2017届高考数学大一轮复习 第一章 集合与常用逻辑用语 1.1 集合的概念与运算课时规范训练 文 北师大版
- 格式:doc
- 大小:70.00 KB
- 文档页数:5
第一章 集合与常用逻辑用语1.1集合的概念知识点1.元素和集合的概念元素:一般地,我们把研究对象统称为元素集合:把一些元素组成的总体叫做集合(简称为集)。
集合通常用大写的字母表示,如A B C 、、、……;元素通常用小写的字母表示,如a b c d 、、、……。
知识点2.集合中元素的特性(1)确定性:给定一个集合,它的元素必须是确定的。
设A 是一个给定的集合,x 是某一具体的对象,则x 或者是A 的元素,或者不是A 的元素,二者必居其一,不能模棱两可.(2)互异性: 给定一个集合,它的任意两个元素是互不相同的。
也就是说集合中的元素是不重复出现的。
集合中相同的元素只能算是一个。
(3)无序性:集合中的元素是不分先后顺序的.知识点3.元素与集合的关系一般地,如果a 是集合A 的元素,就说a 属于A ,记作a A ∈;如果a 不是集合的元素,就说a 不属于A ,记作A a ∉。
特别注意:(1)集合和元素是两个不同的概念,它们之间是个体与整体的关系,并且这种关系是相对的;(2)元素与集合之间不存在大小与相等的关系,只存在属于或不属于的关系。
如2与{}3,只能是{}23∉,不能写成{}23≠。
知识点4.集合的第一种表示方法自然语言和常用数集及记法上面举的例子:中国的直辖市组成的集合。
还比如:地球上的四大洋组成的集合;小于10的所有自然数组成的集合等等我们是可以用自然语言表示一个集合。
数学中有一些常用数集,就是自然语言表示的, 这些常用数集及记法如下: (1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N 。
(2)所有正整数组成的集合称为正整数集,记作*N 或+N 。
(3)全体整数组成的集合称为整数集,记作Z 。
(4)全体有理数数组成的集合称为有理数集,记作Q 。
(5)全体实数组成的集合称为实数集,记作R 。
知识点5.集合的表示方法 (1)自然语言 (2)列举法列举法概念:像这样把集合中的元素一一列举出来,并用大括号括起来表示集合的方法叫做列举法。
第一章集合与常用逻辑用语高考导航知识网络1.1 集合及其运算典例精析题型一 集合中元素的性质【例1】设集合A ={a +1,a -3,2a -1,a 2+1},若-3∈A ,求实数a 的值. 【解析】令a +1=-3⇒a =-4,检验合格; 令a -3=-3⇒a =0,此时a +1=a 2+1,舍去; 令2a -1=-3⇒a =-1,检验合格; 而a 2+1≠-3;故所求a 的值为-1或-4.【点拨】此题重在考查元素的确定性和互异性.首先确定-3是集合A 的元素,但A 中四个元素全是未知的,所以需要讨论;而当每一种情况求出a 的值以后,又需要由元素的互异性检验a 是否符合要求.【变式训练1】若a 、b ∈R ,集合{1,a +b ,a }={0,ba,b },求a 和b 的值.【解析】由{1,a +b ,a }={0,ba,b },得①⎪⎪⎩⎪⎪⎨⎧===+a b a b b a ,1,0 或②⎪⎪⎩⎪⎪⎨⎧===+1,,0b a a b b a 显然①无解;由②得a =-1,b =1.题型二 集合的基本运算【例2】已知A ={x |x 2-8x +15=0},B ={x |ax -1=0},若B ⊆A ,求实数a .【解析】由已知得A ={3,5}.当a =0时,B =∅⊆A ;当a ≠0时,B ={1a}.要使B ⊆A ,则1a =3或1a =5,即a =13或15.综上,a =0或13或15.【点拨】对方程ax=1,两边除以x的系数a,能不能除,导致B是否为空集,是本题分类讨论的根源.【变式训练2】(2010江西)若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B等于()A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.【解析】选C.A=[-1,1],B=[0,+∞),所以A∩B=[0,1].题型三集合语言的运用【例3】已知集合A=[2,log2t],集合B={x|x2-14x+24≤0},x,t∈R,且A⊆B.(1)对于区间[a,b],定义此区间的“长度”为b-a,若A的区间“长度”为3,试求t的值;(2)某个函数f(x)的值域是B,且f(x)∈A的概率不小于0.6,试确定t的取值范围.【解析】(1)因为A的区间“长度”为3,所以log2t-2=3,即log2t=5,所以t=32.(2)由x2-14x+24≤0,得2≤x≤12,所以B=[2,12],所以B的区间“长度”为10.设A的区间“长度”为y,因为f(x)∈A的概率不小于0.6,所以y10≥0.6,所以y≥6,即log2t-2≥6,解得t≥28=256.又A⊆B,所以log2t≤12,即t≤212=4 096,所以t的取值范围为[256,4 096](或[28, 212]).【变式训练3】设全集U是实数集R,M={x|x2>4},N={x|2x-1≥1},则图中阴影部分所表示的集合是()A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}【解析】选C.化简得M={x<-2或x>2},N={x|1<x≤3},故图中阴影部分为∁R M∩N={x|1<x≤2}.总结提高1.元素与集合及集合与集合之间的关系对于符号∈,∉和⊆,⊈的使用,实质上就是准确把握两者之间是元素与集合,还是集合与集合的关系.2.“数形结合”思想在集合运算中的运用认清集合的本质特征,准确地转化为图形关系,是解决集合运算中的重要数学思想.(1)要牢固掌握两个重要工具:韦恩图和数轴,连续取值的数集运算,一般借助数轴处理,而列举法表示的有限集合则侧重于用韦恩图处理.(2)学会将集合语言转化为代数、几何语言,借助函数图象及方程的曲线将问题形象化、直观化,以便于问题的解决.3.处理集合之间的关系时,是一个不可忽视、但又容易遗漏的内容,如A⊆B,A∩B=A,A∪B=B等条件中,集合A可以是空集,也可以是非空集合,通常必须分类讨论.1.2命题及其关系、充分条件与必要条件典例精析题型一四种命题的写法及真假判断【例1】写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若m,n都是奇数,则m+n是奇数;(2)若x+y=5,则x=3且y=2.【解析】(1)逆命题:若m+n是奇数,则m,n都是奇数,假命题;否命题:若m,n不都是奇数,则m+n不是奇数,假命题;逆否命题:若m+n不是奇数,则m,n不都是奇数,假命题.(2)逆命题:若x=3且y=2,则x+y=5,真命题;否命题:若x+y≠5,则x≠3或y≠2,真命题;逆否命题:若x≠3或y≠2,则x+y≠5,假命题.【点拨】写命题的四种形式,关键是找出命题的条件与结论,根据四种命题结构写出所求命题.判断四种命题真假,要熟悉四种命题的相互关系,注意它们之间的相互性.【变式训练1】已知命题“若p,则q”为真,则下列命题中一定为真的是()A.若⌝p,则⌝qB.若⌝q,则⌝pC.若q,则pD.若⌝q,则p【解析】选B.题型二充分必要条件探究【例2】设m>0,且为常数,已知条件p:|x-2|<m,条件q:|x2-4|<1,若⌝p是⌝q的必要非充分条件,求实数m的取值范围.【解析】设集合A={x||x-2|<m}={x|2-m<x<2+m},B={x||x2-4|<1}={x|3<x<5或-5<x<-3}.由题设有:⌝q⇒⌝p且⌝p不能推出⌝q,所以p⇒q且q不能推出p,所以A⊆B.因为m>0,所以(2-m,2+m)⊆(3,5),故由2+m≤5且2-m≥3⇒0<m≤5-2,故实数m的取值范围为(0,5-2].【点拨】正确化简条件p和q,然后将充分条件、必要条件问题等价转化为集合与集合之间的包含问题,借助数轴这个处理集合问题的有力工具使问题得以解决.【变式训练2】已知集合A={x|a-2<x<a+2},B={x|x≤-2或x≥4},则A∩B=∅的充要条件是()A.0≤a≤2B.-2<a<2C.0<a≤2D.0<a<2【解析】选A.因为A={x|a-2<x<a+2},B={x|x≤-2或x≥4},且A∩B=∅,所以如图,由画出的数轴可知,即0≤a≤2.题型三充分必要条件的证明【例3】设数列{a n}的各项都不为零,求证:对任意n∈N*且n≥2,都有1a1a2+1a2a3+…+1a n-1a n=n-1a1a n成立的充要条件是{a n}为等差数列.【证明】(1)(充分性)若{a n}为等差数列,设其公差为d,则1a1a2+1a2a3+…+1a n-1a n=1d[(1a1-1a2)+(1a2-1a3)+…+(1a n-1-1a n)]=1d(1a1-1a n)=a n-a1da1a n=n-1a1a n.(2)(必要性)若1a 1a 2+1a 2a 3+…+1a n -1a n =n -1a 1a n ,则1a 1a 2+1a 2a 3+…+1a n -1a n +1a n a n +1=na 1a n +1, 两式相减得1a n a n +1=n a 1a n +1-n -1a 1a n ⇒a 1=na n -(n -1)a n +1.①于是有a 1=(n +1)a n +1-na n +2,②由①②得na n -2na n +1+na n +2=0,所以a n +1-a n =a n +2-a n +1(n ≥2). 又由1a 1a 2+1a 2a 3=2a 1a 3⇒a 3-a 2=a 2-a 1,所以n ∈N *,2a n +1=a n +2+a n ,故{a n }为等差数列.【点拨】按照充分必要条件的概念,分别从充分性和必要性两方面进行探求. 【变式训练3】设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选B.若x sin x <1,因为x ∈(0,π2),所以x sin x >x sin 2x ,由此可得x sin 2x <1,即必要性成立.若x sin 2x <1,由于函数f (x )=x sin 2x 在(0,π2)上单调递增,且π2sin 2π2=π2>1,所以存在x 0∈(0,π2)使得x 0sin 2x 0=1.又x 0sin x 0>x 0sin 2x 0=1,即x 0sin x 0>1,所以存在x 0′∈(0,x 0)使得x 0′sin 2x 0′<1,且x 0′sin x 0′≥1,故充分性不成立.总结提高1.四种命题的定义和区别,主要在于命题的结论和条件的变化上.2.由于互为逆否命题的两个命题是等价的,所以我们在证明一个命题的真假时,可以通过其逆否命题的证明来达到目的.