《二次根式(第1课时)》精品教案
- 格式:docx
- 大小:45.87 KB
- 文档页数:4
《二次根式》教案(第一课时)一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念.它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.本节课的教学重点是:根据算术平方根的意义了解二次根式的概念教学.二、目标和目标解析1.目标(1)根据算术平方根的意义了解二次根式的概念,明白被开方数必须是非负数原因.(2)会用二次根式表示实际问题中的数量和数量关系.2.目标解析达成目标(1)的标志是:学生能从具体数的算术平方根出发,过渡到含字母的情况,通过算术平方根的概念得到二次根式的概念,并根据算术平方根的意义得到二次根式被开方数和结果均为非负数的结论.达成目标(2)的标志是:学生能够根据实际问题,利用开平方运算的意义,列出二次根式.三、教学问题诊断分析二次根式概念的获得,要让学生经历其抽象的过程,借此培养学生的抽象概括能力,加深学生对二次根式概念的理解.教学时,要充分利用教材的“思考”栏目,从生活中的实际问题引入,以激发学生的学习兴趣,让学生体会由特殊到一般的过程,由此给出二次根式的定义.在二次根式的概念中,为什么要强调被开方数大于等于零?引导学生讨论,知道二次根式被开方数必须是非负数的理由以及二次根式的结果的非负性,所以二次根式的双重非负性是本节课的难点.四、教学过程设计(一)创设情景,提出问题电视塔越高,从塔顶发射的电磁波传得越远,从而能收看到电视节目的区域越广,电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r=其中地球半径,R≈6400km.如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径之.你能化简这个式子吗?问题1式子表示什么?公式中r=的课题.设计意图:让学生借助已学的数和式子的运算,从数与式子运算的完整性角度引出要研究的问题让学生知道本章将要学习的内容,让学生提前做到心中有数.问题2用带根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为_______,面积为S的正方形的边长为_______.(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h (单位:m)满足关系h=5t2.如果用含有h的式子表示t,则t为=_____.设计意图:让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.(二)合作探究,形成知识(1)这些式子分别表示什么意义?(2)这些式子有什么共同特征?教师引导学生说出各式的意义.)概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.(3)根据你的理解,请写出二次根式的定义.叫做二次根式.(学生总结)a≥0)的式子叫做二次根式,“”称为二次根号.(师生共同总结)(4)提醒学生注意二次根式定义包含的内容.②被开方数a≥0.③a可以是数,也可以是含有字母的式子.(5)在二次根式的定义中,为什么要有条件“a≥0”?教师引导学生回想4、0的算术平方根分别是什么?-4有没有算术平方根?最后总结只有非负数才有算术平方根.设计意图:采用具体到抽象的方式,通过归纳得出二次根式的概念.(三)初步应用,巩固知识练习:二次根式和算术平方根有什么关系?学生通过小组合作交流得出:二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式.【例1】当x在实数范围内有意义,则应满足被开方数x-2≥0.解:由x-2≥0,得x≥2.当x≥2在实数范围内有意义.【例2】当x解:因为2x≥0,所以,当x在实数范围内都有意义.由3x≥0,得x≥0.当x≥0在实数范围内有意义.设计意图:通过练习、例1、例2,加深概念理解.(四)比较辨别,探索性质0的大小.先让学生独立思考,然后教师引导学生根据概念,分a>0和a=0两种情况进行讨论.当a>0a>0;当a=0表示0=0;(a≥0)是一个非负数.设计意图:强化学生对二次根式双重非负性的认识.(五)综合应用,深化提高练习1判断下列各式哪些是二次根式:ax≥-(1(210);(3(4≤0).学生先独立完成,后小组展示确定二次根式有意义的条件(被开方数大于或等于零),所以(2)(3)(4)为二次根式.练习2当x是什么实数时,下列各式有意义.(1(2(3(4解:(1)由3-4x≥0,得x≤34.(2)由xx≥⎧⎨-≠⎩10,得≥0且1.x x≠(3)由x≤2-0,得x=0x≠0(4)由-2≥0且2-≥0x x ,得2x =.设计意图:辨析二次根式的概念,确定二次根式有意义的条件.(六)课堂小结(1)本节课你学到了哪一类新的式子?(a ≥0(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?中的a ≥0≥0. 二次根式的双重非负性.(3)二次根式与算术平方根有什么关系?二次根式都是非负数的算术平方根,带有根号的算术平方根是二次根式.设计意图:回顾本节课所学的二次根式的概念,再次确定二次根式有意义的条件;理解二次根式的双重非负性以及二次根式与算术平方根的关系.(七)布置作业1x 的取值范围是( )A .0x >B .2≥x -C .2≥xD .2≤x2.已知y 3,则2xy 的值为( )A .15-B .15C .152-D .1523.求使下列各式有意义的x 的取值范围? (1)2+x -x 23-;(2)x --11+x ; (3)y =;(4)2||12--x x . 4.已知12-a +a b 2-+c b a ++=0.求a 、b 、c 的值.作业答案:1.D 202≥得≤x x -.故选D .2.B 解析:要使有意义,则25≥052≥0x x -⎧⎨-⎩,解得x =25,故y =3,∴2xy =2×25×3=15.故选B . 3.(1)322≤≤x -;(2)0≤x 且1x ≠-;(3)0≥x 且1x ≠.(4)12≥x 且2x ≠. 4.∵12-a ≥0,a b 2-≥0,c b a ++≥012-a +a b 2-+c b a ++=0∴2a -1=0,b -2a =0,a +b +c =0 ∴13122,,a b c ===-五、目标检测设计1.指出下列哪些是二次根式?(134(5≥2);(6<).a a b设计意图:考查二次根式的概念.2.a 取何值时,下列根式有意义?(1 (23 (45 设计意图:考查二次根式的有意义的条件.3n 的值为___________.设计意图:考查二次根式的有意义的条件.目标检测答案:1.(1)(4)(5)是二次根式.2.解:(1)由a +1≥0,得a ≥-1;(2)由1-2a >0,得a <12;(3)由()2-1a ≥0,得a 为任何实数;(4)a 为任何实数;(5)a =1.3.0,3,4.。
