万有引力定律复习(第一课时)
- 格式:doc
- 大小:191.64 KB
- 文档页数:6
3.2 万有引力定律的应用(第一课时)——估算天体质量,发现新天体【学习目标】1、了解万有引力定律在天文学上的重要应用。
2、会用万有引力定律计算天体质量。
3、理解并运用万有引力定律处理天体问题的思路和方法。
【预习案】1、卡文迪许为什么说自己的实验是“称量地球的重量(质量)”?请你解释一下原因。
2、除了地球质量外,你能用万有引力定律求解出其它天体的质量吗?以太阳为例,如果你能求解出太阳的质量,那么如何求解?需要哪些已知量?3、天体质量表达式2324GT r M π=中各个物理量分别代表什么?【探究案】一、探究计算天体的质量的方法(学生阅读教材“天体质量的计算”部分的内容,同时考虑下列问题)引导:求天体质量的方法:是根据天体的圆周运动,即其向心力由万有引力提供,1、应用万有引力定律求解中心天体质量的基本思路是什么?2、应用天体运动的动力学方程——万有引力充当向心力求出的天体质量有几种表达式?各是什么?各有什么特点?请列出方程,并推出质量表达式。
3、应用此方法能否求出环绕天体的质量?为什么?二、探究发现新天体的方法(请同学们阅读课文“预测未知天体”部分的内容,思考以下问题)应用万有引力定律预测并发现新天体的方法是什么?已经用此方法发现了哪些行星?三、方法应用例1、设地面附近的重力加速度g=9.8m/s2,地球半径R =6.4×106m,引力常量G=6.67×10-11 Nm2/kg2,试估算地球的质量。
(结果保留两位有效数字)应用:宇航员站在一个星球表面上的某高处h自由释放一小球,经过时间t落地,该星球的半径为R,请你求出该星球的质量。
思考讨论:上题中若宇航员没有秒表,只用刻度尺如如何求?例2、把地球绕太阳公转看做是匀速圆周运动,平均半径为1.5×1011 m,已知引力常量为:G=6.67×10-11 N·m2/kg2,则可估算出太阳的质量大约是多少千克?(结果取一位有效数字,地球公转周期为一年,计算时取3x107s)总结例1和例2的区别,思考什么情况下用哪种方法例3①如果以水星绕太阳做匀速圆周运动为研究对象,需要知道哪些量才能求得太阳的质量?②水星和地球绕太阳做圆周运动的公转周期T 是不一样的,公转半径也是不一样的,那用公式2324GTr M π=求解出来的太阳的质量会是一样的吗?③请你证明开普勒第三定律k Tr =23中的k 只与中心天体有关而与绕行天体无关。
万有引⼒定律复习资料万有引⼒定律⼀、开普勒三定律:开普勒第⼀定律:所有的⾏星分别在⼤⼩不同的椭圆轨道上围绕太阳运动,太阳是在这些椭圆的⼀个焦点上。
开普勒第⼆定律:对每个⾏星来说,太阳和⾏星的连线在相等的时间内扫过相等的⾯积。
开普勒第三定律:所有⾏星的椭圆轨道的长半轴的三次⽅跟公转周期的平⽅的⽐值都相等。
即 R TK 32=常数()⼆、万有引⼒定律:1、内容:任何两个物体都是互相吸引的,引⼒的⼤⼩跟两个物体的质量的乘积成正⽐,跟它们的距离的平⽅成反⽐。
这就是万有引⼒定律。
2、公式F Gm m R =122应注意:(1)公式中G 称作万有引⼒恒量,经测定G N m Kg =?-667101122./·。
(2)公式中的R 为质点间的距离。
对于质量分布均匀的球体,可把它看做是质量集中在球⼼的⼀个点上。
(3)从G N m Kg =?-667101122./·可以看出,万有引⼒是⾮常⼩的,平时很难觉察,所以它的发现经历了对天体(质量特别⼤)运动的研究过程。
⼩结:1、万有引⼒定律的公式:F Gm m r=122只适⽤于质点间的相互作⽤。
这⾥的“质点”要求是质量分布均匀的球体,或是物体间的距离r 远远⼤于物体的⼤⼩d r d ()>>,这两种情况。
2、运⽤万有引⼒定律解决具体问题时,要特别注意指数运算。
3、在计算过程中,如果要求精度不⾼,可取G N m Kg =?-203101122·/来运算,这样可使计算简化。
三、公式的转换1、根据环绕天体绕中⼼天体表⾯转动时2、根据环绕天体绕中⼼天体在以某⾼度转动时3、已知中⼼天体的半径和表⾯重⼒加速度时4、⾓速度,线速度,周期的关系可得:结论:线速度、⾓速度、周期都与卫星的质量⽆关,仅由轨道半径决定。
当卫星环绕地球表⾯运⾏时,轨道半径最⼩为地球半径(r=R ),此时线速度最⼤,⾓速度最⼤,周期最⼩。
1.⽕星的质量和半径分别约为地球的101和21,地球表⾯的重⼒加速度为g ,则⽕星表⾯的重⼒加速度约为()A .0.2gB .0.4gC .2.5gD .5g2、据报道.我国数据中继卫星“天链⼀号01 星”于2008 年4 ⽉25 ⽇在西昌卫星发射中⼼发射升空,经过4 次变轨控制后,于5⽉l ⽇成功定点在东经77°⾚道上空的同步轨道。
万有引力定律及应用第1课时-----导学思练测学习目标:1.了解开普勒三定律内容,会用开普勒第三定律进行相关计算。
2.理解万有引力定律的内容,知道适用范围。
3.掌握计算天体质量和密度的方法。
一、考情分析考情分析试题情境生活实践类地球不同纬度重力加速度的比较学习探究类开普勒第三定律的应用,利用“重力加速度法”、“环绕法”计算天体的质量和密度,卫星运动参量的分析与计算,人造卫星,宇宙速度,天体的“追及”问题,卫星的变轨和对接问题,双星或多星模型。
二、考点总结与提升(一)开普勒行星运动定律1、一段探索的历程回扣教材,阅读课本P46--P48,涉及人物:托勒密、哥白尼、第谷、开普勒...2、开普勒行星定律【知识固本】定律内容图示或公式开普勒第一定律(轨道定律) 所有行星绕太阳运动的轨道都是,太阳处在的一个焦点上开普勒第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的相等开普勒第三定律(周期定律) 所有行星轨道的半长轴的跟它的公转周期的的比都相等a3T2=k,k是一个与行星无关的常量【深入思考】已知同一行星在轨道的两个位置的速度:近日点速度大小为v 1,远日点速度大小为v 2,近日点距太阳距离为r 1,远日点距太阳距离为r 2。
(1)v 1与v 2大小什么关系? (2)试推导r 1v 1=v 2r 2【考向洞察】近似计算可以使题目更加简单! 【知识提升】①行星运动 近似圆 处理。