适合这种处理方法的题型有:①原命题含有否定词“不”、“不能”、“不是”等;②原命题含有“所有的”、“任意的”、“至少 ”、“至多”等;③原命题分类复杂,而逆否命题分类简单;④原命题化简复杂,而逆否命题化简简单.3.p 是q 的充分条件,即p ⇒q ,相当于分别满足条件p 和q 的两个集合P 与Q 之间有包含关系:P ⊆Q ,即P Q 或P =Q ,必要条件正好相反.而充要条件p ⇔q 就相当于P =Q .4.以下四种说法表达的意义是相同的:①命题“若p ,则q ”为真;②p ⇒q ;③p 是q 的充分条件;④q 是p 的必要条件.1.3 简易逻辑联结词、全称量词与存在量词典例精析题型一 全称命题和特称命题的真假判断 【例1】判断下列命题的真假.(1)∀x ∈R ,都有x 2-x +1>12;(2)∃α,β使cos(α-β)=cos α-cos β; (3)∀x ,y ∈N ,都有x -y ∈N ; (4)∃x 0,y 0∈Z ,使得2x 0+y 0=3.【解析】(1)真命题,因为x 2-x +1=(x -12)2+34≥34>12.(2)真命题,例如α=π4,β=π2,符合题意.(3)假命题,例如x =1,y =5,但x -y =-4∉N . (4)真命题,例如x 0=0,y 0=3,符合题意.【点拨】全称命题是真命题,必须确定对集合中的每一个元素都成立,若是假命题,举反例即可;特称命题是真命题,只要在限定集合中,至少找到一个元素使得命题成立.【变式训练1】已知命题p :∃x ∈R ,使tan x =1,命题q :∀x ∈R ,x 2>0.则下面结论正确的是( )A.命题“p ∧q ”是真命题B.命题“p ∧⌝q ”是假命题C.命题“⌝p ∨q ”是真命题D.命题“⌝p ∧⌝q ”是假命题【解析】选D.先判断命题p 和q 的真假,再逐个判断.容易知命题p 是真命题,如x =π4,⌝p 是假命题;因为当x =0时,x 2=0,所以命题q 是假命题,⌝q 是真命题.所以“p ∧q ”是假命题,A 错误;“p ∧⌝q ”是真命题,B 错误;“⌝p ∨q ”是假命题,C 错误;“⌝p ∧⌝q ”是假命题,D 正确.题型二 含有一个量词的命题的否定 【例2】写出下列命题的否定,并判断其真假.(1)p :∀x ∈R ,x 2-x +14≥0;(2)q :所有的正方形都是矩形; (3)r :∃x ∈R ,x 2+2x +2≤0; (4)s :至少有一个实数x ,使x 3+1=0. 【解析】(1) ⌝p :∃x ∈R ,x 2-x +14<0,是假命题.(2) ⌝q :至少存在一个正方形不是矩形,是假命题. (3) ⌝r :∀x ∈R ,x 2+2x +2>0,是真命题. (4)⌝s :∀x ∈R ,x 3+1≠0,是假命题.【点拨】含有一个量词的命题否定中,全称命题的否定是特称命题,而特称命题的否定是全称命题,一般命题的否定则是直接否定结论即可.【变式训练2】已知命题p :∀x ∈(1,+∞),log 3x >0,则⌝p 为 .【解析】∃x 0∈(1,+∞),log 3x 0≤0. 题型三 命题的真假运用【例3】若r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0,如果“对任意的x ∈R ,r (x )为假命题”且“对任意的x ∈R ,s (x )为真命题”,求实数m 的取值范围.【解析】因为由m <sin x +cos x =2sin(x +π4)恒成立,得m <-2;而由x 2+mx +1>0恒成立,得m 2-4<0,即-2<m <2.依题意,r (x )为假命题且s (x )为真命题,所以有m ≥-2且-2<m <2, 故所求m 的取值范围为-2≤m <2.【点拨】先将满足命题p 、q 的m 的取值集合A 、B 分别求出,然后由r (x )为假命题(取A 的补集),s (x )为真命题同时成立(取交集)即得.【变式训练3】设M 是由满足下列性质的函数f (x )构成的集合:在定义域内存在x 0,使得f (x 0+1)=f (x 0)+f (1)成立.已知下列函数:①f (x )=1x;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cos πx ,其中属于集合M 的函数是 (写出所有满足要求的函数的序号).【解析】②④.对于①,方程1x +1=1x+1,显然无实数解;对于②,由方程2x +1=2x +2,解得x =1;对于③,方程lg[(x +1)2+2]=lg(x 2+2)+lg 3,显然也无实数解; 对于④,方程cos[π(x +1)]=cos πx +cos π, 即cos πx =12,显然存在x 使等式成立.故填②④.总结提高1.同一个全称命题,特称命题,由于自然语言的不同,可能有不同的表述方法,在实际应用中可以灵活选择.2.命题的否定,一定要注意与否命题的区别:全称命题的否定,先要将它变成特称命题,然后将结论加以否定;反过来,对特称命题的否定,先将它变成全称命题,然后对结论加以否定.而命题的否命题,则是将原命题中的条件否定当条件,结论否定当结论构成一个新的,即否命题.。
§1.1 集合的概念及运算考纲解读考点内容解读要求高考示例常考题型预测热度1.集合的含义与表示了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题Ⅰ2017课标全国Ⅰ,1;2017课标全国Ⅲ,1;2016某某,1选择题★★☆2.集合间的基本关系理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义Ⅱ2013某某,3 选择题★★☆3.集合间的基本运算理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算Ⅱ2017课标全国Ⅱ,1;2017,1;2016课标全国Ⅰ,1;2016课标全国Ⅱ,1;2016课标全国Ⅲ,1选择题★★★分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究五年高考考点一集合的含义与表示1.(2017课标全国Ⅲ,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1 B.2 C.3 D.4答案B2.(2016某某,1,5分)已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}答案A3.(2015课标Ⅰ,1,5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2答案DA.⌀B.{2} C.{0} D.{-2}答案B5.(2013某某,2,5分)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4 B.2C.0 D.0或4答案A教师用书专用(6—8)6.(2015某某,10,5分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A ⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30答案C7.(2014某某,1,5分)已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}答案D8.(2013课标全国Ⅰ,1,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}答案A考点二集合间的基本关系(2013某某,3,5分)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3 C.4 D.16答案C考点三集合间的基本运算1.(2017课标全国Ⅱ,1,5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4}答案A2.(2017,1,5分)已知全集U=R,集合A={x|x<-2或x>2},则∁U A=()A.(-2,2) B.(-∞,-2)∪(2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)答案CA.{2} B.{1,2,4}C.{1,2,4,6} D.{1,2,3,4,6}答案B4.(2017某某,1,5分)设集合M={x||x-1|<1},N={x|x<2},则M∩N=()A.(-1,1) B.(-1,2) C.(0,2) D.(1,2)答案C5.(2016课标全国Ⅰ,1,5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}答案B6.(2016课标全国Ⅱ,1,5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}答案D7.(2016课标全国Ⅲ,1,5分)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8} B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}答案C8.(2016,1,5分)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}答案C9.(2016某某,1,5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()A.{2,6} B.{3,6}C.{1,3,4,5} D.{1,2,4,6}答案A10.(2016某某,2,5分)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B.5 C.4 D.3答案B11.(2015课标Ⅱ,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)答案A12.(2015某某,1,5分)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁U B=()13.(2015某某,1,5分)已知集合A={x|2<x<4},B={x|(x-1)·(x-3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)答案C14.(2014某某,1,5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案D15.(2013课标全国Ⅱ,1,5分)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}答案C16.(2017某某,1,5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为____.