[二次根式]教案(第一课时)教学目的:1.使学生了解二次根式的概念2.使学生掌握二次根式的简单性质:①a≥0)总是一个非负实数。
②2=a(a≥0)3.培养学生观察能力,抽象概括能力,渗透分类的思想方法。
教学重点:二次根式概念以及二次根式的性质:2=a(a≥0)教学难点:公式2-a(a≥0)教学用具:投影仪和投影胶片教学过程:一、复习提问:观察以下各式分别表示什么?他们在形式上有什么共同特征?在被开方数方面有什么共同特征?二、引入新课:①如果用字母a②引导学生讨论:a可以取哪些实数?③引入课题三、讲解新课1.二次根式概念:⑴板书二次根式定义。
⑵学生讨论:这里为什么规定a≥0?⑶强调二次根式的两个特征(其中a≥0用红粉笔强调)。
⑷结合复习题举例说明。
2.练习(投影出示)选择题(1x≤0)x>2)中属于二次根式的是()A.①②③B.①③④C.②③④D.①②④(2)当x=-2时,在实数范围内没有意义的式子是()a≥03.例1:x(1)学生讨论解题思路;(2)师生共同完成解题过程并强调书写各式的规范。
4.巩固练习(投影出示)x取什么实数时,下列各式在实数范围内有意义?请三位学生上黑板板演,然后学生评讲刚才我们研究了二次根式的概念,下面我们来共同研究二次根式的性质5a≥0)的非负性(1)判断题:1°当a>0(),2°当a=0()3°对于任何实数a0()(2a≥0)≥0(3)学生讨论:前面还学过那些具有非负性的数?=(a≥0)6.公式:2a(1)实例:因为(±2)2=4,所以±2是4的平方根,其中2是4的算术平方根。
由此可知当2时4的算术平方根时,他们应该满足22=43的算术平方根,根据平方根意义可知,他们应满足的关系是( )2=5的算术平方根,同样有( )2=你能举出一个类似的例子吗?(2)学生观察归纳:2a =(3)提问:这个公式在什么条件下成立呢?为什么a ≥0?(4)公式2a =(a ≥0)7.例2,计算①2 ②2 ③2师生共同完成解题过程,并说明表示3135不同,遇到52确写法。
二次根式第一课时教案[6篇]以下是网友分享的关于二次根式第一课时教案的资料6篇,希望对您有所帮助,就爱阅读感谢您的支持。
第一篇二次根式教学目标:(1) 了解二次根式的概念,初步理解二次根式有意义的条件.(2) 通过具体问题探求并掌握二次根式的基本性质:当a≥0时,a= a;能运用这个性质进行一些简单的计算。
(3) 通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法。
教学重点:二次根式的概念以及二次根式的基本性质教学难点:经历知识产生的过程,探索新知识.教学方法:讨论法教学过程:一.情景创设1.回顾:什么叫平方根? 什么叫算术平方根?2.计算:.(2)如图,在Rt∆ABC中,AB=50m,BC=am,则()2(3)圆的面积为S,则圆的半径是 .(4)正方形的面积为b-3,则边长为 .3.对上面(2)~(4)题的结果,你能发现它们有什么共同的特征吗?二、探索与实践1、二次根式的定义.__________________________________________________ ____ 说说对二次根式a 的认识,好吗?__________________________________________________ ______2、练习:说一说,下列各式是二次根式吗? (1)32 (2)6 (3)-12 (4)-m(m≤0) (5)xy(x、y异号) (6)a2+1 (7)53、例1: x是怎样的实数时,式子x-5在实数范围内有意义?4、二次根式性质的探索:22=4,即(4)2= 4;32=9,即(9)2= 9;…… 观察上述等式的两边,你得到什么启示?揭示:当a≥0时,5、例2。
计算:(1)(3)2;(2)((3)(a+b)2 (a+b≥0)6、练习.(1)(22)= (2)(-23)2 3a) = a。
222); 3 三、课堂练习P59页练习1、2.四、课堂小结引导学生总结1. 什么叫做二次根式?你们能举出几个例子吗?2. 二次根式有哪两个形式上的特点?3.当a≥0时,五、作业教后感:a) = ?2第二篇二次根式第一课时教学内容二次根式的概念及其运用教学目标1.a≥0)的意义解答具体题目.2.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式;2a≥0)”解决具体问题.教学过程一、复习引入在第11章我们学习了平方根和算术平方根的意义,引进了一个符号a.这里的a表示什么?a应满足什么条件?当aa表示a的算术平方根,即正数a的正的平方根.当a是零时,a等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,a没有意义.即:a(a≥0)表示非负数a的算术平方根.二、新知探究a≥0)•的式子叫做二次根式,注意:1. 其中的a可以是具体的数,也可以是含有字母的代数式.2.在二次根式a中,字母a必须满足a≥0,即被开方数必须是非负数.(这里可以让学生自己举几个二次根式的例子,有助于学生的理解)例1.下列式子,哪些是二次根式,11x>0)x≥0,y•≥0).xx+y分析二,被开方数是正数或0,即非负数.;第x>0)x≥0,y≥0)1x1.x+y例2.x是怎样的实数时,二次根式x-1在实数范围有意义?分析要使二次根式有意义,必须且只须被开方数是非负数.解被开方数x-1≥0,即x≥1.所以,当x≥1时,二次根式x-1有意义.例3.当x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x≥当x≥三、巩固练习1313教材P练习第2题.四、应用拓展例4.当x分析:要使+0和1在实数范围内有意义?x+11在实数范围内有意义,必须同时满足x+11中的x+1≠0.x+1解:依题意,得⎨由①得:x≥-由②得:x≠-1 32⎧2x+3≥0 ⎩x+1≠0当x≥-且x≠-1+321在实数范围内有意义.x+1例5. (1) 已知,求的值.(答案: )(2)=0,求a2004+b2004的值.(答案:2)五、归纳小结(学生活动,老师点评)本节课要掌握:1a≥0)的式子叫做二次根式,号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业xy251.教材习题中的对应题目.2.导学案中的对应习题. 教学反思:第三篇16.1 二次根式(一)骆诗龙学习目标:1、知道什么叫二次根式,理解被开方数是非负数;2、掌握二次根式在实数范围内有、无意义的条件。
二次根式的乘除第一课时教案一、教学目标1.理解二次根式乘除法的概念。
2.学会运用二次根式的乘除法进行计算。
3.能够运用乘除法简化二次根式。
二、教学重点与难点1.教学重点:掌握二次根式的乘除法法则。
2.教学难点:灵活运用乘除法简化二次根式。