②开普勒行星运动定律不仅适用于行星绕太阳运转,对于卫星绕行星运转,也遵循类似的运动规律。
③比例系数k 与 有关,与行星或卫星质量无关,是个常量,但不是恒量,在不同的星系中,k 值 。
(二)万有引力定律 【知识固本】万有引力定律的内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与 成正比、与它们之间 成反比。
即F = ,G 为引力常量,通常取G =6.67×10-11N ·m 2/kg 2,由物理学家卡文迪什测定。
万有引力定律复习知识总结一、开普勒第一、第二、第三定律的内容1.关于开普勒行星运动的公式23TR =k ,以下理解正确的是( )A .k 是一个与行星无关的常量B .若地球绕太阳运转轨道的半长轴为R 地,周期为T 地;月球绕地球运转轨道的长半轴为R 月,周期为T 月,则2323月月地地T R T RC .T 表示行星运动的自转周期D .T 表示行星运动的公转周期2.从天文望远镜中观察到银河系中有两颗行星绕某恒星运行,两行星的轨道均为椭圆,观察测量到它们的运行周期之比为8∶1,则它们椭圆轨道的半长轴之比为 ( ) A .2∶1 B .4∶1 C .8∶1 D .1∶4二、.三种宇宙速度(1)第一宇宙速度(环绕速度):v 1=7.9 km/s ,是人造地球卫星的最小发射速度,也是人造地球卫星绕地球做圆周运动的最大速度. (2)第二宇宙速度(脱离速度):v 2=11.2 km/s ,是使物体挣脱地球引力束缚的最小发射速度.(3)第三宇宙速度(逃逸速度):v 3=16.7 km/s ,是使物体挣脱太阳引力束缚的最小发射速度.三、万有引力定律万有引力定律的公式F=Gm 1m 2/r 2,只适用于质点之间的相互作用,但下列两种情况下定律也适用。
1、当两个物体间的距离远大于物体本身的大小时,物体可视为质点。
2、均匀的球体可视为质点,但r 是两球心间的距离。
3、万有引力和重力的关系因地球自转,地球赤道上的物体也会随着一起绕地轴做圆周运动,这时物体受地球对物体的万有引力和地面的支持力作用,物体做圆周运动的向心力是由这两个力的合力提供,受力分析如图所示.实际上,物体受到的万有引力产生了两个效果,一个效果是维持物体做圆周运动,另一个效果是对地面产生了压力的作用,所以可以将万有引力分解为两个分力:一个分力就是物体做圆周运动的向心力,另一个分力就是重力,如图所示.这个重力与地面对物体的支持力是一对平衡力.在赤道上时这些力在一条直线上.在赤道上的物体随地球自转做圆周运动时,由万有引力定律和牛顿第二定律可得其动力学关系为22224TmR ma mR N R Mm G πω===-向,式中R 、M 、ω、T 分别为地球的半径、质量、自转角速度以及自转周期。
自主命题卷全国卷考情分析2021·山东卷·T5万有引力定律2021·湖南卷·T7人造卫星宇宙速度2021·河北卷·T4人造卫星2021·浙江1月选考·T7人造卫星2020·山东卷·T7万有引力定律2020·浙江1月选考·T9人造卫星2020·天津卷·T2人造卫星2021·全国甲卷·T18万有引力定律2021·全国乙卷·T18万有引力定律2020·全国卷Ⅰ·T15万有引力定律2020·全国卷Ⅱ·T15人造卫星2020·全国卷Ⅲ·T16人造卫星2019·全国卷Ⅱ·T14万有引力定律2018·全国卷Ⅰ·T20双星模型试题情境生活实践类地球不同纬度重力加速度的比较学习探究类开普勒第三定律的应用,利用“重力加速度法”、“环绕法”计算天体的质量和密度,卫星运动参量的分析与计算,人造卫星,宇宙速度,天体的“追及”问题,卫星的变轨和对接问题,双星或多星模型第1讲万有引力定律及应用目标要求 1.理解开普勒行星运动定律和万有引力定律,并会用来解决相关问题.2.掌握计算天体质量和密度的方法.考点一开普勒定律定律内容图示或公式开普勒第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等开普勒第三定律(周期定律) 所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比都相等a 3T 2=k ,k 是一个与行星无关的常量1.围绕同一天体运动的不同行星椭圆轨道不一样,但都有一个共同的焦点.( √ ) 2.行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越大.( × )1.行星绕太阳运动的轨道通常按圆轨道处理.2.由开普勒第二定律可得12Δl 1r 1=12Δl 2r 2,12v 1·Δt ·r 1=12v 2·Δt ·r 2,解得v 1v 2=r 2r 1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.3.开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同,且该定律只能用在同一中心天体的两星体之间.例1 (多选)如图所示,两质量相等的卫星A 、B 绕地球做匀速圆周运动,用R 、T 、E k 、S 分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积.下列关系式正确的有( )A .T A >TB B .E k A >E k BC .S A =S B D.R A 3T A 2=R B 3T B2 答案 AD解析 根据开普勒第三定律知,A 、D 正确;由GMm R 2=m v 2R 和E k =12m v 2可得E k =GMm2R ,因R A >R B ,m A =m B ,则E k A <E k B ,B 错误;根据开普勒第二定律知,同一轨道上的卫星绕地球做匀速圆周运动,与地心连线在单位时间内扫过的面积相等,对于卫星A 、B ,S A 不等于S B ,C 错误.例2 某行星沿椭圆轨道绕太阳运行,如图所示,在这颗行星的轨道上有a 、b 、c 、d 四个对称点.若行星运动周期为T ,则该行星( )A .