第9章 动态规划(背包问题)
- 格式:ppt
- 大小:11.06 MB
- 文档页数:50
动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。
01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。
我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。
只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。
运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。
由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。
这样,可以⼤幅度地降低时间复杂度。
有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。
显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。
可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。
可知dp[0][j]值⼀定为零。
那么,该怎么递推求取所有⼦问题的解呢。
显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。
当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。
①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。
拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。
动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。
第i件物品的体积是vi,价值是wi。
求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。
⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。
result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。
初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。
那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。
动态规划解决背包问题和旅行商问题动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通过将问题划分为多个子问题,并记录子问题的解来解决原始问题。
在背包问题和旅行商问题中,动态规划是一种常见且高效的解决方法。
1. 背包问题背包问题是一个经典的优化问题,可以用动态规划的方法解决。
给定一组物品,每个物品有自身的价值和重量,同时给定一个背包的容量,要求在不超过背包容量的前提下,选择物品放入背包,使得背包中物品的总价值最大化。
动态规划的思路是定义一个二维数组dp[i][j],其中i表示从第1个到第i个物品,j表示背包的容量。
dp[i][j]表示在前i个物品中,容量为j的背包中能够放入的物品的最大价值。
通过状态转移方程可以求解dp[i][j],其中状态转移方程为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
通过计算dp[i][j],最终可以得到在背包容量为j的情况下的最大价值。
可以通过回溯的方法找到具体放入背包的物品。
2. 旅行商问题旅行商问题是一个典型的组合优化问题,它要求在给定的一组城市中,寻找一条最短的路径使得旅行商经过每个城市一次后返回起始城市。
动态规划可以通过建立一个二维数组dp[S][i]来解决旅行商问题,其中S表示城市的集合,i表示当前所在的城市。
dp[S][i]表示从起始城市出发经过集合S中的城市,最后到达城市i的最短路径长度。
对于dp[S][i],可以通过以下状态转移方程来计算:dp[S][i] = min(dp[S-{i}][j] + d[j][i])其中S-{i}表示从集合S中去除城市i,d[j][i]表示从城市j到城市i的距离。
通过计算dp[S][i],最终可以得到从起始城市出发经过所有城市一次后返回起始城市的最短路径长度。
同样可以通过回溯的方法找到具体的最短路径。
动态规划算法--01背包问题基本思想:动态规划算法通常⽤于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可⾏解。
每⼀个解都对应于⼀个值,我们希望找到具有最优值的解。
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若⼲个⼦问题,先求解⼦问题,然后从这些⼦问题的解得到原问题的解。
与分治法不同的是,适合于⽤动态规划求解的问题,经分解得到⼦问题往往不是互相独⽴的(即下⼀个⼦阶段的求解是建⽴在上⼀个⼦阶段的解的基础上,进⾏进⼀步的求解)。
若⽤分治法来解这类问题,则分解得到的⼦问题数⽬太多,有些⼦问题被重复计算了很多次。
如果我们能够保存已解决的⼦问题的答案,⽽在需要时再找出已求得的答案,这样就可以避免⼤量的重复计算,节省时间。
我们可以⽤⼀个表来记录所有已解的⼦问题的答案。
不管该⼦问题以后是否被⽤到,只要它被计算过,就将其结果填⼊表中。
这就是动态规划法的基本思路。
具体的动态规划算法多种多样,但它们具有相同的填表格式。
应⽤场景:适⽤动态规划的问题必须满⾜最优化原理、⽆后效性和重叠性。
1、最优化原理(最优⼦结构性质)最优化原理可这样阐述:⼀个最优化策略具有这样的性质,不论过去状态和决策如何,对前⾯的决策所形成的状态⽽⾔,余下的诸决策必须构成最优策略。
简⽽⾔之,⼀个最优化策略的⼦策略总是最优的。
⼀个问题满⾜最优化原理⼜称其具有最优⼦结构性质。
2、⽆后效性将各阶段按照⼀定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态⽆法直接影响它未来的决策,⽽只能通过当前的这个状态。
换句话说,每个状态都是过去历史的⼀个完整总结。
这就是⽆后向性,⼜称为⽆后效性。
3、⼦问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。
其中的关键在于解决冗余,这是动态规划算法的根本⽬的。
动态规划实质上是⼀种以空间换时间的技术,它在实现的过程中,不得不存储产⽣过程中的各种状态,所以它的空间复杂度要⼤于其它的算法。
背包问题是一种经典的优化问题,通常用于解决在给定一组物品和它们的重量、价值等信息的情况下,如何选择一些物品放入一个容量有限的背包中,使得背包中物品的总价值最大或总重量最小等问题。
以下是背包问题的一种经典算法——动态规划法:
1. 定义状态:设f[i][j]表示前i个物品中选择若干个物品放入容量为j的背包中所能获得的最大价值或最小重量。
2. 状态转移方程:对于第i个物品,有两种情况:
- 不放入背包中,此时f[i][j]=f[i-1][j];
- 放入背包中,此时f[i][j]=max(f[i-1][j], f[i-1][j-w[i]]+v[i]),其中w[i]和v[i]分别表示第i 个物品的重量和价值。
3. 初始化:f[0][0]=0。
4. 计算最优解:根据状态转移方程,从上到下依次计算每个物品的状态值,最终得到f[n][m]即为所求的最优解。
时间复杂度:O(n*m),其中n为物品数量,m为背包容量。
空间复杂度:O(n*m)。
动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。
这可是算法领域里的经典难题,也是体现动态规划思想的好例子。
我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。
假设你是一个盗贼,要盗取一个博物馆里的宝贝。
博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。
你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。
这个问题,就是我们要解决的背包问题。
一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。
2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。
3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。
4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。
5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。
6.dp[i][j]取两种情况的最大值。
二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。