答案1教师用书专用(17—40)17.(2016某某,1,5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}答案C18.(2015,1,5分)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=()A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}答案A19.(2015某某,1,5分)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1] C.[0,1) D.(-∞,1]答案A20.(2015某某,1,5分)已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4) B.(2,3] C.(-1,2) D.(-1,3]答案A21.(2015某某,2,5分)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()22.(2014某某,1,5分)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}答案C23.(2014某某,1,5分)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}答案A24.(2014课标Ⅰ,1,5分)已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=()A.(-2,1) B.(-1,1) C.(1,3) D.(-2,3)答案B25.(2014某某,2,5分)设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2) C.[1,2) D.(1,4)答案C26.(2014某某,1,5分)设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5]B.[2,+∞)C.(2,5) D.[2,5]答案D27.(2014大纲全国,1,5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2 B.3 C.5 D.7答案B28.(2014某某,1,5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1)C.(0,1] D.[0,1)答案D29.(2013,1,5分)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}答案B30.(2013某某,1,5分)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=()A.[-4,+∞)B.(-2,+∞)31.(2013某某,2,5分)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=()A.{-2,-1} B.{-2} C.{-1,0,1} D.{0,1}答案A32.(2013某某,1,5分)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=()A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}答案A33.(2013某某,1,5分)设集合A={1,2,3},集合B={-2,2},则A∩B=()A.⌀B.{2}C.{-2,2} D.{-2,1,2,3}答案B34.(2013某某,1,5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1} C.{0,2} D.{0,1,2}答案B35.(2013某某,1,5分)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2]B.[1,2] C.[-2,2] D.[-2,1]答案D36.(2013某某,1,5分)设全集为R,函数f(x)=的定义域为M,则∁R M为()A.(-∞,1)B.(1,+∞)C.(-∞,1]D.[1,+∞)答案B37.(2013某某,1,5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}答案D38.(2015某某,11,5分)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=______.答案{1,2,3}39.(2014某某,11,5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=_______.答案{3,5,13}40.(2013某某,10,5分)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=__________.答案{6,8}三年模拟A组2016—2018年模拟·基础题组1.(2018某某师大附中11月模拟,1)已知集合A={(x,y)|x,y为实数,且y=x2},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.无数个B.3 C.2 D.1答案C2.(2017某某某某高中毕业班4月调研,2)已知集合A={1,3},B=,则A ∪B=()A.{1,3} B.{1,2,3} C.{1,3,4} D.{1,2,3,4}答案B3.(2016某某某某一模,1)集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}答案B考点二集合间的基本关系4.(2017某某某某一模,2)已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M与集合N的关系是()A.M=N B.M∩N=N C.M∪N=N D.M∩N=⌀答案B5.(2016某某某某二模,1)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是()A.N⊆M B.N∩M=⌀C.M⊆N D.M∩N=R答案C6.(2018某某某某调研,13)设集合A={1,},B={a},若B⊆A,则实数a的值为______.答案07.(2017某某八市联考,13)已知A={x|x2-3x+2<0},B={x|1<x<a},若A⊆B,则实数a的取值X围是_____.答案[2,+∞)考点三集合间的基本运算8.(2018某某重点中学11月质检,1)已知集合A={x|3x>3},B={x|3x2-2x-5<0},则A∩B=()A.B.(-1,1) C.(-1,+∞)D.9.(2018某某重点中学期中联考,1)已知集合A=,B={x|(x+2)(x-1)>0},则A∩B等于()A.(0,2) B.(1,2)C.(-2,2) D.(-∞,-2)∪(0,+∞)答案B10.(2018某某某某一模,1)若集合A={x|1≤x≤5},B={x|log2x<2},则A∪B等于()A.(-1,5] B.(0,5] C.[1,4) D.[-1,4)答案B11.(2017某某百校联盟4月质检,1)已知集合A={x|2x2-7x+3<0},B={x∈Z|lg x<1},则阴影部分所表示的集合的元素个数为()A.1 B.2 C.3 D.4答案B12.(2017某某某某三模,1)已知全集U=R,集合M={x||x|<1},N={y|y=2x,x∈R},则集合∁U(M∪N)等于()A.(-∞,-1] B.(-1,2)C.(-∞,-1]∪[2,+∞)D.[2,+∞)答案A13.(2017某某襄阳五中模拟,1)设集合U={1,2,3,4},集合A={x∈N|x2-5x+4<0},则∁U A等于()A.{1,2} B.{1,4} C.{2,4} D.{1,3,4}答案B14.(2016中原名校四月联考,1)设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=()A.(2,3] B.(-∞,1]∪(2,+∞)C.[1,2) D.(-∞,0)∪[1,+∞)答案DB组2016—2018年模拟·提升题组(满分:55分时间:40分钟)一、选择题(每小题5分,共35分)1.(2018某某南开中学月考,1)已知全集U={0,1,2,3,4,5},集合A={1,2,3,5},B={2,4},则(∁U A)∪B=()A.{1,2,4} B.{4} C.{0,2,4} D.{0,2,3,4}2.(2018某某浏阳三校联考,1)设A={x|y=},B={y|y=ln(1+x)},则A∩B=()A.{x|x>-1} B.{x|x≤1}C.{x|-1<x≤1}D.⌀答案B3.(2018某某某某重点高中联考,2)已知集合M=,N=,则M∩N=()A.⌀B.{(3,0),(0,2)}C.[-2,2] D.[-3,3]答案D4.(2018某某五校协作体9月联考,2)已知集合P={x|x2-2x-8>0},Q={x|x≥a},P∪Q=R,则a的取值X围是()A.(-2,+∞)B.(4,+∞)C.(-∞,-2] D.(-∞,4]答案C5.(2017某某某某、某某等六市一模,1)已知集合A={(x,y)|y-=0},B={(x,y)|x2+y2=1},C=A∩B,则C的子集的个数是()A.0 B.1 C.2 D.4答案C6.(2017某某某某第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},那么a的取值为()A.a=B.a≤C.a=-D.a≥答案C7.(2016某某某某瑞安八校联考,1)已知集合A={x|ax=1},B={0,1},若A⊆B,则由a的取值构成的集合为()A.{1} B.{0} C.{0,1} D.⌀答案C二、解答题(每小题10分,共20分)8.(2018某某某某四校联考,17)已知三个集合:A={x∈R|log2(x2-5x+8)=1},B={x∈R|=1},C={x∈R|x2-ax+a2-19>0}.(2)已知A∩C≠⌀,B∩C=⌀,某某数a的取值X围.解析(1)∵A={x∈R|log2(x2-5x+8)=1}={x∈R|x2-5x+8=2}={2,3},(2分)B={x∈R|=1}={x∈R|x2+2x-8=0}={2,-4},(4分)∴A∪B={2,3,-4}.(5分)(2)∵A∩C≠⌀,B∩C=⌀,∴2∉C,-4∉C,3∈C.(6分)∵C={x∈R|x2-ax+a2-19>0},∴(7分)即,解得-3≤a<-2.(9分)所以实数a的取值X围是[-3,-2).(10分)9.