三、教学过程1.导入新课同学们,我们之前学习了二次根式的基本概念和性质,那么你们知道如何进行二次根式的乘除运算吗?今天我们就来学习这部分内容。
2.知识讲解(1)二次根式的乘法法则:a√b×c√d=(ac)√(bd),其中a、b、c、d为实数,b、d不为0。
(2)二次根式的除法法则:a√b÷c√d=(a/c)√(b/d),其中a、b、c、d为实数,b、d不为0,c不为0。
3.课堂实例(1)计算:√5×√2解:根据二次根式乘法法则,√5×√2=√(5×2)=√10。
(2)计算:√8÷√2解:根据二次根式除法法则,√8÷√2=√(8/2)=√4=2。
(3)计算:√18×√2÷√3解:我们可以将乘法和除法分别进行计算。
√18×√2=√(18×2)=√36=6,然后,√36÷√3=√(36/3)=√12=2√3。
4.练习巩固(1)计算:√12×√3(2)计算:√27÷√9(3)计算:√45×√2÷√5(4)计算:√72÷√2×√35.课堂小结通过本节课的学习,我们掌握了二次根式的乘除法法则,学会了如何进行二次根式的乘除运算。
同时,我们也需要注意,在进行乘除运算时,要熟练掌握运算法则,注意化简。
6.作业布置(1)完成课后练习题。
四、教学反思本节课通过实例讲解和练习巩固,学生对二次根式的乘除法有了初步的认识和掌握。
在教学过程中,要注意引导学生发现规律,培养学生的运算能力。
同时,要关注学生的学习反馈,及时进行教学调整,提高教学效果。
第5章二次根式5.1 二次根式第1课时二次根式的概念及性质1.了解二次根式的概念.2.掌握二次根式的基本性质.3.会判断二次根式,能求简单的二次根式中的字母的取值范围.4.经历二次根式的基本性质、运算法则的探究过程,培养学生从具体到抽象的概括能力.5.经历观察、比较、总结和应用数学等活动,感受数学活动充满了探索性与创造性.体会发现的快乐,并提高应用的意识.【教学重点】二次根式的概念及意义.【教学难点】利用“a(a≥0)”解决具体问题.一、情景导入,初步认知1.什么叫做一个数的平方根?如何表示?2.什么是一个数的算术平方根?如何表示?3.16的平方根是什么? 算术平方根是什么?4.0的平方根是什么?算术平方根是什么?5.-7有没有平方根?有没有算术平方根?【教学说明】评价学生与本节课相关的旧知识的掌握情况.二、思考探究,获取新知1.说一说:(1)5的平方根是什么?正实数a的平方根是什么?(2)运用运载火箭发射航天飞船时,火箭必须达到一定的速度,才能克服地球引力,从而将飞船送入环地球运行的轨道,而第一宇宙速度u与地球半径R之间存在如下关系:u 2=gR ,其中重力加速度常数g ≈9.5m/s 2.如已知地球半径R ,则第一宇宙速度v 是多少?我们已经知道:每一个正实数a 有且只有两个平方根,一个记作a ,称为a 的算术平方根,另一个是-a . 【归纳结论】我们把形如a 的式子叫作二次根式,根号下的数叫作被开方数.2.思考二次根式“a ”中被开方数a 能取任意实数吗?【归纳结论】只有当被开方数是非负实数时,二次根式才在实数范围内有意义.对于非负实数a,由于a 是a 的一个平方根,因此(a )2=a(a ≥0)3.做一做:填空.22272 1.25,(),===⋯⋯根据上述结果猜想,当a ≥0时,2a = . 【归纳结论】2a =a(a ≥0) 4.议一议:当a<0时,2a =a 是否依然成立?为什么?【归纳结论】二次根式的性质:【教学说明】学生小组交流期间师巡回指导,引导学生小结形成新知,理解新知;引导学生对二次根式的性质做出合理的解释.三、运用新知,深化理解1.教材P155例1、P156例2、例3.2.已知一个正方形的面积是5,那么它的边长是(B )A .5B .5C .15D .以上皆不对 3.()25x --x 有(B )个.A .0B .1C .2D .无数4.下列式子,哪些是二次根式,哪些不是二次根式:5.当x 是多少时,31x - 在实数范围内有意义?【分析】由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,31x -才能有意义.6.当x 是多少时,223x x x++ 在实数范围内有意义?7.当x 1231x x ++在实数范围内有意义? 【分析】1231x x +++在实数范围内有意义,23x + 中的2x+3≥0和11x +中的x+1≠0.8.已知a 、b 为实数,且521024a a b -+-=+ ,求a 、b 的值.答案:a=5,b=-4【教学说明】检测本节课学生对新知识的掌握情况,了解不足,以便查缺补漏,个别辅导.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材第159页“习题5.1”中第1 、2 题.学生已学过平方根、立方根、实数等概念及求法,对实数运算与性质有初步感受,为本节知识打下了基础.本节知识是前面相关内容的发展,同时是后面学习的直接基础,起到了承上启下的作用.通过复习引入新知,注重将新知识与旧知识进行联系与对比.随后从学生熟悉的四个实际问题出发,用已有的知识写出这四个问题的答案,并分析所得的结果在表达式上的特点,由此引入二次根式的概念,对于二次根式的一些结论,让学生参与思考、探索、学会分类讨论的方法,在教学过程中让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密,以此充分调动学生学习的兴趣.第2课时二次根式的化简1.了解最简二次根式的意义,并能作出准确判断.2.能熟练地把二次根式化为最简二次根式.3.了解把二次根式化为最简二次根式在实际问题中的应用.4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力.5.通过多种方法化简二次根式,渗透事物间相互联系的辩证观点.【教学重点】会把二次根式化简为最简二次根式.【教学难点】准确运用化二次根式为最简二次根式的方法.一、情景导入,初步认知1.什么叫二次根式?使二次根式有意义的条件是什么?2.当a≥0时,a叫什么?当a<0时,a有意义吗?【教学说明】复习上节课的内容,为本节课的教学作铺垫.二、思考探究,获取新知1.计算下列各式,观察计算结果,你发现了什么?2.化简下列二次根式(118(220(372【教学说明】化简二次根式时,可以直接把根号下的每一个平方因子去掉平方号以后移到根号外.(注意:从根号下直接移到根号外的数必须是非负数)3.化简下列二次根式4.观察上面几个二次根式化简的结果,它们有什么特点?【归纳结论】我们把被开方数中不含开方开得尽方的因数(因式),被开方数不含分母的二次根式,叫作最简二次根式.在二次根式的运算中,一般要把最后的结果化为最简二次根式.【教学说明】引导学生计算,观察计算结果,总结规律.三、运用新知,深化理解1.下列二次根式中哪些是最简二次根式?哪些不是?为什么?【分析】判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.,不是最简二次根式.