第1讲-汽车轮胎动力学与建模方法
- 格式:ppt
- 大小:1.80 MB
- 文档页数:73
汽车轮胎动力学模型的研究摘要:在我们研究汽车轮胎的动力学方面的问题时,对轮胎的动力学进行建模成为了至关重要的一部。
本论文主要是对汽车动力学仿真中的轮胎数学模型现状进行了分析,简要说明了轮胎动力学建模的新方法并进行了展望。
Abstract:When we studied the kinetic aspects of the automobile tire, the tire dynamics modeling has become a crucial part. In this thesis, tire mathematical model of vehicle dynamics simulation of the status quo analysis, a brief description of the tire dynamics modeling and prospects.关键词: 车辆轮胎动力学动力学模型轮胎是汽车上最重要的组成部件之一,它支持车辆的全部重量,传送牵引和制动的扭力,保证车轮与路面的附着力,减轻和吸收汽车在行驶时的震动和冲击力,保证行驶的安全性、操纵稳定性、舒适性和节能经济性。
因此,轮胎动力学特性的研究,对研究车辆性能来说是非常必要的。
车辆运动依赖于轮胎所受的力,如纵向制动力和驱动力、侧向力和侧倾力、回正力矩和侧翻力矩等。
所有这些力都是滑转率、侧偏角、外倾角、垂直载荷、道路摩擦系数和车辆运动速度的函数,如何有效地表达这种函数关系,即建立精确的轮胎动力学数学模型,一直是轮胎动力学研究人员所关心的问题。
轮胎的动力学特性对车辆的动力学特性起着至关重要的作用,特别是对车辆的操纵稳定性、制动安全性、行驶平顺性具有重要的影响。
1 轮胎侧偏特性研究由于轮胎的结构十分复杂,在侧偏和纵滑时其受力和变形难于确定,另外,轮胎和路面之间的摩擦耦合特性也具有不稳定的多变性。
在目前阶段,很难根据轮胎的物理特性和真实的边界条件来精确地计算轮胎的偏滑特性。
为方便具有轮胎非线性分析需求的用户熟悉Marc(Marc Mentat)中轮胎建模的方法和流程,针对某汽车轮胎的装配、充气、在路面承受后轮胎的变形和应力分析进行描述。
一、使用Marc Mentat建立轮胎二维轴对称模型模拟装配到轮辋和充气过程首先根据轮胎的结构和尺寸参数在Mentat中建立下图所示的有限元模型(195/65R15汽车轮胎),用户可以使用Marc Mentat直接创建轮胎截面的几何模型和有限元模型,也可以利用Mentat提供的接口,将其他CAD或CAE软件创建的模型导入到Mentat中进行后续材料参数、边界条件、分析参数等的定义。
Mentat提供了多种商用的CAD和CAE软件的接口,具体可以参考Marc用户手册的介绍。
本例出示的轮胎模型包括橡胶胎面、带束层、胎冠(tread、base、rubber)以及布帘等加强结构(bead、rebar1、rebar2)。
如下图所示:轮胎截面有限元模型(二维轴对称)橡胶材料部分可以采用Marc提供的Mooney模型定义,根据实际材料特性输入相应的材料参数即可。
Marc Mentat提供了多种模拟橡胶材料的本构模型和实验曲线拟合工具,用户可以根据供应商提供的或实测的该橡胶材料的实验曲线(应力-应变曲线)选择合适的超弹性材料模型进行拟合,并由Mentat自动计算和应用材料参数到模型中。
具体步骤可参考Marc用户手册或基础培训教程中的相关介绍。
详细内容可参考mar103教程中的介绍.轮胎各部分材料类型分布对于加强材料,这里包括了两类,一类是金属圈bead结构,直接采用各向同性材料本构模型,输入相应的结构材料参数,例如弹性模量、泊松比等即可。
另一类加强筋材料采用嵌入式模型(本例中加强筋单元嵌入到rubber基体材料中),用于模拟轮胎橡胶材料中嵌入的布帘和加强筋结构,这些结构可以指定为Marc中的rebar单元来模拟。
Marc支持一种基体材料中同时嵌入多层和多种加强筋材料的定义,这些加强筋结构可以分层分布在基体材料不同的厚度处、加强筋的铺设方向、截面积以及数量等均可以根据实际结构定义。
