运动中的供能系统
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
运动中的供能系统中图分类号:G652.2文献标识码:A文章编号:ISSN1001-2982 (2019)12-109-01前言:本文从最基本的人体供能系统和供能特点,阐述人体运动中所需能量物质来源和供能特点,分析训练项目以及项目所需能量及对应供能特点和训练方法。
阐述肌肉收缩、能量物质、糖酵解供能、磷酸原供能、脂肪分解系统以及无氧运动、有氧运动的分类、区别。
人体运动是需要能量的。
人体运动的基本单位是肌肉收缩。
人体运动的基本单元是肌肉收缩,(单收缩和强直收缩的概念),而肌肉收缩是需要能量的(E)。
肌肉中储藏多种能源物质,主要的有:三磷酸腺苷(ATP),磷酸肌酸(CP),肌糖原、脂肪。
一、ATP 是肌肉收缩的直接能量来源ATP在肌肉中的含量是很少的。
在强烈的肌肉收缩中只能维持1-3s。
是肌肉供能的直接来源。
只有ATP是肌肉供能的直接来源。
ATP =ADP+E二、磷酸原系统ATP以最大功率输出供能可维持约1-3s;肌肉中的CP分解释放出来的能量可以供ATP继续合成,继续供能。
ADP+DP=C(肌酸)+ATP。
但是肌肉中的CP含量也是有限的。
肌肉强直收缩只能维持6-8s。
依据训练超量恢复的知识理念,超量恢复是客观存在的规律。
超量恢复的程度和运动量有密切的关联。
运动量大时,消耗的物质必然多,那么恢复的物质也也越多,出现超量恢复的程度也越明显。
训练实质是在原有的生理指标基础上不断提高,也就是在原有的生理指标上不断突破,ATP和CP 的供能时间最多不超过10s。
根据资料表明:ATP生理指标在第一次强直刺激后60-90s恢复到刺激前的指标,CP的生理指标在刺激后的2-5min达到高峰。
那么此刻进行第二次运动,就能达到较好的训练效果。
以城关小学6年级50米测试成绩为例:我们选出来的队员成绩为9秒,也就是ATP\CP生理指标的极限。
提问:测算一下短跑、跳跃、爆发力项目的训练和间歇时间?以中小学生田径为例,就是60m加速跑的距离。
简述人体在运动中的三大供能系统
人体在运动过程中主要依靠三大供能系统提供能量,分别是磷酸肌酸系统、糖原系统和有氧系统。
1. 磷酸肌酸系统:该系统的反应速度非常快,能够在数秒内提供能量,适用于高强度、短时的运动,如举重、短跑等。
磷酸肌酸是肌肉储存的一种高能磷酸盐,能够通过磷酸肌酸酶的催化反应释放出能量,合成ATP供能。
2. 糖原系统:糖原是肝脏和肌肉中储存的多糖,可以分解成葡萄糖供能,适用于高强度、中长时的运动,如铁人三项、马拉松等。
该系统的缺点是需要氧气参与分解反应,无氧运动时供能效率低下,易产生乳酸。
3. 有氧系统:有氧运动是指长时间、低强度的运动,如长距离跑、游泳等。
该系统的能量来源主要是脂肪和糖类,需要氧气参与有氧代谢过程,产生大量ATP供能。
因此,有氧运动的供能效率高,但速度相对较慢。
人体内三大供能系统在人体内有三大供能系统,它们就是:1、A TP-磷酸肌酸供能系统。
2、无氧呼吸供能系统3、有氧呼吸供能系统。
(1) ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2) 之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先就是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3) 这两项之后的供能,主要依靠葡萄糖与糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(4) 由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