因为解:最简二次根式有1545=⨯=⨯=,45595935被开方数中含能开得尽方的因数9,所以它不是最简二次根式.2.化简216x(x>0)6.化简:7.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10cm的铁桶中,当铁桶装满水时,玻璃容器中的水面下降了20cm,铁桶的底面边长是多少厘米?【分析】根据倒出的水的体积等于铁桶的体积,列出方程求解即可.解:设正方形铁桶的底面边长为x,则10x2=30×30×20,x2=1800,解得x=302(厘米).答:正方形铁桶的底面边长是302厘米.【教学说明】检测本节课学生对新知识的掌握情况,了解不足,以便查缺补漏,个别辅导.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P160“习题5.1”中第4、5、8 题.学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动.正是在这一教育思想的指导下,促进学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动.互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振.5.2 二次根式的乘法和除法第1课时二次根式的乘法⨯=(a≥0,b≥0).1.使学生掌握二次根式乘法法则a b ab2.使学生掌握2a=a(a≥0),并能加以初步应用以化简二次根式.3.通过猜想,体验探究二次根式的乘法法则,实践应用,巩固法则.4.培养良好的学习习惯,体验成功的喜悦.【教学重点】会利用积的算术平方根的性质及简单的二次根式的乘法运算公式对一些式子进行化简.【教学难点】二次根式中乘法与积的算术平方根的性质的关系及应用.一、情景导入,初步认知一块正方形的木板面积为200cm22=1.414,你能不用计算器以最快的速度求出正方形木板的边长吗?【教学说明】通过实际问题引入新课.二、思考探究,获取新知1.积的算术平方根的性质是什么?a b a b=a≥0,b≥0)··2.试一试:并观察结果,你能发现什么规律?⋅⋅()与;()与14949216251625【教学说明】让学生计算,由学生总结,(1)(2)两式均相等.【教学说明】组织学生计算,验证猜想.让学生自主探究,通过类比得到规律,让学生体验到成功的喜悦,激发学生学习的兴趣.⨯=(a≥0,b≥0),老师【归纳结论】二次根式乘法的运算公式:a b ab应引导学生关注a≥0,b≥0这个条件,若没有这个条件,上述法则不能成立.因a b在实数范围内却没有意义,乘为当a<0,b<0时,虽然ab有意义,而,法法则显然不能成立.3.计算.三、运用新知,深化理解1.教材P161例1、例2.2.下列各式正确的是(D)8.已知正方形A,矩形B,圆C的面积均为628cm2,其中矩形B的长是宽的2倍,如果π取3.14,试比较它们的周长L A,L B,L C解完本题后,你能得到什么启示?解:略.【教学说明】训练学生对待计算题也要认真分析,找出合理快捷的方法解决问题.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P165“习题5.2”中第1、4 题.这一堂课的教学对我的启发很大,好像又回到了初一年级,学生对数的认识是一个很难的问题,很多同学在数的认识中有着很大的欠缺.对根式的认识,特别是对根式的性质的认识总是转换不过来,没有办法只有花上很大的一段时间进行巩固学习,少数同学对负数中的符号问题容易出现错误.今后,应充分给学生训练时间,合理利用学案,让学生把知识掌握好.第2课时二次根式的除法1.会利用二次根式的除法法则进行二次根式的除法运算.2.经历探索二次根式除法以及商的算术平方根的过程,掌握其应用方法.3.培养学生分析问题和逆向思维的能力,体会合作交流的乐趣,感悟数学的应用价值.【教学重点】二次根式除法运算.【教学难点】探索二次根式除法法则.一、情景导入,初步认知1.积的算术平方根的性质是什么?2.二次根式乘法法则是什么?用语言怎样表达?用式子怎样表示?【教学说明】复习旧知,为学习新知做准备.二、思考探究,获取新知1.计算下列各式,观察计算结果,你发现了什么?【教学说明】发现规律,归纳出二次根式的除法公式.三、运用新知,深化理解1.教材P163例4、P164例5、例6.【教学说明】巩固提高.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P165“习题5.2”中第2、3、4 题.这节课原本希望学生能在一节课内就体会到先局部化简再计算起来比较简洁.但这节课并没有实现这个目的,而且没有想到学生竟然给出多种方法.我想应当把这个问题延伸到下一节课,可以在下一节课中把学生的课后作业的解法对比,让学生去体会哪种方法更好,更简洁.不要急于在这一节课中去解决,这一节课只要能用自己的方法解决就可以.5.3二次根式的加法和减法第1课时二次根式的加减运算1.知道二次根式加减运算的步骤,2.会用合并同类二次根式正确进行二次根式的计算.3.经历探究二次根式加减法法则的过程,体会类比的思想方法.4.通过学习二次根式加减法运算培养学生简洁解题的能力,体会数学的简洁美.【教学重点】二次根式的加减法运算.【教学难点】被开方数是分数(式)或含字母的二次根式加减运算.一、情景导入,初步认知1.下列根式中,哪些是最简二次根式?2.计算下列各式:(1)2x+3x (2)3x-2y+y【教学说明】复习整式加减法的内容,为下面探究二次根式加减法的解法做铺垫.二、思考探究,获取新知1.二次根式的加减运算能否依据整式的加减法运算进行?【教学说明】在此过程中,使学生理解掌握二次根式加减法的解法,并体会类比的思想方法.2.如图,是由面积分别为8和18的正方形ABCD和正方形CEGH拼成,求BE的长.3.你能根据上面的计算过程总结二次根式加减法运算的步骤吗?【归纳结论】二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【教学说明】通过例题由浅入深,层层深入,激发学生求知的欲望.在二次根式加减法的整个教学环节中,要及时纠正学生的错误认识.三、运用新知,深化理解1.教材P168例1、例2.2.下列二次根式中,能与127合并的二次根式是(B)7.有一艘船在点O处测得一小岛上的电视塔A在北偏西60°的方向上,船向西航行20海里到达B处,测得电视塔在船的西北方向.问再向西航行多少海里,船离电视塔最近?(结果保留根号)答案:()1031+【教学说明】独立完成,之后相互交流,纠错.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P172“习题5.3”中第1、2 题.将法则的教学与整式的加减比较学习.在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣.巩固本节内容,作业分层布置,使不同层次学生都有发展和提高.