(2017某某某某、某某联考,18)已知函数f(x)=的定义域为A,函数g(x)=(-1≤x≤0)的值域为B.(1)求A∩B;(2)若C=[a,2a-1],且C∪B=B,某某数a的取值X围.解析(1)要使函数f(x)=有意义,需log2(x-1)≥0,解得x≥2,∴A=[2,+∞).对于函数g(x)=,∵-1≤x≤0,∴1≤g(x)≤2,∴B=[1,2],∴A∩B={2}.(2)∵C∪B=B,∴C⊆B.当2a-1<a,即a<1时,C=⌀,满足条件.当2a-1≥a,即a≥1时,要使C⊆B,则解得1≤a≤.综上可得,a∈.C组2016—2018年模拟·方法题组方法1利用数轴和韦恩(Venn)图解决集合问题的方法1.(2018某某某某一中11月模拟,2)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠⌀,若A∪B=A,则()A.-3≤m≤4B.-3<m<4 C.2<m<4 D.2<m≤4答案D2.(2017豫北名校联考,1)已知全集U={1,2,3,4,5,6,7},M={3,4,5},N={1,3,6},则集合{2,7}=()A.M∩N B.(∁U M)∩(∁U N)C.(∁U M)∪(∁U N) D.M∪N答案B3.(2016某某蓟县期中,1)函数y=的定义域为集合A,函数y=ln(2x+1)的定义域为集合B,则A∩B=()A.B.C.D.答案A方法2解决与集合有关的新定义问题的方法4.(2018某某某某三校联考,4)已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个__________.答案175.(2016某某中原名校3月联考,14)当两个集合中一个集合为另一集合的子集时,称这两个集合构成“全食”,当两个集合有公共元素,但互不为对方子集时,称这两个集合构成“偏食”.对于集合A=,B={x|ax2=1,a≥0},若A与B构成“全食”或构成“偏食”,则a的取值集合为___________.答案{0,1,4}。
核按钮(新课标)高考数学一轮复习第一章集合与常用逻辑用语1.1集合及其运算习题理1.集合(1)集合的含义与表示①了解集合的含义,体会元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用Venn图表达集合间的基本关系及集合的基本运算.2.常用逻辑用语(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的含义.(4)了解逻辑联结词“或”“且”“非”的含义.(5)理解全称量词和存在量词的意义.(6)能正确地对含一个量词的命题进行否定.§1.1 集合及其运算1.集合的基本概念(1)我们把研究对象统称为________,把一些元素组成的总体叫做________.(2)集合中元素的三个特性:________,________, ________.(3)集合常用的表示方法:________和________.2.常用数集的符号数集自然数集正整数集整数集有理数集实数集复数集符号3.元素与集合、集合与集合之间的关系(1)元素与集合之间存在两种关系:如果a是集合A中的元素,就说a________集合A,记作________;如果a不是集合A中的元素,就说a________集合A,记作________.(2)集合与集合之间的关系:表示关系文字语言符号语言相等集合A与集合B中的所有元素都相同__________⇔A=B子集A中任意一个元素均为B中的元素________或________真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素________或________空集空集是任何集合的子集,是任何______的真子集∅⊆A,∅B(B≠∅)结论:集合{a1,a2,…,a n}的子集有______个,非空子集有________个,非空真子集有________个.集合的并集集合的交集集合的补集符号表示若全集为U,则集合A 的补集记为________Venn图表示(阴影部分)意义5.集合运算中常用的结论(1)①A∩B________A;②A∩B________B;③A∩A=________;④A∩∅=________;⑤A∩B________B∩A.(2)①A∪B________A; ②A∪B________B;③A∪A=________;④A∪∅=________;⑤A∪B________B∪A.(3)①∁U(∁U A)=________;②∁U U=________;③∁U∅=________;④A∩(∁U A)=____________;⑤A∪(∁U A)=____________.(4)①A∩B=A⇔________⇔A∪B=B;②A∩B=A∪B⇔____________.(5)记有限集合A,B的元素个数为card(A),card(B),则:card(A∪B)=____________________________;card[∁U(A∪B)]=________________________.自查自纠1.(1)元素集合(2)确定性互异性无序性(3)列举法描述法2.N N*(N+) Z Q R C3.(1)属于a∈A不属于a∉A(2)A⊆B且B⊆A A⊆B B⊇A A B B A非空集合2n2n-1 2n-24.A∪B A∩B∁U A{x|x∈A或x∈B}{x|x∈A且x∈B} {x|x∈U且x∉A}5.(1)①⊆②⊆③A④∅⑤=(2)①⊇ ②⊇ ③A ④A ⑤= (3)①A ②∅ ③U ④∅ ⑤U (4)①A ⊆B ②A =B(5)card(A )+card(B )-card(A ∩B ) card(U )-card(A )-card(B )+card(A ∩B )(2015·安徽)设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩(∁UB )=( )A .{1,2,5,6}B .{1}C .{2}D .{1,2,3,4}解:∵∁U B ={1,5,6},∴A ∩(∁U B )={1}.故选B .(2015·陕西)设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1)D .(-∞,1]解:∵M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},∴M ∪N =[0,1].故选A .(2015·全国Ⅱ)已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}解:由已知得B ={x |-2<x <1},∴A ∩B ={-1,0}.故选A .已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________.解:根据x ∈A ,y ∈A ,x +y ∈A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.故填3.设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是________.解:A ={x |x 2+2x -3>0}={x |x >1或x <-3},设函数f (x )=x 2-2ax -1,则其对称轴x =a >0,由对称性知,若A ∩B 中恰含有一个整数,则这个整数为2,∴f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0, 得34≤a <43.故填⎣⎢⎡⎭⎪⎫34,43.类型一 集合的概念(1)若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a =( )A .4B .2C .0D .0或4解:由ax 2+ax +1=0只有一个实数解,可得当a =0时,方程无实数解; 当a ≠0时,Δ=a 2-4a =0,解得a =4.故选A .(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3,2m 2+m=3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,2m 2+m =3,综上知,m =-32.故填-32.【点拨】(1)用描述法表示集合,首先要弄清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(2)含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.(1)(2015·苏州一模)集合⎩⎨⎧⎭⎬⎫x ∈N *|12x∈Z 中含有的元素个数为( )A .4B .6C .8D .12解:令x =1,2,3,4,5,6,7,8,9,10,11,12,代入验证,得x =1,2,3,4,6,12时,12x∈Z ,即集合中有6个元素.故选B .(2)已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b ,0},则a 2 017+b 2 017=________.解:由已知得b a=0及a ≠0,∴b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =-1,∴a2 017+b2 017=-1.故填-1.类型二 集合间的关系已知集合A ={x |x 2-3x -10≤0}.(1)若B ={x |m +1≤x ≤2m -1},B ⊆A ,求实数m 的取值范围; (2)若B ={x |m -6≤x ≤2m -1},A =B ,求实数m 的取值范围; (3)若B ={x |m -6≤x ≤2m -1},A ⊆B ,求实数m 的取值范围. 解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5}, (1)若B ⊆A ,则①当B =∅,有m +1>2m -1,即m <2,此时满足B ⊆A ;②当B ≠∅,有⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5, 解得m ∈∅,即不存在实数m 使得A =B .(3)若A ⊆B ,则⎩⎪⎨⎪⎧2m -1>m -6,m -6≤-2,2m -1≥5,解得3≤m ≤4.∴m 的取值范围为[3,4].【点拨】本例主要考查了集合间的关系,“当B ⊆A 时,B 可能为空集”很容易被忽视,要注意这一“陷阱”.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集的个数; (3)当x ∈R 时,若A ∩B =∅,求实数m 的取值范围.解:(1)①当m +1>2m -1,即m <2时,B =∅,满足B ⊆A .