4.由于运动后三磷酸腺苷(ATP)、磷酸肌酸(CP)的恢复及乳酸的清除,须依靠有氧代谢系统才能完成,因此有氧代谢供能就是运动后机能恢复的基本代谢方式。
二、不同活动状态下供能系统的相互关系安静时,不同强度与持续时间的运动时,骨骼肌内无氧代谢与有氧代谢供能的一般特点表现如下。
(一)安静时:安静时,骨骼肌内能量消耗少,ATP保持高水平;氧的供应充足,肌细胞内以游离脂肪酸与葡萄糖的有氧代谢供能。
线粒体内氧化脂肪酸的能力比氧化丙酮酸强,即氧化脂肪酸的能力大于糖的有氧代谢。
在静息状态下,呼吸商为0.7,表明骨骼肌基本燃料就是脂肪酸。
(二) 长时间低强度运动时:在长时间低强度运动时,骨骼肌内ATP的消耗逐渐增多,ADP水平逐渐增高,NAD+还原速度加快,但仍以有氧代谢供能为主。
血浆游离脂肪酸浓度明显上升,肌内脂肪酸氧化供能增强,这一现象在细胞内糖原量充足时就会发生。
论述运动时三大供能系统之间的相互关
系
在运动过程中,人体会利用三大供能系统来提供能量。
这三个系统分别是:•磷酸能系统(ATP-CP系统):这是最快速的能量供应系统,它通过分解
肌酸磷酸盐(CP)来生成三磷酸腺苷(ATP),从而提供短时间内高强度运动所需的能量。
•无氧酵解系统:当磷酸能系统不能满足能量需求时,无氧酵解系统开始发挥作用。
它通过分解肌糖原产生ATP,但产生的能量相对较少,而且会产生乳酸。
•有氧氧化系统:这是最持久且高效的供能系统。
它通过氧化脂肪酸和碳水化合物来产生ATP,并且不会产生乳酸。
然而,由于需要氧气参与,它的供能速度较慢。
这三大供能系统之间存在紧密的相互关系。
在运动过程中,它们并不是独立地按顺序启动,而是同时发挥作用:
1.在运动刚开始时,磷酸能系统提供迅速的能量,保持高强度活动。
2.随着时间的推移和磷酸能系统的逐渐减少,无氧酵解系统开始转为主要能
源供应系统。
3.当运动持续时间更长时,有氧氧化系统逐渐发挥作用,成为主要能源供应
系统。
综上所述,磷酸能系统、无氧酵解系统和有氧氧化系统之间相互配合,确保人体在不同类型的运动中获得适当的能量供应。
运动中三大供能系统活动的关系
运动中的三大供能系统是有相互关系的,它们相互配合以产生所需的能量。
1. 无氧供能系统(磷酸肌酸系统和无氧糖酵解系统)是在运动开始时迅速提供能量的系统。
这个系统在运动初期会立即开始工作,并在高强度和短时间的运动中起主导作用。
这个供能系统主要通过磷酸肌酸分解和糖酵解来产生能量,这些过程不需要氧气。
2. 乳酸供能系统是在高强度的运动中起到补充能量的作用。
当无氧供能系统无法满足能量需求时,乳酸供能系统会开始发挥作用。
它通过糖酵解产生能量,并在运动中产生乳酸作为副产物。
乳酸供能系统在中等强度的运动中起主导作用。
3. 有氧供能系统是在较低强度和长时间运动中提供能量的主要系统。
有氧供能系统依赖氧气进行能量产生,通过氧化脂肪酸和糖类分解产生三磷酸腺苷(ATP),这是运动过程中产生的能量主要来源。
有氧供能系统在长时间持续运动中起主导作用。
这三个供能系统在不同强度和持续时间的运动中相互合作,以满足身体在运动中的能量需求。
当运动的强度增加或持续时间延长时,身体会逐渐从无氧供能系统过渡到乳酸供能系统,最后转向有氧供能系统。
因此,运动中这三个供能系统的活动会因不同的运动强度和持续时间而有所变化。
人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。
(1)A TP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。