从a 到b 的运动时间等于从c 到d 的运动时间B .从d 经a 到b 的运动时间等于从b 经c 到d 的运动时间C .a 到b 的时间t ab >T4D .c 到d 的时间t cd >T4答案 D解析 据开普勒第二定律可知,行星在近日点的速度最大,在远日点的速度最小,行星由a 到b 运动时的平均速率大于由c 到d 运动时的平均速率,而弧长ab 等于弧长cd ,故从a 到b 的运动时间小于从c 到d 的运动时间,同理可知,从d 经a 到b 的运动时间小于从b 经c 到d 的运动时间,A 、B 错误;从a 经b 到c 的时间和从c 经d 到a 的时间均为T 2,可得t ab =t da <T 4;t bc =t cd >T4,C 错误,D 正确.例3 (2021·安徽六安市示范高中教学质检)国产科幻巨作《流浪地球》开创了中国科幻电影的新纪元,引起了人们对地球如何离开太阳系的热烈讨论.其中有一种思路是不断加速地球使其围绕太阳做半长轴逐渐增大的椭圆轨道运动,最终离开太阳系.假如其中某一过程地球刚好围绕太阳做椭圆轨道运动,地球到太阳的最近距离仍为R ,最远距离为7R (R 为加速前地球与太阳间的距离),则在该轨道上地球公转周期将变为( ) A .8年 B .6年 C .4年 D .2年 答案 A解析 由开普勒第三定律得:R3T 2=(R +7R2)3T 12,解得T 1=8年,选项A 正确.考点二 万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式F =G m 1m 2r 2,G 为引力常量,通常取G =6.67×10-11 N·m 2/kg 2,由英国物理学家卡文迪什测定.3.适用条件(1)公式适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r 是两球心间的距离.1.只有天体之间才存在万有引力.( × )2.只要知道两个物体的质量和两个物体之间的距离,就可以由F =G m 1m 2r 2计算物体间的万有引力.( × )3.地面上的物体所受地球的万有引力方向一定指向地心.( √ ) 4.两物体间的距离趋近于零时,万有引力趋近于无穷大.( × )1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示.(1)在赤道上:G MmR 2=mg 1+mω2R .(2)在两极上:G MmR2=mg 0.(3)在一般位置:万有引力G MmR2等于重力mg 与向心力F 向的矢量和.越靠近两极,向心力越小,g 值越大.由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR2=mg .2.星体表面及上空的重力加速度(以地球为例)(1)地球表面附近的重力加速度g (不考虑地球自转):mg =G Mm R 2,得g =GMR 2.(2)地球上空的重力加速度g ′地球上空距离地球中心r =R +h 处的重力加速度为g ′,mg ′=GMm (R +h )2,得g ′=GM(R +h )2.所以gg ′=(R +h )2R 2.3.万有引力的“两点理解”和“两个推论” (1)两点理解①两物体相互作用的万有引力是一对作用力和反作用力. ②地球上的物体(两极除外)受到的重力只是万有引力的一个分力. (2)星体内部万有引力的两个推论①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0.②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对它的万有引力,即F =G M ′mr 2.考向1 万有引力定律的理解和简单计算例4 (2019·全国卷Ⅱ·14)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆.在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图像是( )答案 D解析 在嫦娥四号探测器“奔向”月球的过程中,根据万有引力定律F =G Mm(R +h )2,可知随着h 的增大,探测器所受的地球引力逐渐减小,但不是均匀减小的,故能够描述F 随h 变化关系的图像是D.考向2 不同天体表面引力的比较与计算例5 (2020·全国卷Ⅰ·15)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( ) A .0.2 B .0.4 C .2.0 D .2.5 答案 B解析 万有引力表达式为F =G Mmr 2,则同一物体在火星表面与在地球表面受到的引力的比值为F 火引F 地引=M 火r 地2M 地r 火2=0.4,选项B 正确.考向3 重力和万有引力的关系例6 一火箭从地面由静止开始以5 m/s 2的加速度竖直向上匀加速运动,火箭中有一质量为1.6 kg 的科考仪器,在上升到距地面某一高度时科考仪器的视重为9 N ,则此时火箭离地球表面的距离为地球半径的(地球表面处的重力加速度g 取10 m/s 2)( ) A.12倍 B .2倍 C .3倍 D .4倍 答案 C解析 在上升到距地面某一高度时,根据牛顿第二定律可得F N -mg ′=ma ,解得g ′= 1016 m/s 2=g 16,因为G Mr 2=g ′,可得r =4R ,则此时火箭离地球表面的距离为地球半径R 的3倍,选C.例7 某类地天体可视为质量分布均匀的球体,由于自转的原因,其表面“赤道”处的重力加速度为g 1,“极点”处的重力加速度为g 2,若已知自转周期为T ,则该天体的半径为( ) A.4π2g 1T2 B.4π2g 2T 2 C.(g 2-g 1)T 24π2D.(g 1+g 2)T 24π2答案 C解析 在“极点”处:mg 2=GMm R 2;在其表面“赤道”处:GMm R 2-mg 1=m (2πT)2R ;解得:R =(g 2-g 1)T 24π2,故选C.