通过学习二次根式加减法运算培养学生简洁解题的能力,体会数学的简洁美,通过题目练习,复习同类二次根式的概念,温故而知新.第2课时二次根式的混合运算1.使学生会熟练地进行二次根式的加、减、乘、除混合运算.2.讲练结合,通过例题由浅入深,层层深入,从例题的讲解中帮助学生寻找解题的方法、规律及注意点.3.培养学生进行类比的学习思想和理解运算律的广泛意义.【教学重点】二次根式的混合运算.【教学难点】由整式运算知识迁移到含二次根式的运算.一、情景导入,初步认知1.二次根式有哪些性质?2.已学过的整式的乘法公式和法则有哪些?3.怎样化简二次根式?【教学说明】进一步梳理和巩固已学过的知识,为本节课的教学作准备.二、思考探究,获取新知1.甲、乙两个城市间计划修建一条城际铁路,其中有一段路基的横截面设计为上底宽42m,下底宽62m,高6m的梯形,这段路基长500 m,那么这段路基的土石方大小为多少立方米呢?路基的土石方大小等于路基横截面面积乘以路基的长度,所以,这段路基的土石方为:【教学说明】从上面的解题过程可以看到,二次根式的混合运算是根据实数的运算律进行的.2.计算:【教学说明】引导学生类比实数的运算进行计算.从上面的运算可以看到,二次根式相乘,与多项式的乘法相类似,我们可以利用多项式的乘法公式,对某些二次根式的乘法教学简便运算.三、运用新知,深化理解1. 教材P170例4、P171例5.4.下面的三个大三角形中各有三个小三角形,每个大三角形中的四个数都有规律,请按左、右每个大三角形内填数的规律,在中间的大三角形的中间,填上恰当的数.432【教学说明】学生先做,教师之后挑选部分进行点评.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P172“习题5.3”中第3、4、6题.本节课是二次根式加减的第二节课,它是在二次根式加减的基础上的进一步学习,利用二次根式加减法解决一些实际问题.在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则.2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力.本节课秉着以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.章末复习1.了解二次根式的概念和意义、理解并掌握二次根式的性质和混合运算法则.2.用二次根式的意义和性质进行求取值范围、化简和运算.3.会初步运用二次根式的性质及运算解决简单的实际数学问题.4.经历梳理本章所学内容,形成知识体系,培养学生归纳和概括能力.5.通过本章的复习过程,进一步让学生体会数学知识(二次根式)来源于实际又应用于实际的辩证唯物主义思想.【教学重点】运用二次根式的意义和性质进行求取值范围、化简和运算;梳理整章知识,形成二次根式知识体系.【教学难点】运用分类讨论数学思想解决本节的有关问题,是本节复习课的难点,这就要求学生有严密的数学思维.一、知识结构【教学说明】揭示知识之间的内在联系,将所学的零散的知识连接起来,形成一个完整的知识结构,有助于学生对知识的理解和运用.二、释疑解惑,加深理解1.二次根式的概念:我们把形如a的式子叫作二次根式,根号下的数叫作被开方数.2.二次根式的意义:只有当被开方数是非负实数时,二次根式才在实数范围内有意义.3.二次根式的性质:4.最简二次根式的概念:我们把被开方数中不含开方开得尽方的因数(因式),被开方数不含分母的二次根式,叫作最简二次根式.在二次根式的运算中,一般要把最后结果化为最简二次根式.5.二次根式乘法的运算公式:6.二次根式的除法运算公式:7.二次根式的加减运算方法:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.三、典例精析,复习新知1.下列式子一定是二次根式的是(C)m 有意义,则m能取的最小整数值是(B)2.31A.m=0 B.m=1 C.m=2 D.m=33.下列二次根式中属于最简二次根式的是(A)4.化简:【教学说明】使学生通过二次根式的化简及化简依据的说明,引导学生回忆二次根式的性质.进而让学生明白二次根式的化简的依据和二次根式的计算的依据一样,源自二次根式的性质.四、复习训练,巩固提高【教学说明】进一步加深对知识的理解,体会本节课所涉及的数学思想和数学规律.同时,学会归纳概括和总结,积累学习经验,为今后的学习奠定基础.五、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:完成教材P174和P175“复习题5”中第4、5、6、8、12题.从整堂课来看,效果比较好,学生从未知到已知,并且进行了消化.整堂课始终把学生摆在第一位,让他们主动去学习.真正把课堂交给学生,让他们变成学习的主体.层层问题给学生提供自主探索的机会,让学生的学习过程成为一个再探索、再发现的过程.在这种学习过程中,学生的创新意识和主动探求知识的兴趣得到了培养,同时使所有学生都能在数学学习中获得发现的乐趣、成功的愉悦,树立了自信心,增强了克服困难的勇气和毅力.当然本节课也有不足之处,在处理某些题的时候没有能注意学生能力的差异,基础比较薄弱的学生可能没有真正的把握.因此通过这节课,我要在以后的教学过程中注意分层作业,让每一个同学都能体验成功的喜悦.31 / 31。
16.1 二次根式第1课时一、教学目标【知识与技能】1.了解二次根式的概念,理解二次根式有意义的条件.2.掌握二次根式的性质,并能将二次根式的性质运用于化简.3.了解最简二次根式的概念,会判断一个二次根式是不是最简二次根式.【过程与方法】经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.【情感态度与价值观】经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】会求二次根式中字母的取值范围,理解和掌握二次根式的性质,熟练化简二次根式.【教学难点】运用二次根式的双重非负性解决问题,二次根式性质的综合运用.五、课前准备教师:课件、三角尺、直尺、平方根、立方根知识等.学生:三角尺、铅笔、立方根、平方根知识.六、教学过程(一)导入新课(出示课件2)电视塔越高,从塔顶发射的电磁波传播得越远,从而能收看到电视节目的区域越广,电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r=√2Rh,其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、h2 km,那么它们的传播.半径之比是√2Rh1√2Rh2教师问:式子√2Rh1表示什么?公式r=√2Rh中的√2Rh表示什么意√2Rh2义?(二)探索新知1.