(2)之后的能量供应就要依靠ATP的再生。
这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。
磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。
人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。
(3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。
无氧酵解约能维持2~3分钟时间。
(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。
综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。
运动项目总需氧量(升)实际摄入氧量(升)血液乳酸增加量马拉松跑600 589 略有增加400米跑16 2 显著增加100米跑8 0 未见增加人在剧烈运动呼吸底物主要是糖。
但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。
一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。
(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。
3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。
专题复习·人体运动时的能量供应与能量消耗人体运动时,能量消耗明显增加,增加的情况决定于运动强度和持续的时间。
人体活动的直接能源来源于三磷酸腺苷(A TP)的分解,如神经传导兴奋时的离子转运、腺体的分泌活动、消化道的消化吸收、肾小管的重吸收、肌肉收缩等。
而最终的能量来源于糖、脂肪和蛋白质的氧化分解,氧化分解释放的能量供A TP的重新合成。
一、知识归纳人体内的供能系统分为三个:①高能磷酸化物系统(A TP-CP);A TP-CP供能系统单独供能的话,大概能维持7.5秒的时间,不需要氧气,也不产生乳酸,时间比较短的剧烈运动如举重、投掷等一般就是动用这个系统供能的;②乳酸系统(无氧酵解系统);乳酸系统是糖原或葡萄糖在细胞内无氧分解生成乳酸的过程中,再合成生成A TP的能量系统。
如果单独供能的话,大概能持续33秒的时间。
其最终产物是乳酸,所以称乳酸能系统。
1 mol的葡萄糖或糖原无氧酵解产生乳酸,可净生成2-3molAT P。
其过程也是不需要氧的,生成的乳酸可导致疲劳。
该系统是1min以内要求高功率输出的运动的物质基础。
如200 m跑、100 m游泳等。
③有氧系统:有氧氧化系统是糖、脂肪、蛋白质在细胞内彻底氧化生成二氧化碳和水的过程中,再合成ATP的能量系统。
其产物当然就是二氧化碳、水和ATP了。
根据肌体的供氧情况,糖的氧化分解有两种方式:①当氧供应充足时,来自糖(或脂肪)的有氧氧化。
②当氧供应不足时,即来自糖的酵解,生成乳酸。
乳酸在最后供氧充足时,一部分继续氧化,释放的能量使其余部分再合成肝糖元。
所以肌肉收缩的最终能量来自物质(糖、脂肪)的有氧氧化。
运动时,人体以何种方式供能,取决于需氧量和摄氧量的相互关系,当摄氧量能满足需要时,肌体即以有氧代谢供能,当摄氧量不能满足需氧量时,其不足部分即依靠无氧氧化供能,这样将造成体内的氧亏负,称为氧债。
人体运动时的能量供应系统1.人体运动的能量来源有三种:磷酸原系统、糖酵解系统和有氧氧化系统。
根据运动的强度和时间的长短,每种系统起的作用不同。