②当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5, 可得2≤m ≤3.综上,m 的取值范围是(-∞,3].(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, ∴A 的非空真子集个数为28-2=254. (3)∵x ∈R ,且A ∩B =∅,∴当B =∅时,即m +1>2m -1,得m <2,满足条件; 当B ≠∅时,有⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5,或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得m >4.综上,m 的取值范围是(-∞,2)∪(4,+∞).类型三 集合的运算(1)已知全集U =R ,集合A ={x |lg x ≤0},B ={x |2x ≤32},则A ∪B =( )A .∅ B.⎝ ⎛⎦⎥⎤0,13 C.⎣⎢⎡⎦⎥⎤13,1 D .(-∞,1] 解:由题意知,A =(0,1],B =⎝ ⎛⎦⎥⎤-∞,13, ∴A ∪B =(-∞,1].故选D .(2)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )=________.解:∵U ={1,2,3,4},∁U (A ∪B )={4},∴A ∪B ={1,2,3}.又∵B ={1,2},∴{3}⊆A ⊆{1,2,3}.又∁U B ={3,4},∴A ∩(∁U B )={3}.故填{3}.(3)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解:A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1,由B ={x |m <x <2},画出数轴,可得m =-1,n =1.故填-1,1.【点拨】(1)在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时需注意端点值的取舍.(2)在解决有关A ∩B =∅的问题时,往往忽略空集的情况,一定要先考虑A (或B )=∅是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用.(1)已知集合A ={x |y =x },B ={x|12<2x<4},则(∁R A )∩B 等于( )A .{x |-1<x <2}B .{x |-1<x <0}C .{x |x <1}D .{x |-2<x <0}解:∵A ={x |y =x }={x |x ≥0},∴∁R A ={x |x <0}.又B =⎩⎨⎧⎭⎬⎫x|12<2x <4={x |-1<x <2},∴(∁R A )∩B ={x |-1<x <0}.故选B .(2)(2015·唐山模拟)集合M ={2,log 3a },N ={a ,b },若M ∩N ={1},则M ∪N =( ) A .{0,1,2} B .{0,1,3} C .{0,2,3}D .{1,2,3}解:∵M ∩N ={1},∴log 3a =1,即a =3,∴b =1.∴M ={2,1},N ={3,1},M ∪N ={1,2,3}.故选D .(3)设集合A ={x ||x -a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A ∩B =∅,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2或a ≥4}C .{a |a ≤0或a ≥6}D .{a |2≤a ≤4}解:|x -a |<1⇔-1<x -a <1⇔a -1<x <a +1,由A ∩B =∅知,a +1≤1或a -1≥5,解得a ≤0或a ≥6.故选C .类型四 Venn 图及其应用设M ,P 是两个非空集合,定义M 与P 的差集为:M -P ={x |x ∈M ,且x ∉P },则M -(M -P )等于( )A.P B.M∩P C.M∪P D.M解:作出Venn图.当M∩P≠∅时,由图知,M-P为图中的阴影部分,则M-(M-P)显然是M∩P.当M∩P=∅时,M-(M-P)=M-M={x|x∈M,且x∉M}=∅=M∩P.故选B.【点拨】这是一道信息迁移题,属于应用性开放问题.“M-P”是我们不曾学过的集合运算关系,根据其元素的属性,借助Venn图将问题简单化.已知集合A={-1,0,4},集合B={x|x2-2x-3≤0,x∈N},全集为U,则图中阴影部分表示的集合是________.解:B={x|x2-2x-3≤0,x∈N}={x|-1≤x≤3,x∈N}={0,1,2,3},图中阴影部分表示的为属于A且不属于B的元素构成的集合,该集合为{-1,4}.故填{-1,4}.类型五和集合有关的创新试题在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 017∈[2];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中正确命题的个数是( )A.1 B.2 C.3 D.4解:∵2 017=403×5+2,∴2 017∈[2],结论①正确;-3=-1×5+2,∴-3∈[2],-3∉[3],结论②不正确;整数可以分为五“类”,这五“类”的并集就是整数集,即Z=[0]∪[1]∪[2]∪[3]∪[4],结论③正确;若整数a,b属于同一“类”,则a=5n+k,b=5m+k,a-b=5(n-m)+0∈[0],反之,若a-b∈[0],则a,b被5除有相同的余数,故a,b属于同一“类”,结论④正确,综上知,①③④正确.故选C.【点拨】(1)以集合语言为背景的新信息题,常见的类型有定义新概念型、定义新运算型及开放型,解决此类信息迁移题的关键是在理解新信息并把它纳入已有的知识体系中,用原来的知识和方法来解决新情境下的问题.(2)正确理解创新定义,分析新定义的表述意义,把新定义所表达的数学本质弄清楚,转化成熟知的数学情境,并能够应用到具体的解题之中,这是解决问题的基础.设S为复数集C的非空子集,若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集,下列命题:①集合S={a+b i|a,b为整数,i为虚数单位}为封闭集;②若S 为封闭集,则一定有0∈S ; ③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)解:①对,当a ,b 为整数时,对任意x ,y ∈S ,x +y ,x -y ,xy 的实部与虚部均为整数;②对,当x =y 时,0∈S ;③错,当S ={0}时,是封闭集,但不是无限集;④错,设S ={0}⊆T ,T ={0,1},显然T 不是封闭集.因此,真命题为①②.故填①②.1. 首先要弄清构成集合的元素是什么,如是数集还是点集,要明了集合{x |y =f (x )}、{y |y =f (x )}、{(x ,y )|y =f (x )}三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施;对连续的数集间的运算,常利用数轴进行;对点集间的运算,则往往通过坐标平面内的图形求解.这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.5.五个关系式A ⊆B ,A ∩B =A ,A ∪B =B ,∁U B ⊆∁U A 以及A ∩(∁U B )=∅是两两等价的.对这五个式子的等价转换,常使较复杂的集合运算变得简单.6.正难则反原则对于一些比较复杂、比较抽象、条件和结论不明确、难以从正面入手的涉及集合的数学问题,在解题时要调整思路,考虑问题的反面,探求已知与未知的关系,化难为易、化隐为显,从而解决问题.例如:已知A ={x |x 2+x +a ≤0},B ={x |x 2-x +2a -1<0},C ={x |a ≤x ≤4a -9},且A ,B ,C 中至少有一个不是空集,求a 的取值范围.这个问题的反面即是三个集合全为空集,即⎩⎪⎨⎪⎧1-4a <0,1-4(2a -1)≤0,a >4a -9,解得58≤a <3,从而所求a 的取值范围为⎩⎨⎧⎭⎬⎫a|a <58或a ≥3.1.(2015·全国Ⅰ)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .2解:A ∩B ={x |x =3n +2,n ∈N }∩{6,8,10,12,14}={8,14}.故选D .2.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N =( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,1} 解:∵N ={x |0≤x ≤1},M ={-1,0,1},∴M ∩N ={0,1}.故选B .3.(2013·辽宁)已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B =( )A.()0,1B.(]0,2C.()1,2D.(]1,2解:易知A ={}x |1<x <4,∴A ∩B =(]1,2.故选D .4.(2013·山东)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9解:由题意知,x -y =0,-1,-2,1,2.故B 中元素个数为5,故选C . 5.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为( )A .3B .4C .7D .8 解:A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意知,图中阴影部分表示的集合为A ∩B ={1,2,3},其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.故选C .6.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的个数是( )A .0B .1C .2D .3解:①(-4)+(-2)=-6∉A ,不正确;②设n 1,n 2∈A ,n 1=3k 1,n 2=3k 2,k 1,k 2∈Z ,则n 1+n 2∈A ,n 1-n 2∈A ,正确;③令A 1={n |n =5k ,k ∈Z },A 2={n |n =2k ,k ∈Z },则A 1,A 2为闭集合,但A 1∪A 2不是闭集合,不正确.故选B .7.