考向4 地球表面与地表下某处重力加速度的比较与计算例8 假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d ,已知质量分布均匀的球壳对壳内物体的引力为零,则矿井底部和地面处的重力加速度大小之比为( ) A .1-dRB .1+dRC.⎝⎛⎭⎫R -d R 2D.⎝⎛⎭⎫R R -d 2答案 A解析 如图所示,根据题意,地面与矿井底部之间的环形部分对处于矿井底部的物体引力为零.设地面处的重力加速度为g ,地球质量为M ,地球表面的物体m 受到的重力近似等于万有引力,故mg =G Mm R 2,又M =ρ·43πR 3,故g =43πρGR ;设矿井底部的重力加速度为g ′,图中阴影部分所示球体的半径r =R -d ,则g ′=43πρG (R -d ),联立解得g ′g =1-dR,A 正确. 考点三 天体质量和密度的计算应用万有引力定律估算天体的质量、密度 (1)利用天体表面重力加速度已知天体表面的重力加速度g 和天体半径R .①由G Mm R 2=mg ,得天体质量M =gR 2G .②天体密度ρ=M V =M 43πR 3=3g4πGR.(2)利用运行天体(以已知周期为例)测出卫星绕中心天体做匀速圆周运动的半径r 和周期T . ①由G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT2.②若已知天体的半径R ,则天体的密度ρ=M V =M 43πR 3=3πr 3GT 2R 3.③若卫星绕天体表面运行,可认为轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2,故只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.考向1 利用“重力加速度法”计算天体质量和密度例9 宇航员在月球表面将一片羽毛和一个铁锤从同一高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R .求:(不考虑月球自转的影响) (1)月球表面的自由落体加速度大小g 月; (2)月球的质量M ; (3)月球的密度ρ.答案 (1)2h t 2 (2)2hR 2Gt 2 (3)3h2πRGt 2解析 (1)月球表面附近的物体做自由落体运动,有h =12g 月t 2月球表面的自由落体加速度大小g 月=2ht 2(2)不考虑月球自转的影响,有G MmR 2=mg 月得月球的质量M =2hR 2Gt2(3)月球的密度ρ=M V =2hR 2Gt 24π3R 3=3h2πRGt 2.考向2 利用“环绕法”计算天体质量和密度例10 (多选)已知引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( ) A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 23GT 22C .月球的质量m 月=4π2L 13GT 12D .太阳的平均密度ρ=3πGT 22答案 AB解析 对地球表面的一个物体m 0来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G ,故A项正确;地球绕太阳运动,有Gm 太m 地L 22=m 地4π2L 2T 22,则m 太=4π2L 23GT 22,故B 项正确;同理,月球绕地球运动,能求出地球质量,无法求出月球的质量,故C 项错误;由于不知道太阳的半径,不能求出太阳的平均密度,故D 项错误.例11 (2021·全国乙卷·18)科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示.科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞.这项研究工作获得了2020年诺贝尔物理学奖.若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104MB .4×106MC .4×108MD .4×1010M答案 B课时精练1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( ) A .太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 答案 C解析 由开普勒第一定律(轨道定律)可知,太阳位于木星运行椭圆轨道的一个焦点上,故A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,故B 错误;根据开普勒第三定律(周期定律)知,太阳系中所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,故C 正确;对于太阳系某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同时间内扫过的面积不相等,故D 错误.2.(多选)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M 所用的时间等于T 04B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功 答案 CD解析 根据开普勒第二定律,行星与太阳的连线在相等时间内扫过的面积相等,所以从P 到M 所用的时间小于从M 到Q 所用的时间,而从P 到Q 所用的时间为T 02,所以从P 到M 所用的时间小于T 04,选项A 错误;从Q 到N 阶段,只有万有引力对海王星做功,机械能保持不变,选项B 错误;从P 到Q 阶段,海王星从近日点运动至远日点,速率逐渐减小,选项C正确;从M 到Q 阶段,万有引力做负功,从Q 到N 阶段,万有引力做正功,选项D 正确. 3.2020年7月23日,我国第一个火星探测器“天问一号”成功升空,飞行约7个月抵达火星,已知火星的质量约为地球的0.1倍,半径约为地球的0.5倍,地球表面的重力加速度大小为g ,则火星表面的重力加速度为( ) A .0.2g B .0.4g C .2g D .4g 答案 B解析 根据地球表面的物体受到的万有引力近似等于重力,有G Mm R 2=mg 得g =GMR 2;同理,火星表面的重力加速度为g ′=GM ′R ′2=G ×0.1×M (0.5×R )2=0.4×GMR 2=0.4g ,故选B.4.