师生共同探究二次根式的定义和有意义的条件(出示课件4-6)用带根号的式子填空,看一看写出的结果有何特点:(教师依次出示问题)(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(2)一个长方形围栏,长是宽的2 倍,面积为130m2,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系 h =5t2,如果用含有h 的式子表示 t ,则t 为_____.教师问:上边问题的答案是什么呢?学生1答:(1),.学生2答:(2) .学生3答:(3).教师问:这些式子分别表示什么意义?学生讨论后并回答.的算术平方根.学生1答:分别表示3,S,65,h5教师问:这些式子有什么共同特征?师生总结:①根指数都为2; ②被开方数为非负数.教师问:你能用语言描述一下它们的特征吗?师生共同讨论后解答如下:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.教师问:根据你的理解,猜想一下二次根式的定义应该有哪些条件?师生共同讨论如下:一个正数有两个平方根;0的平方根为0;在实数范围内,负数没有平方根. 在实数范围内开平方的时候,被开方数只能是正数或0.(出示课件7)定义:一般地,我们把形如的式子叫做二次根式. “”称为二次根号.教师强调:(1)a可以是数,也可以是式.(2)两个必备特征:①外貌特征:含有“”;②内在特征:被开方数a≥0考点1:利用二次根式的定义识别二次根式例:下列各式中,哪些是二次根式?哪些不是?(出示课件8)(1);(2)81;(3);(4)(5) ;(6);(7) .师生共同分析过程见课件:解答如下:解: (1)(4)(6)均是二次根式,其中x2+4属于“非负数+正数”的形式一定大于零.(3)(5)(7)均不是二次根式.出示课件9,学生自主练习,教师订正。
二次根式第一课时教案教学目标:1.了解二次根式的概念和特点;2.掌握二次根式的运算规则;3.能够应用二次根式解决实际问题。
教学重点:1.理解二次根式的概念;2.掌握二次根式的运算规则。
教学难点:1.灵活运用二次根式的运算规则解决实际问题。
教学准备:教师:教材、黑板、粉笔、计算器学生:教材、笔记本、铅笔、直尺、三角板教学步骤:Step 1 热身导入(5分钟)教师可以通过出示一道与二次根式相关的问题引导学生思考,如:如果一个正方形的面积是16平方厘米,那么它的边长是多少?并提醒学生思考如何计算。
Step 2 引入新知(10分钟)教师通过引导学生观察并分析计算正方形边长的方法,引出二次根式的概念。
然后,教师给出二次根式的定义:若a是一个正数且n是一个正整数,则a的n次方根,记作√a,其中根指数n为奇数,被开方数a大于等于零。
Step 3 二次根式的性质和运算规则(20分钟)3.1 二次根式的性质教师通过教材内容介绍二次根式的性质,包括:(1)若a≥0则√a ≥ 0;(2)若a≥0则√a²=a;(3)若a≥0则√a×√a=a;(4)若a≥0,b≥0,则√a±√b不能进行合并成一个根号;(5)若a≥0,b≥0,则√(a×b)=√a×√b。
3.2 二次根式的运算规则教师通过具体的计算例子介绍二次根式的运算规则,包括:(1)同类项的加减运算:根指数、底数相同的二次根式可以进行加减运算,但不能合并成一个根号;(2)乘法运算:根指数相同的二次根式可以进行乘法运算,结果的根指数不变,底数相乘;(3)除法运算:根指数相同的二次根式可以进行除法运算,结果的根指数不变,底数相除;(4)化简运算:对二次根式进行化简,尽量把二次根式的底数写成素数的乘积。
Step 4 练习与讲评(15分钟)教师布置一些二次根式的练习题,要求学生独立完成,并在规定时间内交卷。
然后教师对练习题进行讲评,解释正确答案的求解思路和方法,并指出容易出错的地方。
苏科版八年级数学下册二次根式(第一课时)教学目标:1.经历观察、比较的过程,发现二次根式的乘法运算规律,通过推理论证,生成二次根式的乘法法则;2.运用等式的对称性,建构二次根式的乘法法则与积的算术平方根的性质的互逆关系;3.正确运用二次根式的乘法运算法则进行简单的计算和化简。
教学重点:1.二次根式乘法法则生成过程2.正确运用二次根式乘法法则进行简单的计算和化简。
教学难点:二次根式乘法法则生成过程教学过程:一、创设情境,引出课题解:ABCD S AB BC =⋅=矩形二、通过计算发现规律(1=_______=_______;(2=_______=_______;1、如图,小正方形的边长为1,格点四边形ABCD 的面积是多少?D==三、由特殊到一般,由具体到抽象,建构二次根式乘法法则1=吗?如何证明?(独立思考,小组研究)全班交流:2223721=⨯=⨯=依据:积的乘方性质()n n n ab a b =23721=⨯=依据:二次根式的性质2a =(0a ≥)∴22=0>0>(二次根式的非负性)=2.全班研究(1)推广为一般情形:=(0a ≥,0b ≥)显然,证明方法同上。
(2)用文字语言叙述二次根式的乘法法则的意义。
等式左边为算术平方根的积(二次根式的积),右边为积(被开方数)的算术平方根。
(3).根据等式的对称性质:=(0a ≥,0b ≥)=(0a ≥,0b ≥)(4).概括: (0a ≥,0b ≥)从左到右是二次根式的乘法法则,从右到左是积的算术平方根的性质(即反过来)(5)推广为多项的形式:abc c b a =⋅⋅()0,0,0≥≥≥c b a 五、运用法则计算或化简题组一:1.计算2431⨯……二次根式相乘2431⨯=……被开方数的积的算术平方根8=……被开方数不含开得尽方的因数或因式122=题组二:计算1.714⨯2.3.()10253-⨯ 4.()⎪⎭⎫ ⎝⎛-⨯-632335.862⨯⨯ 6.363b ab ⋅(0a ≥,0b ≥)题组三:化简1.202.38b (0b ≥)3.22b a 4.()22c b a +(0a ≥,0b ≥,0c ≥)题组四:化简1.2243+ 2.⋅-2212133.22245255-4.⋅+24x x (x ≥0)5.y x x 23+(x ≥0,x+y≥0)6.2232xy y x x ++(x ≥0,x+y≥0)六、总结:1⇔(0a ≥,0b ≥)2.二次根式运算或化简的最后结果要注意什么问题?注意:被开方数中不含能开得尽方的因数或因式。