(2014·重庆)设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.解:∵U ={1,2,3,…,9,10},A ={1,2,3,5,8},∴∁U A ={4,6,7,9,10}.∴(∁U A )∩B ={7,9}.故填{7,9}.8.已知集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的4个元素的子集共有________个.解:由成对的相邻元素组成的四元子集都没有“孤立元素”,如{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5}这样的集合,共有6个.故填6.9.(2014·天津)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n qn -1,x i ∈M ,i =1,2,…,n },当q =2,n =3时,用列举法表示集合A .解:当q =2,n =3时,M ={0,1},A ={x |x =x 1+2x 2+4x 3,x i ∈M ,i =1,2,3}={0,1,2,3,4,5,6,7}.10.设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B =B ,求实数a 的取值范围.解:(1)A =⎩⎨⎧⎭⎬⎫x|12≤x ≤3, 当a =-4时,B ={x |-2<x <2},A ∩B =⎩⎨⎧⎭⎬⎫x|12≤x <2,A ∪B ={x |-2<x ≤3}. (2)∁R A =⎩⎨⎧⎭⎬⎫x|x <12或x >3, 当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,只须-a ≤12,解得-14≤a <0. 综上可得,实数a 的取值范围是⎩⎨⎧⎭⎬⎫a|a ≥-14. 11.设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R ,x ∈R },若B ⊆A ,求实数a 的取值范围.解:易知A ={0,-4},若B ⊆A ,则可分以下三种情况:①当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当∅≠B A 时,B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足题意;③当B =A 时,B ={0,-4},由此知0和-4是方程 x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系, 得⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1.综上所述,a 的取值范围为{}a |a ≤-1或a =1.(2015·杭州模拟)已知集合A ={x |x 2-3(a +1)x +2(3a +1)<0},B =⎩⎨⎧⎭⎬⎫x|x -2a x -(a 2+1)<0.(1)当a =2时,求A ∩B ;(2)求使B ⊆A 时实数a 的取值范围.解:(1)当a =2时,A ={x |x 2-9x +14<0}=(2,7), B =⎩⎨⎧⎭⎬⎫x|x -4x -5<0=(4,5),∴A ∩B =(4,5).(2)当a ≠1时,B =(2a ,a 2+1);当a =1时,B =∅. 又A ={x |(x -2)[x -(3a +1)]<0},①当3a +1<2,即a <13时,A =(3a +1,2),要使B ⊆A 成立,只须满足⎩⎪⎨⎪⎧2a ≥3a+1,a 2+1≤2,解得a =-1;②当a =13时,A =∅,B =⎝ ⎛⎭⎪⎫23,109,B ⊆A 不成立;③当3a +1>2,即a >13时,A =(2,3a +1),要使B ⊆A 成立,只须满足⎩⎪⎨⎪⎧2a≥2,a 2+1≤3a +1,或a =1,a ≠1,解得1≤a ≤3.综上可知,使B ⊆A 的实数a 的取值范围为[1,3]∪{-1}.。
第一章 集合与常用逻辑用语 第一节 集合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中.(2)集合的三种表示方法:列举法、描述法、图示法.(3)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A . A B ⇔⎩⎪⎨⎪⎧ A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A . (3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B . 两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A ∩B ,即A ∩B ={x |x ∈A ,且x ∈B }.(2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x |x ∈A ,或x ∈B }.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作∁U A ,即∁U A ={x |x ∈U ,且x ∉A }.求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为∁U A .二、常用结论(1)子集的性质:A ⊆A ,∅⊆A ,A ∩B ⊆A ,A ∩B ⊆B .(2)交集的性质:A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A .(3)并集的性质:A ∪B =B ∪A ,A ∪B ⊇A ,A ∪B ⊇B ,A ∪A =A ,A ∪∅=∅∪A =A .(4)补集的性质:A ∪∁U A =U ,A ∩∁U A =∅,∁U (∁U A )=A ,∁A A =∅,∁A ∅=A .(5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集.(6)等价关系:A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔A ⊇B .考点一 集合的基本概念[典例] (1)(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0 (2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( )A .1B .0C .-1D .±1[解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.(2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1.[答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意.[题组训练]1.设集合A ={0,1,2,3},B ={x |-x ∈A,1-x ∉A },则集合B 中元素的个数为( )A .1B .2C .3D .4解析:选A 若x ∈B ,则-x ∈A ,故x 只可能是0,-1,-2,-3,当0∈B 时,1-0=1∈A ;当-1∈B 时,1-(-1)=2∈A ;当-2∈B 时,1-(-2)=3∈A ;当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a 等于( )A.92B.98 C .0 D .0或98解析:选D 若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意.当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的值为0或98. 3.(2018·厦门模拟)已知P ={x |2<x <k ,x ∈N},若集合P 中恰有3个元素,则k 的取值范围为_____________ 解析:因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6.答案:(5,6] 考点二 集合间的基本关系[典例] (1)已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则( )A .B ⊆AB .A =BC .A BD .B A(2)(2019·湖北八校联考)已知集合A ={x ∈N *|x 2-3x <0},则满足条件B ⊆A 的集合B 的个数为( )A .2B .3C .4D .8(3)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________.[解析] (1)由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},比较A ,B 中的元素可知A B ,故选C. (2)∵A ={x ∈N *|x 2-3x <0}={x ∈N *|0<x <3}={1,2},又B ⊆A ,∴满足条件B ⊆A 的集合B 的个数为22=4,故选C.(3)当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3}.若B ⊆A ,在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧ -m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. [答案] (1)C (2)C (3)(-∞,1][变透练清]1.(变条件)若本例(2)中A 不变,C ={x |0<x <5,x ∈N},则满足条件A ⊆B ⊆C 的集合B 的个数为( )A .1B .2C .3D .4解析:选D 因为A ={1,2},由题意知C ={1,2,3,4},所以满足条件的B 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.2.(变条件)若本例(3)中,把条件“B ⊆A ”变为“A ⊆B ”,其他条件不变,则m 的取值范围为________.解析:若A ⊆B ,由⎩⎪⎨⎪⎧-m ≤-1,m ≥3得m ≥3,∴m 的取值范围为[3,+∞).答案:[3,+∞) 3.已知集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R},若B ⊆A ,则实数m 的取值范围为________. 解析:①若B =∅,则Δ=m 2-4<0,解得-2<m <2;②若1∈B ,则12+m +1=0,解得m =-2,此时B ={1},符合题意;③若2∈B ,则22+2m +1=0,解得m =-52,此时B =⎩⎨⎧⎭⎬⎫2,12,不合题意. 