4.2.1二次根式的乘法
- 格式:doc
- 大小:306.50 KB
- 文档页数:4
二次根式的乘法法则和除法法则1. 引言嘿,大家好!今天咱们聊聊二次根式的乘法和除法,听起来有点复杂,但其实它就像在吃个冰淇淋,慢慢品味就好。
你知道吗?二次根式就像是数学里的小秘密,虽然看起来有点神秘,但一旦你掌握了窍门,简直就像找到了一把打开宝藏的钥匙!咱们开始之前,先给大家普及一下基础知识,别急,这可不是枯燥的教科书,我们轻松一点就好。
2. 二次根式的乘法法则2.1 基本法则好啦,咱们先从乘法说起。
乘法法则其实就是两个二次根式相乘时,咱们可以把它们的“根”都放在一起。
比如说,你有(sqrt{a)和(sqrt{b),只要把它们相乘,就可以得到(sqrt{a times b)。
这就像是把两个朋友的手牵在一起,他们一起组成了一个更大的圈子,听起来是不是挺简单的?就像加法一样,乘法也没啥复杂的,只要记住这条法则就行了。
2.2 具体例子那么,具体怎么用呢?假设我们有(sqrt{2)和(sqrt{3),想要知道它们的乘积。
咱们直接来,(sqrt{2 times sqrt{3 = sqrt{2 times 3 = sqrt{6)。
就是这么简单!有时候,你可能会想,哎,我要是有更多的根式,比如(sqrt{4)和(sqrt{9)呢?没问题,继续来!(sqrt{4 times sqrt{9 = sqrt{4 times 9 = sqrt{36 = 6)。
瞧!是不是像过山车一样刺激,过了一个小坡就到了终点?3. 二次根式的除法法则3.1 基本法则再来聊聊除法。
说到除法,很多人可能会皱眉头,但其实和乘法差不多哦。
二次根式相除时,我们也能把“根”放在一起,听着有点抽象,但没关系,咱们举个例子就明白了。
比如说你有(sqrt{a)和(sqrt{b),你想知道(frac{sqrt{a{sqrt{b)是什么。
这个时候,你只需要做个简单的操作,就能得到(sqrt{frac{a{b)。
就像把一个美味的蛋糕切成两半,你只要把蛋糕的“根”一起分开就行了。
二次根式的乘除法PPT 课件contents •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•乘除混合运算及简化方法•在实际问题中应用举例•错题集锦与答疑环节目录二次根式基本概念与01性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的式子叫做二次根式。
表示方法对于非负实数$a$,其算术平方根表示为$sqrt{a}$。
乘法定理$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$bgeq 0$)。
非负性$sqrt{a} geq 0$($a geq 0$)。
除法定理$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$)。
二次根式性质介绍例1解析例3解析例2解析计算$sqrt{8} times sqrt{2}$。
根据乘法定理,$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。
计算$frac{sqrt{20}}{sqrt{5}}$。
根据除法定理,$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} = 2$。
化简$sqrt{18}$。
首先将18进行质因数分解,得到$18 = 2 times 9 = 2 times 3^2$,然后根据二次根式的性质,$sqrt{18} = sqrt{2 times 3^2} = 3sqrt{2}$。
典型例题解析二次根式乘法运算规02则同类二次根式乘法法则两个同类二次根式相乘,把他们的系数相乘,根式部分不变,再根据根式的乘法法则,化简得到结果。
如:√a ×√a = a (a≥0)同类二次根式相乘,结果仍为同类二次根式。
不同类二次根式乘法法则两个不同类二次根式相乘,先把他们的系数相乘,再根据乘法公式展开,化简得到结果。
一、二次根式的乘除法法则1、积的算数平方根的性质,列如:√ab=√a·√b(a≥0,b≥0)2、乘法法则,列如:√a·√b=√ab(a≥0,b≥0),二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
3、除法法则,√a÷√b=√a÷b(a≥0,b>0),二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。
