多目标线性规划图解法满意解条件
- 格式:docx
- 大小:12.70 KB
- 文档页数:2
§2目标规划的图解法和线性规划问题一样,图解法虽然只适用于两个决策变量的目标规划问题,但其操作简便,原理一目了然,并且有助于理解一般目标规划问题的求解原理和过程。
图解法解题的步骤为1.确定各约束条件的可行域,即将所有约束条件(包括目标约束和绝对约束,暂不考虑正负偏差变量)在坐标平面上表示出来;2.在目标约束所代表的边界线上,用箭头标出正、负偏差变量值增大的方向;3.求满足最高优先等级目标的解;4.转到下一个优先等级的目标,在不破坏所有较高优先等级目标的前提下,求出该优先等级目标的解;5.重复4,直到所有优先等级的目标都已审查完毕为止;6.确定最优解或满意解。
下面通过例子来说明目标规划图解法的原理和步骤。
例1 用图解法求解目标规划问题:解确定各个约束条件的可行域。
在x1O x2坐标平面上,暂不考虑每个约束方程中的正、负偏差变量,将上述每一个约束方程用一条直线表示出来,再用两个箭头分别表示上述目标约束方程中的正、负偏差变量。
如图(5-1)所示,其中,阴影区域OAB为满足条件(5.12)的可行域。
接着先考虑具有最高优先等级的目标,即。
为了实现这个目标,必须。
从图5-1可以看出,凡落在直线CD上的点都能体现。
但如果同时满足条件(5.12),则只有线段CH上的点才能实现。
这也就是说,在线段CH上的任何一点都能使最高优先等级目标。
其次考虑第二优先等级目标。
从图5.1可以看出,直线EF与EF右上方的点均能实现。
若同时满足条件5.12,则应为三角形AEI上的点能实现。
但第二优先等级目标的实现应在不影响第一优先等级目标的前提下,显然,在三角形AEI中,只有线段CG上的点才能实现这一要求,这就是问题的解。
于是,C,G两点及CG线段上的所有点(无穷多个)均是该问题的最优解。
其中C点对应的解为:x1=0,x2=5.2083;G点对应的解为:x1=0.6250,x2=4.6875;例 2已知一个生产计划的线性规划模型为;其中目标函数为总利润,则三个约束条件均为甲、乙、丙三种资源限制。
多目标线性规划图解法满意解条件
线性规划的图解法对于两个决策变量的线性规划可用作图方法来求解。
图解法求解线性规划问题的步骤如下:分别取决策变量x1,x2为坐标向量建立直角坐标系。
画出线性规划的约束区域;画出目标函数等值线;平行移动目标函数等值线,找到最优解。
*线性规划的图解法例1:某工厂拥有A、B、C三种类型的设备,生产甲、乙两种产品。
每件产品在生产中需要占用的设备机时数,每件产品可以获得的利润以及三种设备可利用的时数如下表所示:?产品甲产品乙设备能力(h)设备A3265设备B2140设备C0375利润(元/件)15002500?*线性规划的图解法问题:工厂应如何安排生产可获得最大的总利润?用图解法求解。
解:设变量xi为第i 种(甲、乙)产品的生产件数(i=1,2)。
根据前面分析,可以建立如下的线性规划模型:Maxz=1500x1+2500x2s。
t.3x1+2x2≤65(A)2x1+x2≤40(B)3x2≤75(C)x1,x2≥0(D,E)*线性规划的图解法以决策变量x1,x2为坐标轴建立平面直角坐标系。
考虑约束条件3x1+2x2≤653x1+2x2=65是一个直线方程画出这条直线。
约束3x1+2x2≤65是半个平面同理约束条件2x1+x2≤40也是半个平面。
线性规划的图解法整个约束区域是由直线3x1+2x2=65;2x1+x2=40;3x2=75;x1=0;x2=0所围在约束区域中寻找一点使目标函数最大。
约束区域*线性规划的图解法作出目标函数的等值线:
1500x1+2500x2=7500将目标函数等值线沿增大方向平行移动。
*线性规划的图解法图解法求解线性规划最优解是3x1+2x2=65(A线)和3x2=75(C线)两直线的交点。
*线性规划的图解法任意给定目标函数一个值作一条目标函数的等值线,并确定该等值线平移后值增加的方向,平移此目标函数的等值线,使其达到既与可行域有交点又不可能使值再增加的位置,得到交点(5,25)T,此目标函数的值为70000。
于是,我们得到这个线性规划的最优解x1=5、x2=25,最优值z=70000。
即最优方案为生产甲产品5件、乙产品25件,可获得最大利润为70000元。