人体能量来源最终体现在能量物质ATP (三磷酸腺苷)上。
即:ATP 是我们人体利用能量的直接形式,当人体需要能量时,ATP 在酶的作用下,脱掉一个磷酸变成 ADP 并释放出能量。
这个能量提供了我们机体所有的生命活动的能源,包括:化学能、机械能、生物能等。
(1)磷酸原系统是通过体内的高能物质磷酸肌酸在磷酸肌酸激酶的作用下将高能磷酸键转给ADP ,这时 ADP 结合一磷酸变成 ATP。
由于磷酸肌酸在体内的储存量很少,所以它只能提供肌体很短时间的运动能量;(2)糖酵解系统也就是体内糖类(血液中的葡萄糖、肝脏中的肝糖原和骨骼肌中的肌糖原和糖异生途径)在肌体供氧不足的情况下产生的无氧氧化而产生能量。
同样,由于是无氧酵解,产生的能量也不是很多(一分子的葡萄糖经糖酵解产生3 个ATP),但是因为体内的糖原储备比磷酸肌酸要多得多,所以糖酵解可以提供比磷酸原系统更长时间的运动能量;(3)有氧氧化系统顾名思义是在氧供应充足的条件下发生的,是机体内最大的能量供应系统,它可以由体内的糖储备(一分子葡萄糖有氧氧化产生 36/38 个 ATP)和脂肪分解(一分子的软脂酸氧化分解产生 129ATP)来产生。
由于人体氧的供应和利用有其局限性(最大摄氧量),当机体在短时间进行大强度的运动时,氧供应不足,有氧氧化系统不能或只能部分参加机体的能量供应;相反地,在长时间和低强度的运动中,氧供应充足,有氧系统可以成为机体主要的能量供应系统。
(4)尽管机体的磷酸肌酸储备很少,但是它可以马上调动起来,所以在大强度具爆发性的运动开始(7~8 秒左右),主要是磷酸原系统提供能量;同时,糖酵解系统也启动起来,它可以提供 2 分钟之内的大强度运动;如果机体继续维持大强度的运动,糖酵解能量供应也跟不上,机体就因为能量供应不上而运动能力下降了。
专题复习·人体运动时的能量供应与能量消耗
人体运动时,能量消耗明显增加,增加的情况决定于运动强度和持续的时间。
人体活动的直接能源来源于三磷酸腺苷(ATP)的分解,如神经传导兴奋时的离子转运、腺体的分泌活动、消化道的消化吸收、肾小管的重吸收、肌肉收缩等。
而最终的能量来源于糖、脂肪和蛋白质的氧化分解,氧化分解释放的能量供ATP的重新合成。
一、知识归纳
人体内的供能系统分为三个:
①高能磷酸化物系统(A TP-CP);ATP-CP供能系统单独供能的话,大概能维持7.5秒的时间,不需要氧气,也不产生乳酸,时间比较短的剧烈运动如举重、投掷等一般就是动用这个系统供能的;
②乳酸系统(无氧酵解系统);乳酸系统是糖原或葡萄糖在细胞内无氧分解生成乳酸的过程中,再合成生成A TP的能量系统。
如果单独供能的话,大概能持续33秒的时间。
其最终产物是乳酸,所以称乳酸能系统。
1 mol的葡萄糖或糖原无氧酵解产生乳酸,可净生成2-3molATP。
其过程也是不需要氧的,生成的乳酸可导致疲劳。
该系统是1 min以内要求高功率输出的运动的物质基础。
如200 m跑、100 m游泳等。
③有氧系统:有氧氧化系统是糖、脂肪、蛋白质在细胞内彻底氧化生成二氧化碳和水的过程中,再合成A TP的能量系统。
其产物当然就是二氧化碳、水和A TP了。
根据肌体的供氧情况,糖的氧化分解有两种方式:
①当氧供应充足时,来自糖(或脂肪)的有氧氧化。
②当氧供应不足时,即来自糖的酵解,生成乳酸。
乳酸在最后供氧充足时,一部分继续氧化,释放的能量使其余部分再合成肝糖元。
所以肌肉收缩的最终能量来自物质(糖、脂肪)的有氧氧化。
运动时,人体以何种方式供能,取决于需氧量和摄氧量的相互关系,当摄氧量能满足需要时,肌体即以有氧代谢供能,当摄氧量不能满足需氧量时,其不足部分即依靠无氧氧化供能,这样将造成体内的氧亏负,称为氧债。
运动时的需氧量取决于运动强度,强度越大,需氧量越大,无氧代谢供能的比例也越大。