综上所述,实数m 的取值范围为[-2,2).答案:[-2,2)考点三 集合的基本运算考法(一) 集合的运算[典例] (1)(2018·天津高考)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R|-1≤x <2},则(A ∪B )∩C =( )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}(2)已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},则如图所示阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}[解析] (1)∵A ={1,2,3,4},B ={-1,0,2,3},∴A ∪B ={-1,0,1,2,3,4}.又C ={x ∈R|-1≤x <2}, ∴(A ∪B )∩C ={-1,0,1}.(2)依题意得A ={x |x <-1或x >4},因此∁R A ={x |-1≤x ≤4},题中的阴影部分所表示的集合为(∁R A )∩B ={x |-1≤x ≤2}. [答案] (1)C (2)D考法(二) 根据集合运算结果求参数[典例] (1)已知集合A ={x |x 2-x -12>0},B ={x |x ≥m }.若A ∩B ={x |x >4},则实数m 的取值范围是( )A .(-4,3)B .[-3,4]C .(-3,4)D .(-∞,4](2)(2019·河南名校联盟联考)已知A ={1,2,3,4},B ={a +1,2a },若A ∩B ={4},则a =( )A .3B .2C .2或3D .3或1[解析] (1)集合A ={x |x <-3或x >4},∵A ∩B ={x |x >4},∴-3≤m ≤4,故选B.(2)∵A ∩B ={4},∴a +1=4或2a =4.若a +1=4,则a =3,此时B ={4,6},符合题意;若2a =4,则a =2,此时B ={3,4},不符合题意.综上,a =3,故选A. [答案] (1)B (2)A[题组训练]1.已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z},则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}解析:选C 因为集合B ={x |-1<x <2,x ∈Z}={0,1},而A ={1,2,3},所以A ∪B ={0,1,2,3}.2.(2019·重庆六校联考)已知集合A ={x |2x 2+x -1≤0},B ={x |lg x <2},则(∁R A )∩B =( )A.⎝⎛⎭⎫12,100B.⎝⎛⎭⎫12,2C.⎣⎡⎭⎫12,100 D .∅解析:选A 由题意得A =⎣⎡⎦⎤-1,12,B =(0,100),则∁R A =(-∞,-1)∪⎝⎛⎭⎫12,+∞,所以(∁R A )∩B =⎝⎛⎭⎫12,100. 3.(2019·合肥质量检测)已知集合A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B.⎣⎡⎦⎤12,1C.⎣⎡⎭⎫23,+∞ D .(1,+∞)解析:选A 因为A ∩B ≠∅,所以⎩⎨⎧2a -1≥1,2a -1≥12a ,解得a ≥1. [课时跟踪检测]1.(2019·福州质检)已知集合A ={x |x =2k +1,k ∈Z},B ={x |-1<x ≤4},则集合A ∩B 中元素的个数为( )A .1B .2C .3D .4解析:选B 依题意,集合A 是由所有的奇数组成的集合,故A ∩B ={1,3},所以A ∩B 中元素的个数为2.2.设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )=( )A .{2,6}B .{3,6}C .{1,3,4,5}D .{1,2,4,6}解析:选A 因为A ={1,3,5},B ={3,4,5},所以A ∪B ={1,3,4,5}.又U ={1,2,3,4,5,6},所以∁U (A ∪B )={2,6}.3.(2018·天津高考)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( )A .{x |0<x ≤1}B .{x |0<x <1}C .{x |1≤x <2}D .{x |0<x <2}解析:选B ∵全集为R ,B ={x |x ≥1},∴∁R B ={x |x <1}.∵集合A ={x |0<x <2},∴A ∩(∁R B )={x |0<x <1}.4.(2018·南宁毕业班摸底)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∩N =MB .M ∪(∁R N )=MC .N ∪(∁R M )=RD .M ∪N =M解析:选D 由题意可得,N =(0,2),M =(-∞,4),所以M ∪N =M .5.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤2x <2,B ={x |ln x ≤0},则A ∩B 为( ) A.⎝⎛⎭⎫0,12 B .[-1,0) C.⎣⎡⎭⎫12,1 D .[-1,1]解析:选A ∵12≤2x <2,即2-1≤2x <212,∴-1≤x <12,∴A =⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x <12.∵ln x ≤0,即ln x ≤ln 1,∴0<x ≤1,∴B ={x |0<x ≤1},∴A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12. 6.(2019·郑州质量测试)设集合A ={x |1<x <2},B ={x |x <a },若A ∩B =A ,则a 的取值范围是( )A .(-∞,2]B .(-∞,1]C .[1,+∞)D .[2,+∞)解析:选D 由A ∩B =A ,可得A ⊆B ,又因为A ={x |1<x <2},B ={x |x <a },所以a ≥2.7.已知全集U =A ∪B 中有m 个元素,()∁U A ∪()∁U B 中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D 因为()∁U A ∪()∁U B 中有n 个元素,如图中阴影部分所示,又U =A ∪B 中有m 个元素,故A ∩B 中有m -n 个元素.8.定义集合的商集运算为A B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =m n ,m ∈A ,n ∈B ,已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2-1,k ∈A ,则集合B A∪B 中的元素个数为( ) A .6B .7C .8D .9解析:选B 由题意知,B ={0,1,2},B A =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,则B A ∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2,共有7个元素.9.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z},则A ∩B =________. 答案:{-1,0}解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z}={-1,0}.10.已知集合U =R ,集合A =[-5,2],B =(1,4),则下图中阴影部分所表示的集合为________.解析:∵A =[-5,2],B =(1,4),∴∁U B ={x |x ≤1或x ≥4},则题图中阴影部分所表示的集合为(∁U B )∩A ={x |-5≤x ≤1}.答案:{x |-5≤x ≤1}11.若集合A ={(x ,y )|y =3x 2-3x +1},B ={(x ,y )|y =x },则集合A ∩B 中的元素个数为________. 解析:法一:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.联立得方程组⎩⎪⎨⎪⎧ y =3x 2-3x +1,y =x ,解得⎩⎨⎧ x =13,y =13或⎩⎪⎨⎪⎧x =1,y =1, 故A ∩B =⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫13,13,(1,1),所以A ∩B 中含有2个元素. 法二:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.因为3x 2-3x +1=x 即3x 2-4x +1=0的判别式Δ>0,所以该方程有两个不相等的实根,所以A ∩B 中含有2个元素.答案:212.已知集合A ={x |log 2x ≤2},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是__________.解析:由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B ={x |x <a },由于A ⊆B ,在数轴上标出集合A ,B ,如图所示,则a >4.答案:(4,+∞)13.设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}.(1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.解:(1)由题意知,A ∩B ={x |1≤x ≤3}∩{x |2<x <4}={x |2<x ≤3}.易知∁U B ={x |x ≤2或x ≥4},所以A ∪(∁U B )={x |1≤x ≤3}∪{x |x ≤2或x ≥4}={x |x ≤3或x ≥4}.(2)由B ∪C =B ,可知C ⊆B ,画出数轴(图略),易知2<a <a +1<4,解得2<a <3. 故实数a 的取值范围是(2,3).。
【高考领航】2017届高考数学大一轮复习第一章集合与常用逻辑用语 1.1 集合的概念与运算课时规范训练文北师大版
[A级基础演练]
1.(2015·高考天津卷)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩(∁U B)=( )
A.{3} B.{2,5}
C.{1,4,6} D.{2,3,5}
∁U B={2,3,5}∩{2,5}={2,5}.