(2017·北京卷·17)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转)B .人造卫星在地面附近绕地球做圆周运动的速度及周期C .月球绕地球做圆周运动的周期及月球与地球间的距离D .地球绕太阳做圆周运动的周期及地球与太阳间的距离 答案 D解析 因为不考虑地球的自转,所以地球表面物体所受的万有引力等于重力,即GM 地mR 2=mg ,得M 地=gR 2G ,所以根据A 中给出的条件可求出地球的质量;根据GM 地m 卫R 2=m 卫v 2R 和T =2πRv ,得M 地=v 3T 2πG ,所以根据B 中给出的条件可求出地球的质量;根据GM 地m 月r 2=m 月4π2T 2r ,得M地=4π2r 3GT 2,所以根据C 中给出的条件可求出地球的质量;根据GM 太m 地r 02=m 地4π2T 2r 0,得M 太=4π2r 03GT 2,所以根据D 中给出的条件可求出太阳的质量,但不能求出地球质量,故选D. 5.(多选)宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处.若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,地球表面重力加速度为g ,设该星球表面附近的重力加速度为g ′,空气阻力不计.则( ) A .g ′∶g =1∶5 B .g ′∶g =5∶2 C .M 星∶M 地=1∶20 D .M 星∶M 地=1∶80答案 AD解析 设初速度为v 0,由对称性可知竖直上抛的小球在空中运动的时间t =2v 0g ,因此得g ′g =t 5t =15,选项A 正确,B 错误;由G Mm R 2=mg 得M =gR 2G ,则M 星M 地=g ′R 星2gR 地2=15×⎝⎛⎭⎫142=180,选项C 错误,D 正确.6.(2018·浙江4月选考·9)土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径为1.2×106 km.已知引力常量G =6.67×10-11N·m 2/kg 2,则土星的质量约为( )A .5×1017 kgB .5×1026 kgC .7×1033 kgD .4×1036 kg答案 B解析 根据“泰坦”的运动情况,由万有引力提供向心力,则G Mm r 2=m ⎝⎛⎭⎫2πT 2r ,化简得到M =4π2r 3GT2,代入数据得M ≈5×1026 kg ,故选B.7.假设某探测器在着陆火星前贴近火星表面运行一周用时为T ,已知火星的半径为R 1,地球的半径为R 2,地球的质量为M ,地球表面的重力加速度为g ,引力常量为G ,则火星的质量为( )A.4π2R 13M gR 22T 2B.gR 22T 2M 4π2R 13C.gR 12GD.gR 22G 答案 A解析 对绕地球表面运动的物体,由牛顿第二定律可知: G MmR 22=mg 对绕火星表面做匀速圆周运动的物体有: GM 火m R 12=m (2πT)2R 1 结合两个公式可解得:M 火=4π2R 13M gR 22T 2,故A 对.8.若在某行星和地球上相对于各自的水平地面附近相同的高度处以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7.已知该行星质量约为地球的7倍,地球的半径为R ,不考虑气体阻力.由此可知,该行星的半径约为( ) A.12R B.72R C .2R D.72R 答案 C解析 由平抛运动规律:x =v 0t ,h =12gt 2,得x =v 02hg,两种情况下,抛出的速率相同,高度相同,故g 行g 地=74;由G Mm R 02=mg ,可得g =GMR 02,故g 行g 地=M 行R 行2M 地R 2=74,解得R 行=2R ,选项C正确.9.(2020·山东卷·7改编)质量为m 的着陆器在着陆火星前,会在火星表面附近经历一个时长为t 0、速度由v 0减速到零的过程.已知火星的质量约为地球的0.1倍,半径约为地球的0.5倍,地球表面的重力加速度大小为g ,忽略火星大气阻力.若该减速过程可视为一个竖直向下的匀减速直线运动,此过程中着陆器受到的制动力大小约为( ) A .m ⎝⎛⎭⎫0.4g -v 0t 0B .m ⎝⎛⎭⎫0.4g +v 0t 0C .m ⎝⎛⎭⎫0.2g -v 0t 0D .m ⎝⎛⎭⎫0.2g +v 0t 0答案 B解析 着陆器向下做匀减速直线运动时的加速度大小a =v 0t 0.在天体表面附近,有mg =G mMR 2,则g 火g =M 火M 地·(R 地R 火)2,整理得g 火=0.4g ,由牛顿第二定律知,着陆器减速运动时有F -mg 火=ma ,则制动力F =m (0.4g +v 0t 0),选项B 正确.10.将一质量为m 的物体分别放在地球的南、北两极点时,该物体的重力均为mg 0;将该物体放在地球赤道上时,该物体的重力为mg .假设地球可视为质量均匀分布的球体,半径为R ,已知引力常量为G ,则由以上信息可得出( ) A .g 0小于g B .地球的质量为gR 2GC .地球自转的角速度为ω=g 0-gRD .地球的平均密度为3g4πGR答案 C解析 设地球的质量为M ,物体在赤道处随地球自转做圆周运动的角速度等于地球自转的角速度,轨道半径等于地球半径,物体在赤道上的重力和物体随地球自转的向心力是万有引力的分力.有G Mm R 2-mg =mω2R ,物体在两极受到的重力等于万有引力G MmR 2=mg 0,所以g 0>g ,故A 错误;在两极mg 0=G Mm R 2,解得M =g 0R 2G ,故B 错误;由G MmR 2-mg =mω2R ,mg 0=G MmR2,解得ω=g 0-g R ,故C 正确;地球的平均密度ρ=M V =g 0R 2G 43πR 3=3g 04πGR,故D 错误. 11.