截面的几何模型和有限元模型,也可以利用Mentat提供的接口,将其他CAD或CAE软件创建的模型导入到Mentat中进行后续材料参数、边界条件、分析参数等的定义。
Mentat提供了多种商用的CAD和CAE软件的接口,具体可以参考Marc用户手册的介绍。
本例出示的轮胎模型包括橡胶胎面、带束层、胎冠(tread、base、rubber)以及布帘等加强结构(bead、rebar1、rebar2)。
如下图所示:轮胎截面有限元模型(二维轴对称)橡胶材料部分可以采用Marc提供的Mooney模型定义,根据实际材料特性输入相应的材料参数即可。
Marc Mentat提供了多种模拟橡胶材料的本构模型和实验曲线拟合工具,用户可以根据供应商提供的或实测的该橡胶材料的实验曲线(应力-应变曲线)选择合适的超弹性材料模型进行拟合,并由Mentat自动计算和应用材料参数到模型中。
具体步骤可参考Marc用户手册或基础培训教程中的相关介绍。
详细内容可参考mar103教程中的介绍.轮胎各部分材料类型分布对于加强材料,这里包括了两类,一类是金属圈bead结构,直接采用各向同性材料本构模型,输入相应的结构材料参数,例如弹性模量、泊松比等即可。
另一类加强筋材料采用嵌入式模型(本例中加强筋单元嵌入到rubber基体材料中),用于模拟轮胎橡胶材料中嵌入的布帘和加强筋结构,这些结构可以指定为Marc中的rebar单元来模拟。
Marc支持一种基体材料中同时嵌入多层和多种加强筋材料的定义,这些加强筋结构可以分层分布在基体材料不同的厚度处、加强筋的铺设方向、截面积以及数量等均可以根据实际结构定义。