详细介绍轮胎模型,主要是自己做课题时,用到的整理汇总出来的,轮胎这部分的资料比较少的,记录下来帮助大家一起学习一起进步;主要分以下两部分介绍一、轮胎模型简介轮胎是汽车重要的部件,它的结构参数和力学特性决定着汽车的主要行驶性能。
轮胎所受的垂直力、纵向力、侧向力和回正力矩对汽车的平顺性、操纵稳定性和安全性起重要作用。
轮胎模型对车辆动力学仿真技术的发展及仿真计算结果有很大影响,轮胎模型的精度必须与车辆模型精度相匹配。
因此,选用轮胎模型是至关重要的。
由于轮胎具有结构的复杂性和力学性能的非线性,选择符合实际又便于使用的轮胎模型是建立虚拟样车模型的关键。
一、轮胎模型简介轮胎建模的方法分为三种:1)经验—半经验模型针对具体轮胎的某一具体特性。
目前广泛应用的有 Magic Formula公式和吉林大学郭孔辉院士利用指数函数建立的描述轮胎六分力特性的统一轮胎半经验模型UniTire ,其主要用于车辆的操纵动力学的研究。
2)物理模型根据轮胎的力学特性,用物理结构去代替轮胎结构,用物理结构变形看作是轮胎的变形。
比较复杂的物理模型有梁、弦模型。
特点是具有解析表达式,能探讨轮胎特性的形成机理。
缺点是精确度较经验—半经验模型差,且梁、弦模型的计算较繁复。
3)有限元模型基于对轮胎结构的详细描述 , 包括几何和材料特性,精确的建模能较准确的计算出轮胎的稳态和动态响应。
但是其与地面的接触模型很复杂,占用计算机资源太大,在现阶段应用于不平路面的车辆动力学仿真还不现实,处于研究阶段。
主要用于轮胎的设计与制造二、 ADAMS/TIRE轮胎不是刚体也不是柔体,而是一组数学函数。
由于轮胎结构材料和力学性能的复杂性和非线性以及适用工况的多样性,目前还没有一个轮胎模型可适用于所有工况的仿真,每个轮胎模型都有优缺点和适用的范围。
必须根据需要选择合适的轮胎模型。
ADAMS/TIRE分为两大类:一) .用于操稳分析的轮胎模型魔术公式是用三角函数的组合公式拟合轮胎试验数据,用一套形式相同的公式完整地表达轮胎的纵向力、侧向力、回正力矩、翻转力矩、阻力矩以及纵向力、侧向力的联合作用工况,主要包括以下的前四种模型。
车辆动力学模型的建立与仿真分析引言随着汽车工业的发展,车辆的动力学特性成为了工程师们关注的重点之一。
为了研究和改善车辆性能,建立车辆动力学模型并进行仿真分析成为了必不可少的工具。
本文将介绍车辆动力学模型的建立方法,并应用仿真分析技术对其进行探索。
一、车辆动力学模型的建立1.车辆运动学建模车辆动力学模型的第一步是建立车辆的运动学模型。
这包括车辆的位置、速度和加速度等关键参数的表达与计算。
通常,车辆运动学模型可以采用经典的运动学方程来描述,如牛顿第二定律和牛顿运动定律。
此外,还可以利用机械臂法和转角法等方法推导车辆的运动学模型。
2.车辆力学建模在车辆动力学模型的建立过程中,力学建模也是重要的一步。
力学建模旨在描述车辆受到的力和力矩等动力学特性。
常见的力学模型包括车辆的质量、重心高度、车轮滚动阻力、制动力和驱动力等。
通过建立准确的力学模型,可以更好地了解车辆的运动特性和动力特性。
3.车辆轮胎力学建模在车辆动力学中,轮胎力学模型是一个至关重要的组成部分。
轮胎对车辆运动和操纵性能的影响很大。
常用的轮胎力学模型有Magic Formula模型和Tire model等。
通过对轮胎的力学特性进行建模,可以在仿真分析中更准确地模拟车辆的行为。
二、车辆动力学模型的仿真分析1.悬挂系统仿真分析在车辆动力学模型的仿真分析中,悬挂系统是一个重要的部分。
悬挂系统可以影响到车辆的驾驶舒适性、操控性能和行驶稳定性等。
通过对悬挂系统进行仿真分析,可以评估并优化车辆的悬挂调校。
2.转向系统仿真分析车辆的转向系统是影响车辆操纵性能的另一个关键部分。
通过对转向系统进行仿真分析,可以评估车辆在转向时的稳定性和灵活性。
此外,还可以通过仿真分析来改进转向系统的设计和调校。
3.刹车系统仿真分析刹车系统是车辆安全性的关键因素之一。
通过仿真分析刹车系统可以评估车辆制动性能,包括制动距离、制动稳定性和制动力分布等。
这对于改进刹车系统的设计和优化具有重要意义。