二次根式(1)【教学目标】1.了解二次根式的意义,掌握二次根式的定义;能根据定义确定被开方数中字母的取值范围.2.理解并掌握二次根式的性质:()20a a =≥()0a a =≥.⒊经历二次根式的定义的形成过程及二次根式性质的探究过程,提高数学探究能力及归纳能力.【教学重点】二次根式的概念和相关性质.【教学难点】运用二次根式的性质:()20a a =≥()0a a =≥进行计算.【教学过程】一、新课引入我们学习了平方根和算术平方根的意义,请同学们思考并回答下面3个问题:的平方根是 ,0的平方根是 ,正实数a 的平方根是 .2. a 需要满足什么条件为什么)0a ≥二、自主探究1.二次根式的概念:⑴我们把.⑵由于在实数范围内,负实数没有平方根,因此只有当被开方数是非负实数时,二次根式才在实数范围内有意义.即:被开方数0a ≥.⑶ ))00a a <<是不是二次根式.⑷根据已有的知识,说说你对二次根式的认识.①表示a 的算术平方根.②a 可以是数,也可以是式.③从形式上看,含有二次根号.④0a ≥≥2.二次根式的性质:⑴对于非负实数a a 的一个平方根,因此:()20a a =≥= ,= ,= …结论:当0a ≥=三、应用迁移(一)典例精析例1 当x 在实数范围内有意义例2 计算:⑴2; ⑵(2; ⑷ (二)变式运用.0,=.(三)综合运用已知实数0,0,a b <> 四、归纳小结⑴二次根式的定义:①形如 ②被开方数a= (0)a ≥②2= (0)a ≥五、巩固提升★⒈当x 时,.★★⒉已知2y =,求,x y 的值.★★★⒊在实数范围内,把下列多项式分解因式:⑴213;x-⑵2x-312.六、课后练习A层:教材P159 A组1、2、3B层:学法大视野P75—76课后提升七、教学反思。
二次根式(第一课时)教学设计执教者-------陈利华(株洲市十六中)教学内容:湘教版八年级数学下册第4.1.1第一课时一、教学目标(1)知识目标:使学生了解二次根式的概念,掌握二次根式的性质。
理解根号内字母的取值范围,学会根据性质化简二次根式。
(2)能力目标:让学生经过探索二次根式的性质的过程,培养学生由特殊到一般的思维能力,掌握公式的一般推导方法。
(3)情感目标:通过合作学习,给学生提供探索和发现的机会和欣赏、交流的空间,引导学生自主学习,激发学生学习数学的兴趣,使全体学生积极参与并体验成功的喜悦。
二、教学重点1a≥0)的内涵.2a≥0)是一个非负数3、2=a(a≥0)4a •及其运用.三、教学难点a≥0)是一个非负数的理解122=a的推导及应用。
四、教学设想:过去老师教,学生被动听。
新课改要求教师把学习的主动权交给学生,让学生自主探究、合作交流;教师只是引导、点拨,这样的课堂教学,才能够培养学生的钻研探讨能力,同时也提高了学生的语言表达能力。
课堂上学生展现出的是自己的思维火花、创新能力。
让学生变“要我学”为“我要学”,“我乐学”。
只有这样学生才有可能成为课堂真正的主人。
五、教学环节分析:本节课由两个环节组成:1、先由学生提前进行课前预习。
2、利用学案,学生分小组在课堂上进行展示。
教师引导学生突破本节课的重点、难点。
六、教学过程:(一)第一学习小组展示学案里的复习回顾的内容问题1:什么是4的平方根?4的平方根有哪些?2的算术平方根是什么? 问题2:如图,在Rt △ABC 中,AB=3,BC=1,∠C=90°,那么AC 边的长是__________.问题3:正方形的面积为S,则它的边长为_____.归纳出:每一个正实数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根。
(二)探索新知:知识点一: 二次根式的定义师:像±25这样的式子,我们就把它称二次根式.什么是二次根式呢?下面由第二学习小组展示生1:一般地,a ≥0)•的式子叫做二次根式,称为:“二次根号”,简称为“根号”.根号下的数a 叫做被开方数。
序号:13第二章 实数7.二次根式(第1课时)一、教材目标本节课教学目标是:1.认识二次根式和最简二次根式的概念.2.探索二次根式的性质.3.利用二次根式的性质将二次根式化为最简二次根式.二、教学重难点重点:认识二次根式和最简二次根式的概念。
难点:利用二次根式的性质将二次根式化为最简二次根式。
三、教学过程第一环节:明晰概念问题1 :5,11,2.7,12149,))((b c b c -+(其中b=24,c=25),上述式子有什么共同特征?答:都含有开方运算,并且被开方数都是非负数。
介绍二次根式的概念。
一般地,式子)0(≥a a 叫做二次根式。
a 叫做被开方数.强调条件:0≥a .问题2:二次根式怎样进行运算呢?答:这是我们本节课要解决的新问题.第二环节:探究性质(一)内容:通过探究得出b a b a ∙=⋅,ba b a =. 具体过程如下:(1)94⨯= ,94⨯= ; 2516⨯= ,2516⨯= ; 94= ,94= ; 2516= ,2516= . (2)用计算器计算:76⨯= ,76⨯= ;76= ,76= . 问题1:观察上面的结果你可得出什么结论?问题2:从你上面得出的结论,发现了什么规律?能用字母表示这个规律吗?问题3:其中的字母a ,b 有限制条件吗?第三环节:知识巩固例1 化简(1)6481⨯;(2)625⨯;(3)95。
观察:化简以后的结果中的被开方数又有什么特征?被开方数中都不含分母,也不含能开得尽的因数。
一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。
化简时,要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式。
例2.化简:(1)45;(2)27;(3)31;(4)98;(5)16125. 问题:(1)你怎么发现45含有开得尽方的因数的?你怎么判断714是最简二次根式的? (2)将二次根式化成最简二次根式时,你有哪些经验与体会,与同伴交流。
16.1 二次根式〔第1课时〕教学内容本节课主要学习二次根式的概念及其运用教学目标一、知识技能理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围。
二、数学思考理解二次根式被开方数的取值范围的重要性。
三、解决问题培养根据条件处理问题的能力及分类讨论问题。
四、情感态度经历观察比拟总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的快乐,并提高应用的意识。
重难点、关键重点:会求二次根式中,被开方数所含字母的取值范围。
难点:理解二次根式的概念。
关键:利用“a〔a ≥0〕〞解决具体问题教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程情境引入【问题情境】1、面积为3的正方形的边长为,面积为S的正方形的边长为;2、要修建一个面积为6.28 m2的圆形喷水池,它的半径为 m〔π取〕;3、一个长方形的围栏,长是宽的2倍,面积为130m2,那么它的宽为;4、一个物体从高处自由落下,落到地面所用的时间t〔单位:s〕与开始落下时的高度h〔单位:m〕满足关系h=5t2 .如果用含有h的式子表示t,那么t = 。
【活动方略】学生根据所学知识答复以下问题。
【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,让学生从不同的式子中探寻规律,为二次根式的引入作好铺垫。
一、探索新知【提出问题】1、所填的结果有什么特点?2、平方根的性质是什么?3、如果把上面所填式子叫做二次根式,那么你能用数学符号表示二次根式吗?教师提出问题。
学生总结出二次根式的概念。
【设计意图】使学生有一个由浅入深的学习过程,并体会到学习的内容是融会贯穿的。