(2021·全国甲卷·18)2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105 s 的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105 m .已知火星半径约为3.4×106 m ,火星表面处自由落体的加速度大小约为3.7 m/s 2,则“天问一号”的停泊轨道与火星表面的最远距离约为( ) A .6×105 m B .6×106 m C .6×107 m D .6×108 m答案 C解析 忽略火星自转,设火星半径为R , 则火星表面处有GMmR 2=mg ①可知GM =gR 2设与周期为1.8×105 s 的椭圆形停泊轨道周期相同的圆形轨道半径为r ,由万有引力提供向心力可知 GMm r 2=m 4π2T2r ② 设近火点到火星中心的距离为R 1=R +d 1③ 设远火点到火星中心的距离为R 2=R +d 2④ 由开普勒第三定律可知r3T 2=(R 1+R 22)3T 2⑤联立①②③④⑤可得d 2≈6×107 m ,故选C.12.若地球半径为R ,把地球看作质量分布均匀的球体.“蛟龙号”下潜深度为d ,“天宫一号”轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的加速度大小之比为(质量分布均匀的球壳对内部物体的万有引力为零)( ) A.R -d R +hB.(R -d )2(R +h )2 C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 2答案 C解析 设地球的密度为ρ,则在地球表面,物体受到的重力和地球的万有引力大小相等,有g =G M R 2.由于地球的质量为M =ρ·43πR 3,所以重力加速度的表达式可写成g =GMR 2=G ·ρ43πR 3R 2=43πGρR .质量分布均匀的球壳对壳内物体的引力为零,故在深度为d 的地球内部,受到地球的万有引力即为半径等于(R -d )的球体在其表面产生的万有引力,故“蛟龙号”的重力加速度g ′=43πGρ(R -d ),所以有g ′g =R -d R .根据万有引力提供向心力有G Mm(R +h )2=ma ,“天宫一号”所在处的重力加速度为a =GM (R +h )2,所以a g =R 2(R +h )2,g ′a =(R -d )(R +h )2R 3,故C 正确,A 、B 、D 错误.。
第五章万有引力定律高考要求:内容要求说明万有引力定律Ⅱ万有引力定律的应用、人造地球卫星的运动( 限于圆轨道 ) Ⅱ宇宙速度Ⅰ本章特色:牛顿运动定律与天体运动的的联合在近几年高考取还是热门,因为它切合科技发展的认识需要,万有引力定律的考点有三个(见上表),波及并用于议论天体运动的知识点是高考的重点内容,近几年高考取出现率达100% ,可能会是一道选择题,也可能是一道中等难度的计算题,近几年高考对万有引力定律的观察主要表此刻两个方面:一是重申基础的同时加大与其余部分的综合,如在其余星球上做自由落体、平抛、竖直上抛、单摆,近似地球上的实验,与g 有关的知识,与天体有关的地理知识等;二是应用万有引力定律解决实质问题,固然考点不多,但需要利用这个定律解决的习题题型多,综合性强,波及到的题型以天体运动为中心,如估量天体质量或均匀密度问题,变轨问题,能量问题,中心是:( 1 )行星绕恒星的圆周运动,二者之间的万有引力供应向心力;( 2 )星球表面重力在忽视星球自转的状况低等于万有引力,即可推出常用的黄金代换:2 GMgR近几年高考取出题的特色是以近几年中国及世界上空间技术的飞快发展为背景的天体问题,一方面能够使学生认识近几年这方面的大事,如:火星、土星探测,“神五”“神六”发射与回收,“金星快车”的发射,人类撞击彗星等,另一方面还能够观察学生从资料信息中获得“有效信息”的能力,第一单元万有引力定律知识重点一、万有引力定律1 .内容 : 宇宙间全部物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.2.公式: F G m1 m2其G = 6.67 ×10-11222N·m /kg r3.合用条件:公式只合用于质点间的互相作用.当两个物体间的距离远远大于物体自己大小时公式也近似合用,但此时它们间距离r 应为两物体质心间距离.均匀的球体可视为质点,r 是两球心间的距离.4 .注意:公式中 F 是两物体间的引力, F 与两物体质量乘积成正比与两物体间距离的平方成反比,不要理解成 F 与两物体质量分别成正比、与距离成反比.二、划分万有引力和重力1.因为地球的吸引而使物体遇到的力称为重力,但重力不是万有引力,不过万有引力的一个分力,另一个分力是物体随处球自转而绕地轴做匀速圆周运动所需要的向心力 f , 如下图,因为纬度的变化,物体做圆周运动的向心力 f 不停变化, 所以地球表面物体的重力随纬度的变化而变化,即重力加快度g 随纬度变化而变化,从赤道到两极渐渐增大。
万有引力定律一、开普勒行星运动定律开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。
内容图示备注第一定律(轨道定律) 所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个公共焦点上行星运动的轨道必有近日点和远日点第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等时间内扫过的面积相等行星靠近太阳时速度增大,远离太阳时速度减小,近日点速度最大,远日点速度最小。