4、有理化根式。
如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。
二、二次根式混合运算解题步骤1、确定运算顺序。
2、灵活运用运算定律。
3、正确使用乘法公式。
4、大多数分母有理化要及时。
5、在有些简便运算中也许可以约分,不要盲目有理化。
6、字母运算时注意隐含条件和末尾括号的注明。
7、提公因式时可以考虑提带根号的公因式。
三、二次根式化简方法二次根式是中学代数的重要内容之一,而二次根式的化简是二次根式运算的基础,学好二次根式的化简是学好二次根式的关键。
下面给同学们归纳总结了几种方法,帮助大家学好二次根。
1、乘法公式法2、因式分解法3、整体代换法4、巧构常值代入法1.乘法规定:(a≥0,b≥0)二次根式相乘,把被开方数相乘,根指数不变。
推广:(1)(a≥0,b≥0,c≥0)(2)(b≥0,d≥0)2.乘法逆用:(a≥0,b≥0)积的算术平方根等于积中各因式的算术平方根的'积。
注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;3.除法规定:(a≥0,b>0)二次根式相处,把被开方数相除,根指数不变。
推广:,其中a≥0,b>0,。
方法归纳:两个二次根式相除,可采用根号前的系数与系数对应相除,根号内的被开方数与被开方数对应相除,再把除得得结果相乘。
4.除法逆用:(a≥0,b>0)商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
二次根式的乘除运算法则
二次根式是指形式为√a的数,其中a是一个非负实数。
在进行二次根式的乘除运算时,可以运用以下乘除运算法则:
乘法法则:
对于任意的非负实数a和b,有以下乘法法则成立:
1.√a*√b=√(a*b)
两个二次根式的乘积等于将它们的被开方数相乘,再取平方根。
例如:
√2*√3=√(2*3)=√6
2.√a*√a=a
一个二次根式的平方等于它的被开方数。
例如:
√2*√2=2
除法法则:
对于任意的非负实数a和b(b不等于零),有以下除法法则成立:
1.√a/√b=√(a/b)
两个二次根式的商等于将它们的被开方数相除,再取平方根。
例如:
√6/√2=√(6/2)=√3
2.√a/√a=1
一个二次根式除以自己等于1
例如:
√2/√2=1
以上是二次根式的乘除运算法则。
在实际运用中,可以根据需要将乘法和除法往复进行,直到达到所需的结果。
需要注意的是,二次根式的乘法和除法运算并不是封闭运算,即两个二次根式相乘或相除得到的结果不一定是二次根式。
内容 基本要求 略高要求较高要求二次根式的化简和运算 理解二次根式的加、减、乘、除运算法则会进行二次根式的化简,会进行二次根式的混合运算(不要求分母有理化)板块一 二次根式的乘除最简二次根式:a 0a ≥)中的a 称为被开方数.满足下面条件的二次根式我们称为最简二次根式: ⑴被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式) ⑵被开方数中不含能开得尽方的因数或因式 ⑶分母中不含二次根式二次根式的计算结果要写成最简根式的形式. 二次根式的乘法法则a b ab 0a ≥,0b ≥) 二次根式的除法法则a a bb =(0a ≥,0b >)利用这两个法则时注意a 、b ab a b =a 、b 都非负,否则不成立, (7)(5)(7)(5)-⋅---一、二次根式的加减1.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 合并同类二次根式:(x x a b x +=+【例1】 35a -3a +是可以合并的二次根式,则____a =。
【例2】 a )A .2aB .23aC .3aD .4a中考要求例题精讲二次根式基本运算、分母有理化【巩固】判断下列各组二次根式是不是同类二次根式:【例3】下列二次根式中,哪些是同类二次根式?(字母均为正数).【例4】若最简二次根式a2b-的值.a【巩固】若a b,的值是(),为非负数,a a bA.02a b,或11==,D.20====,a b==a b,B.11a b,C.02==a b【例5】已知最简根式a a,b的值()A.不存在B.有一组C.有二组D.多于二组【巩固】若a a,b为整数,则a=______,b=________;【例6】=的整数解有组.…这1999是同类二次根式的共有多少个?2.二次根式的加减【例7】【例8】【巩固】-【例9】3【例10】计算:+【巩固】计算:-【例11】 计算:-【巩固】+-【例12】 先化简后求值。