二、 范例点击例1当x 是怎样的实数时,2x -在实数范围内有意义? 例2当x 是怎样的实数时,2x 在实数范围内有意义?3x 呢?学生活动:合作交流,讨论解答。
【设计意图】通过题目的练习,使学生加深对所学知识的理解,掌握解答二次根式取值范围的习题,防止一些常见错误。
《二次根式》教学设计第1课时一、教学目标1.了解二次根式和最简二次根式的概念,能将二次根式(根号下仅限于数)化简为最简二次根式.2.通过对二次根式的性质的探究,提高数学探究能力和归纳表达能力.3.经历在具体情境中发现二次根式的过程,体会引入二次根式的必要性.4.经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体现发现的快乐,并提高应用的意识.二、教学重难点重点:了解二次根式和最简二次根式的概念,能将二次根式化简为最简二次根式.难点:对二次根式的性质的探究.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计(2)如图②长方形的土地,若宽是长的35,面积为13 m2,则它的长为_____m.预设答案:(1)8;s;(2)65 3.①外貌特征:含有“”;②内在特征:被开方数a ≥0. 【做一做】1.下列各式中,哪些是二次根式?哪些不是二次根式?()()23(1)18(2)9(3)0.2(4)0(5)(6)1(7)7.m m xy x y x --+异号;;;≤;,;;分析:答案:解:(1)(4)(6)均是二次根式,其中x 2+1属于“非负数+正数”的形式一定大于零.(3)(5)(7)均不是二次根式.2.(1) 使二次根式2m - 在实数范围内有意义的m 的取值范围是__________.解:由m -2≥0,得m ≥2.当m ≥2时,2m - 在实数范围内有意义. 答案:m ≥2.总结:要使二次根式在实数范围内有意义,即需满足被开方数≥0,列不等式求解即可.(2) 使式子12-a 在实数范围内有意义的a 的取值范围是_______.解:由 a -1≥0,得a ≥1.又∵1a - 为分母,10a -≠ ∴ ∵ a -1≠0 ,即 a ≠1 ∵当a >1时,12-a 在实数范围内有意义.a b=a ba a=b b根据上面的猜想,估计下面每组两个式子是否相等,借助计算器验证一下吧a b=a b(a≥教师强调:a,b必须都是非负数!商的算术平方根,等于算术平方根的商a a(a≥0,b>=b b根式.【归纳】将二次根式化成最简二次根式的方法:【课堂练习】a b3⨯)32=-⨯。
5.1二次根式
第1课时二次根式的概念及性质
1.了解二次根式的定义;
2.理解二次根式在实数范围内有意义的条件;(重点)
3.掌握二次根式的两条重要性质.(重点,难点)
一、情境导入
前面我们学习了平方根和算术平方根,我们把a的算术平方根记作a,那么形如a的式子有哪些性质?对于a中a的取值有什么要求?
二、合作探究
探究点一:二次根式的定义
下列各式中:①3,②3
3,③a4,④a2+1,⑤-15,⑥a2-1,一
定是二次根式的有( )
A.1个 B.2个 C.3个 D.4个
解析:根据二次根式的定义判断.3
3的根指数是3,不是二次根式;-15的
被开方数为负数,不是二次根式;a2-1的被开方数可能是负数,可能不是二次根式.一定是二次根式的有①③④,共3个,故选C.
方法总结:根据二次根式的定义,必须满足两个条件:①根指数是2,即形如a;②被开方数为非负数.
探究点二:二次根式在实数范围内有意义的条件
x取何值时,下列各式在实数范围内有意义.
(1)x +2;(2)x -1x -2
;(3)x 2+1;(4)-x 2. 解析:(1)要使x +2有意义,必须使x +2≥0;(2)要使
x -1x -2有意义,必须使x -1≥0,且x -2≠0;(3)要使x 2+1有意义,必须使x 2+1≥0,显然x 为任何实数;(4)要使-x 2有意义,必须使-x 2≥0,这时x =0.
解:(1)x +2≥0,所以x ≥-2;
(2)⎩⎨⎧x -1≥0,x -2≠0,所以⎩⎨⎧x ≥1,x ≠2,
所以x ≥1且x ≠2; (3)x 2+1≥0,所以x 为全体实数;
(4)-x 2≥0,所以x =0.
方法总结:要使代数式有意义,应考虑如下情况:①有二次根式的,被开方数应大于或等于零,有多个二次根式的,应使所有被开方数大于或等于零;②有分式的,分母不等于零;③零次幂、负整数指数幂的底数不等于零.
探究点三:二次根式的性质
【类型一】 计算:(1)(12)2;(2)(23)2;(3)(-323
)2. 解析:利用(a )2=a (a ≥0)及(ab )n =a n b n 进行计算.
解:(1)(12)2=12
; (2)(23)2=4×(3)2=4×3=12; (3)(-323)2=(-3)2×(23)2=9×23
=6. 方法总结:利用(a )2=a (a ≥0)计算时,幂的运算法则仍然适用.
【类型二】 二次根式a 中隐含条件a ≥0的应用 已知y =x -2-2-x +5,则x y
=________. 解析:由已知条件y =x -2-2-x +5可知x -2与2-x 都有意义,所
以存在隐含条件⎩⎨⎧x -2≥0,2-x ≥0,
故x =2.把x =2代入y =x -2-2-x +5,求得y =5,所以x y =25
. 方法总结:解决此类问题时应充分挖掘“二次根式有意义的条件被开方数(式)的非负性”,它往往是解答问题的突破口.
【类型三】 利用a 2=|a |计算
计算:
(1)22; (2)(-23
)2; (3)-(-π)2. 解析:利用a 2=|a |进行计算.
解:(1)22=2;(2)
(-23)2=|-23|=23
;(3)-(-π)2=-|-π|=-π.
方法总结:a 2=|a |的实质是求a 2的算术平方根,其结果一定是非负数.
【类型四】 利用a 2=|a |化简
如图所示为a ,b 在数轴上的位置,化简2a 2-(a -b )2+(a +b )2.
解析:由a ,b 在数轴上的位置确定a <0,a -b <0,a +b <0.再根据a 2=|a |进行化简.
解:由数轴可知-2<a <-1,0<b <1,
则a -b <0,a +b <0.
原式=2|a |-|a -b |+|a +b |=-2a +a -b -(a +b )=-2a -2b .
方法总结:利用a 2=|a |化简时,先必须弄清楚被开方数的底数的正负性,计算时应包括两个步骤:①把被开方数的底数移到绝对值符号中;②根据绝对值内代数式的正负性去掉绝对值符号.
三、板书设计 二次根式⎩⎪⎨⎪⎧概念
有意义的条件:被开方数大于或等于零
性质⎩⎪⎨⎪⎧(a )2=a (a ≥0)a 2=a (a ≥0)
本节课内容是在我们已学过的平方根、算术平方根的知识基础上,进一步引入二次根式的概念与性质.教学过程中,把学生当作主体,鼓励学生积极参与,并让学生探究二次根式在实数范围内有意义的条件.引导学生总结、归纳,得出二次根式的两条重要性质.。