第三定律(周期定律) 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.表达式a 3T2=k .①K 值只取决于中心天体的质量②通常椭圆轨道近似处理为圆轨道③也适于用卫星绕行星的运动1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式:221rm m G F ,G 为引力常量:G =6.67×10-11 N·m 2/kg 2. 3.适用条件(1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r 是两球心间的距离. 三、环绕速度1.第一宇宙速度又叫环绕速度.r mv rMm G mg 212== 得:gR rGMv ==1=7.9 km/s. 第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度. 第二宇宙速度(脱离速度):v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度. 第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度. 特别提醒:(1) 两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度 (3)两个半径——天体半径R 和卫星轨道半径r 的不同 四、近地卫星、赤道上物体及同步卫星的运行问题 1.近地卫星、同步卫星、赤道上的物体的比较比较内容赤道表面的物体 近地卫星 同步卫星向心力来源 万有引力的分力 万有引力向心力方向指向地心重力与万有引力的关系 重力略小于万有引力重力等于万有引力线速度v1=ω1Rv2=GM Rv3=ω3(R +h)=GMR +hv 1<v 3<v 2(v 2为第一宇宙速度)角速度ω1=ω自ω2=GM R3ω3=ω自=GMR +h 3ω1=ω3<ω2向心加速度a 1=ω21Ra 2=ω2R =GM R2a 3=ω23(R +h) =GMR +h 2a 1<a 3<a 2五、天体的追及相遇问题两颗卫星在同一轨道平面内同向绕地球做匀速圆周运动,a 卫星的角速度为ωa ,b 卫星的角速度为ωb ,若某时刻两卫星正好同时通过地面同一点正上方,相距最近(如图甲所示)。
万有引力定律复习(第一课时)王彬成教学目的:1、巩固基础知识2、培养学生利用所学知识解决实际问题的能力教学重点:理解万有引力定律的内容教学难点:了解万有引力定律在天文学上的应用(计算天体的质量、星球表面的重力加速度),掌握综合运用万有引力定律和圆周运动学知识解决天体、卫星的运动问题的方法教学方法:启发式综合教学法教学用具:投影仪、投影片教学过程:一【知识扫描】:一、开普勒行星运动定律1、开普勒第三定律:所有行星的轨道的跟它的的比值都相等。
2、表达式:3、注意:开普勒第三定律不但适用于行星绕太阳的运动,也适用于绕的运动。
即适用于绕同一运行的行星们或卫星们。
思考:若将行星绕太阳的运动看做匀速圆周运动,则开普勒第三定律的表达式为:二、万有引力定律:1、内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的的乘积成正比,跟它们成反比.2、表达式:F= ,其中r为两质点或球心间的距离;G为(1798年由英国物理学家利用装置测出)G=6.67×10-11N﹒m2/kg23、适用条件:适用于或二、万有引力定律的应用1.解题的相关知识:思路1:以环绕天体为研究对象(高中阶段将环绕天体绕中心天体的运动处理为匀速圆周运动)(设引力常量为G ,M 指中心天体质量,m 指环绕天体质量,r 指中心天体球心到环绕天体间的距离,R 指中心天体半径)则中心天体对环绕天体的万有引力提供环绕天体做圆周运动所需的向心力。
其表达式为:注:这里涉及圆周运动向心力的表达式很多,做题时应根据题目中的已知条件选公式。
1. 环绕天体离中心天体越远(所处位置越高),则环绕速度越小,角速度越小,周期越大。
2. 环绕天体的轨道圆心是中心天体的球心。
(由于万有引力提供向心力,而万有引力是指向中心天体球心的)思路2:以星球表面物体(随星球自转的物体)为研究对象(设星球质量为M ,星球半径为R, 表面物体质量为m ,引力常量为G ,星球自转的角速度为w )随星球自转所需的向心力 则万有引力提供物体使物体紧压在星球表面的重力 具体在地球表面的某些特殊位置:1.赤道上物体:22Mm Gm R mg R ω=⋅+赤道(向心力、重力、万有引力均指向地心)2.两极:20MmGmg R =+极(向心力等于零,万有引力全部充当重力)3.某一纬度处:用平行四边形定则将万有引力分解结论:由于在地球表面物体随星球自转的向心加速度远远小于重力加速度,因此地球表面上万有引力近似等于重力,即:2GMmmg R=因此我们常称其为黄金代换。
若物体处在离地面高为h 处的山上,则2()h MmGmg R h =+(g h 指离地面高为h 处的重力加速度)①:重力加速度随高度的增加而减小 由此我们还可以得出结论 ②:重力加速度随纬度的增加而增加③:重力的方向只有在赤道和两极才指向地心2.常见题型万有引力定律的应用主要涉及几个方面:(1)测天体的质量及密度:(万有引力全部提供向心力)由r T m r Mm G 222⎪⎭⎫ ⎝⎛=π 得2324GT r M π= 又ρπ⋅=334R M 得3233R GT r πρ=例题1 近年来,人类发射的多枚火星探测器已经相继在火星上着陆,正在进行着激动人心的科学探究,为我们将来登上火星、开发和利用火星资源奠定了坚实的基础.如果火星探测器环绕火星做“近地”匀速圆周运动,并测得该运动的周期为T ,则火星的平均密度ρ的表达式为(k 为某个常数) ( )1-1、(08上海卷) 某行星绕太阳运动可近似看作匀速圆周运动,已知行星运动的轨道半径为R ,周期为T ,万有引力恒量为G ,则该行星的线速度大小为_____;太阳的质量可表示为_____。
1-2(07年海南)设地球绕太阳做匀速圆周运动轨道半径为R,速度为v ,则太阳的质量可用v 、R和引力常量G表示为__________。
太阳围绕银河系中心的运动可视为匀速圆周运动,其运动速度约为地球公转速度的7倍,轨道半径约为地球公转轨道半径的2×109倍。
为了粗略估算银河系中恒星的数目,可认为银河系中所有恒星的质量都集中在银河系中心,且银河系中恒星的平均质量约等于太阳质量,则银河系中恒星数目约为_____________。