二、例题讲解
1、(2001·全国高考题)运动员在进行不同运动项目时,机体供能方式不同,对三种运动项目的机体总需氧量、实际摄入氧量和血液中乳酸增加量进行测定,结果如下:
运动项目总需氧量(L)实际摄入氧量(L)血液中乳酸增加量
马拉松跑 600 589 略有增加
400m跑 16 2 显著增加
100m跑8 0 未见增加
根据以上资料分析,马拉松跑、400m跑、100m跑过程中机体的主要供能方式分别是()
A.有氧呼吸、无氧呼吸、磷酸肌酸分解
B.无氧呼吸、有氧呼吸、磷酸肌酸分解
C.有氧呼吸、有氧呼吸、无氧呼吸
D.有氧呼吸、磷酸肌酸分解、无氧呼吸
【解析】根据所给资料分析,马拉松跑中需氧量很大,且乳酸的含量增加不多,因而判定该项运动主要是通过有氧呼吸供能,因为能量物质借助氧气可以彻底分解成CO2 和
H2O;400m跑项目摄入氧量显然不能满足身体需氧量,血液乳酸增加显著,说明此项运动主要采取的是无氧呼吸(会产生乳酸)供能;100m跑没有摄入氧,血液乳酸也未见增加,可见有氧呼吸、无氧呼吸都不是此时的主要供能方式,而是由磷酸肌酸分解提供能量。
磷酸肌酸是人体内储备的高能化合物,在100m跑大量耗能、ATP过分减少时,磷酸肌酸可以分解供能。
【答案】A
【评点与探究】解答此题首先要明确供能的方式有哪几种,且每种供能方式的条件和产物怎样。
同时要善于从所给的数据中分析差别,以从中获得突破口,培养学生的分析判断推理能力。
【总结】①本题考查磷酸肌酸水解、无氧呼吸以及有氧呼吸三种方式形成ATP。
要理解A TP是能量代谢的“通货”。
②马拉松跑总需氧量与实际摄氧量差值相对较小,血液中乳酸略有增加,其主要供能方式为有氧呼吸;400米跑两者的差值较大且血液中乳酸量显著增加,可推知主要供能方式为无氧呼吸;100m跑机体未摄入氧,且乳酸又未增加,说明机体未进行有氧呼吸和无氧呼吸,其供能只靠磷酸肌酸水解。
2、登山运动员,随着海拔的升高,血液中含量显著升高的物质的()
A.尿素 B.血糖 C.乳酸 D.氧气
【解析】随着海拔的升高,空气越来越稀薄,氧气的量减少,有氧呼吸强度降低,产生的能量不能满足运动员登山所需,这时骨骼肌细胞进行无氧呼吸提供部分能量来补充。
人体无氧呼吸的产物是乳酸。
【答案】C
3、(2005·上海生物·31)下列关于新陈代谢的叙述正确的是()
A.糖类在生物体内氧化和体外燃烧都生成CO2 和H2O,释放的能量也相等
B.运动员在100m赛跑时,腿部肌肉的能量供应主要来自此时所进行的有氧呼吸
C.淀粉是贮存能量的化合物,可以为植物细胞直接供能
D.在夏季晴朗的白天,温度适宜的条件下,绿色植物光合速率等于呼吸速率
【命题意图】本题考查的知识点是新陈代谢的有关知识。
【解析】运动员在进行100m 赛跑时,能量消耗较大,肌肉所需能量部分通过无氧呼吸提供,也可由磷酸肌酸转化提供给ATP;为植物直接功能的物质是ATP;在白天,绝大多数时间光合速率应大于呼吸速率,但当光照强度减弱到一定条件时,光合速率会等于呼吸速率。
同质量的糖类在生物体内氧化和体外燃烧都生成CO2 和H2O,糖类中所贮存能量相同,最后全部释放的能量也相等。
【答案】A
4、问题:运动员在剧烈运动时,肌肉细胞中的肌糖原氧化分解的产物是什么?
【答案】乳酸和少量ATP
【解析】题目中问的是肌糖原分解产物,那就是第二种乳酸能供能系统在起作用了。
所以产物就是乳酸和ATP。
当然这并不代表我们体内没有有氧代谢过程,只是肌细胞内当时动用是乳酸能供能系统,是没有进行有氧代谢的,所以,肌细胞内产物是没有二氧化碳和水的。
时间稍长的剧烈运动通常会动用A TP-CP和乳酸能两个系统,不过其产物也同样只是乳酸和ATP了。