解析:∁U B={2,5},A∩()
答案:B
2.(2015·高考课标卷Ⅱ)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( ) A.(-1,3) B.(-1,0)
C.(0,2) D.(2,3)
解析:将集合A与B在数轴上画出(如图).由图可知A∪B=(-1,3),故选A.
答案:A
3.(2016·天津河西区训练)设集合P={1,2,3,4,5,6},Q={x∈R|2≤x≤6},那么下列结论正确的是( )
A.P∩Q=P B.P∩Q Q
C.P∪Q=Q D.P∩Q P
解析:根据集合的定义可知P∩Q={2,3,4,5,6},所以只有D选项正确.
答案:D
4.(2015·高考江苏卷)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.
解析:∵A={1,2,3},B={2,4,5},∴A∪B={1,2,3,4,5},∴A∪B中元素个数为5.
答案:5
5.已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k=1,2,…}的关系的Venn图如图所示,则阴影部分所示的集合的元素共有________个.
解析:M={x|-1≤x≤3},M∩N={1,3}.
答案:2
6.已知集合M ={}1,m ,N ={}n ,log 2n ,若M =N ,则(m -n )
2 016
=__________.
解析:由M =N 知⎩⎪⎨
⎪⎧ n =1,
log 2n =m 或⎩⎪⎨⎪⎧
n =m ,log 2n =1,
∴⎩
⎪⎨
⎪⎧
m =0,
n =1或⎩
⎪⎨
⎪⎧
m =2,
n =2.即(m -n )2 016
=1或0.
答案:1或0
7.已知集合A ={-4,2a -1,a 2
},B ={a -5,1-a,9},分别求适合下列条件的a 的值. (1)9∈(A ∩B ); (2){9}=A ∩B . 解:(1)∵9∈(A ∩B ), ∴9∈B 且9∈A , ∴2a -1=9或a 2
=9, ∴a =5或a =±3. 检验知:a =5或a =-3. (2)∵{9}=A ∩B , ∴9∈(A ∩B ), ∴a =5或a =-3.
a =5时,A ={-4,9,25},B ={0,-4,9},
此时A ∩B ={-4,9}与A ∩B ={9}矛盾,所以a =-3.
8.已知集合A ={x |x 2
-2x -3≤0,x ∈R },B ={x |x 2
-2mx +m 2
-4≤0,x ∈R }. (1)若A ∩B =[1,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.
解:A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.
(1)∵A ∩B =[1,3],∴⎩
⎪⎨
⎪⎧
m -2=1,
m +2≥3,得m =3.
(2)∁R B ={x |x <m -2或x >m +2}. ∵A ⊆∁R B ,∴m -2>3或m +2<-1. ∴m >5或m <-3.
[B 级 能力突破]
1.(2016·辽宁沈阳期中)已知集合M ={x |x >x 2
},N =⎩
⎪⎨⎪⎧⎭
⎪⎬⎪
⎫y ⎪⎪⎪
y =4
x 2,x ∈M
,则M ∩N =
( )
A.⎩⎪⎨⎪⎧⎭⎪⎬⎪
⎫x ⎪⎪⎪
0<x <
1
2 B.⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫x ⎪⎪⎪
1
2
<x <1
C.{}x | 0<x <1
D.{}x | 1<x <2
解析:对于集合M ,由x >x 2
,解得0<x <1, ∴M ={x |0<x <1}.∵0<x <1,
∴1<4x
<4.∴12<4
x 2<2.∴N =⎩
⎪⎨⎪⎧⎭
⎪⎬⎪
⎫y ⎪⎪⎪
12<y <2
. ∴M ∩N =⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫x ⎪⎪⎪
1
2
<x <1
,故选B. 答案:B
2.(2016·广州模拟)对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪
(N -M ),设A =⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫x ⎪
⎪⎪
x ≥-
9
4,B ={x |x <0},则A ⊕B =( ) A.⎝ ⎛⎦⎥⎤-94,0
B.⎣⎢⎡⎭
⎪⎫-94,0 C.⎝
⎛⎭⎪⎫-∞,-94∪[0,+∞) D.⎝
⎛⎦⎥⎤-∞,-94∪(0,+∞) 解析:∵A -B ={x |x ≥0},B -A =⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫x ⎪⎪⎪
x <-
9
4, ∴A ⊕B =⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫x ⎪
⎪⎪
x <-
9
4或x ≥0.
答案:C
3.(2016·合肥模拟)如图,已知R 是实数集,集合A ={x |log 1
2
(x -1)>0},B =
⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫x ⎪⎪⎪
2x -3x
<0,则阴影部分表示的集合是( )
A .[0,1]
B .[0,1)
C .(0,1)
D .(0,1]
解析:图中阴影部分表示集合B ∩(∁R A ),又A ={x |1<x <2},B =⎩
⎪⎨⎪⎧⎭
⎪⎬⎪
⎫x ⎪⎪⎪
0<x <
32,∴∁R A ={x |x ≤1或x ≥2},B ∩(∁R A )={x |0<x ≤1}.
答案:D
4.设集合A =⎩
⎪⎨
⎪
⎧⎭
⎪⎬⎪
⎫x ,y ⎪⎪⎪
x 24+y 2
16
=1
,B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( )
A .4
B .3
C .2
D .1
解析:∵集合A =⎩
⎪⎨
⎪
⎧⎭
⎪⎬⎪⎫x ,y ⎪⎪⎪
x 24+y 2
16
=1
. ∴A 中的元素为椭圆x 2
4+y 2
16=1上的点,A ∩B 中的元素为椭圆和指数函数y =3x
图像的
交点,如图,可知其有两个不同交点,记为A 1,A 2,则A ∩B 的子集应为∅,{A 1},{A 2},{A 1,
A 2},共4个,故选A.
答案:A
5.(2016·宁夏银川一中模拟)已知集合A ={a ,b,2},B ={2,b 2,
2a },且A ∩B =A ∪B ,则a =________.
解析:因为A ∩B =A ∪B ,所以A =B ,则⎩
⎪⎨⎪⎧
a =2a ,
b =b 2
,或⎩
⎪⎨
⎪⎧
a =
b 2
,
b =2a .解得⎩
⎪⎨
⎪⎧
a =0,
b =1.,或
⎩⎪⎨⎪⎧
a =1
4,b =12.
所以a 的值为0或1
4
.
答案:0或1
4
6.(2016·河南郑州质检)已知集合A ,B ,定义集合A 与B 的一种运算A ⊕B ,其结果如下表所示:
解析:由给出的定义知,集合A ⊕B 的元素是由所有属于集合A 但不属于集合B 和属于
集合B但不属于集合A的元素构成的,即A⊕B={x|x∈A且x∉B,或x∈B且x∉A}.故M⊕N ={-2 014,2 015,-2 015,2 016}.
答案:{-2 014,2 015,-2 015,2 016}
7.设函数f(x)=x2-4x+3,g(x)=3x-2,集合M={x∈R|f(g(x))>0},N={x∈R|g(x)<2},则M∩N为______.
解析:函数f(g(x))=(3x-2)2-4(3x-2)+3
=(3x)2-8·3x+15=(3x-3)(3x-5).
由f(g(x))>0得(3x-3)(3x-5)>0,所以3x>5或3x<3,
所以x>log35或x<1,所以M={x|x>log35或x<1}.
由g(x)<2得3x-2<2,即3x<4,解得x<log34,
所以N={x|x<log34}.
所以M∩N={x|x>log35或x<1}∩(x|x<log34)={x|x<1}.
答案:{x|x<1}。