T K A =ρ.KT B =ρ.2.KT C =ρ2.T K D =ρ(2.)有关环绕天体的运动的问题天体、卫星的运动近似看成匀速圆周运动,其向心 力由万有引力提供,即根据实际情况选择不同的关系式;同时利用星球表面物体所受万有引力近似等于物体重力的规律公式, ,进行求解问题。
例题2.(2010·天津理综)探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比( ) A .轨道半径变小 B .向心加速度变小 C .线速度变小 D .角速度变小2-1(2010·福建理综)火星探测项目我国继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目。
假设火星探测器在火星表面附近圆形轨道运行周期为T1,神舟飞船在地球表面附近圆形轨道运行周期为T 2,火星质量与地球质量之比为p ,火星半径与地球半径之比为q ,则T1、T 2之比为( )A3pqB31pq C 3q p D2-2.(2010·上海,24)如图,三个质点a 、b 、c 质量分别为、、。
在C 的万有引力作用下,a 、b 在同一平面内绕c 沿逆时针方向做匀速圆周运动,轨道半径之比,则它们的周期之比=______;从图示位置开始,在b 运动一周的过程中,a 、b 、c 共线了____次。
(3).天体表面及某一高度重力加速度的求法 利用星球表面物体所受万有引力近似等于物体重力的规律公式, ,或者某天体表面H 处质量为m 的物体所受到的重力等于天体对它的万有引力 ,进行求解问题。
例题3(08江苏卷)火星的质量和半径分别约为地球的101和21,地球表面的重力加速度为g ,则火星表面的重力加速度约为( )A .0.2gB .0.4gC .2.5gD .5gn ma r Tm r m r m r Mm G ====2222)π2(ωv mg RMm G =2p q 3mg R MmG =2')(2m g H R Mm G =+3-1(07全国1卷)据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍,一个在地球表面重量为600N 的人在这个行星表面的重量将变为960N 。
由此可推知,该行星的半径与地球半径之比约为A .0.5B .2C .3.2D .43-2(09海南卷).近地人造卫星1和2绕地球做匀速圆周运动的周期分别为T 1和T 2。
设在卫星l 、卫星2各自所在的高度上的重力加速度太小分别为g 1、g 2,则( )A .4/31122()g Tg T = B .4/31221()g T g T =C .21122()g T g T = D . 21223()g T g T =【课后强化】:1、2011江苏47.一行星绕恒星作圆周运动。
由天文观测可得,其运动周期为T ,速度为v ,引力常量为G ,则( )A .恒星的质量为32v T G πB .行星的质量为2324v GTπ C .行星运动的轨道半径为2vT π D .行星运动的加速度为2vTπ 2、2011浙江19.为了探测X 星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r 1圆轨道上运动,周期为T 1,总质量为m 1。
随后登陆舱脱离飞船,变轨到离星球更近的半径为r 2的圆轨道上运动,此时登陆舱的质量为m 2,则( ) A .X 星球的质量为231214r M GT π=B .X 星球表面的重力加速度为21214x r g T π=C .登陆舱在r 1与r 2的轨道上运动时的速度大小之比是12v v =D .登陆舱在半径为r 2的轨道上做圆周运动的周期为T T =3、2009(全国卷Ⅰ-17)已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天.利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为( )A.0.2B.2C.20D.2004、2009(江苏卷3)英国《新科学家(New Scientist )》杂志评选出了2008年度世界8项科学之最,在XTEJ1650-500双星系统中发现的最小黑洞位列其中,若某黑洞的半径R 约45km ,质量M 和半径R 的关系满足22M c R G=(其中c 为光速,G 为引力常量),则该黑洞表面重力加速度的数量级为( )A .8210m/sB .10210m/sC .12210m/sD .14210m/s 5、2009(江苏卷-1)火星的质量和半径分别约为地球的101和21,地球表面的重力加速度为g ,则火星表面的重力加速度约为( )A .0.2gB .0.4gC .2.5gD .5g6、2011重庆21.某行星和地球绕太阳公转的轨道均可视为圆。
每过N 年,该行星会运行到日地连线的延长线上,如题21图所示。
该行星与地球的公转半径比为( ) A .231()N N + B .23()1N N -C .321()N N + D .32()1N N -7、(2009全国卷Ⅰ-19)天文学家新发现了太阳系外的一颗行星。
这颗行星的体积是地球的4.7倍,质量是地球的25倍。
己知某一近地卫星绕地球运动的周期约为1.4小时,引力常量111067.6-⨯=G N ·m 2/kg 2,由此估算该行星的平均密度约为( ) A .1.8x103kg/m 3 B .5.6x103 kg/m 3 C .1.1×104kg/m 3 D .2.9x104 kg/m 38、2009(北京卷-17)据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高度200 km,运用周期127分钟。
若还知道引力常量和月球平均半径,仅利用以上条件不能..求出的是( )A .月球表面的重力加速度B .月球对卫星的吸引力C .卫星绕月球运行的速度D .卫星绕月运行的加速度以上是我对这一章教学的设计思路,从我的实际教学效果来看,用这种思路教学后,学生在解决这一章的题目时思路较清晰,但由于我的教学经验尚浅,以上思路肯定还有很多不完善之处,请大家批评指导。