第四讲 信号的数字化处理技术-删节版概要
- 格式:ppt
- 大小:1.39 MB
- 文档页数:44
声波信号的数字化处理声波信号是指机器和生物发出的声音波形式的物理信号。
声波信号的数字化处理,是将声波信号从模拟信号转化为数字信号,使其可以在数字设备中进行处理和存储。
本文将分为以下几个部分来详细探讨声波信号的数字化处理。
一、模拟信号与数字信号的区别声波信号是一种模拟信号,它的波形无限制地连续变化。
而数字信号则是一种离散的信号,其采样值在时间轴上以固定频率进行采样。
数字信号有效地将信号分成了离散的小块,每个小块称为采样点。
通过数字化处理,我们可以将声音分成精确的采样点,然后将这些点转化为数字形式存储和处理。
数字信号的优点在于它们极其精确。
他们可以被轻松地重建并具有很高的精度和准确度。
然而,数字信号也有一些缺点。
他们需要更高的采样率和分辨率以提供与原始信号相同的精度。
此外,数字信号也有处理延迟和转换时间等问题。
二、数字信号的采样采样是将模拟信号转化为数字信号的过程。
在进行采样之前,我们需要将声波信号转化为电信号,这一步通常由麦克风完成。
接下来,以确定的间隔时间内对信号进行取样,通常每秒钟取数千至数万次。
这个期间所采用的取样次数称为采样频率。
在声音领域中,通常选择44.1kHz的采样率。
这在音频技术中成为标准采样率,可以保障可以捕捉到所有高音和低音。
对于语音信号,通常选择更低的采样率,如8kHz或16kHz。
三、数字信号的量化量化是将模拟信号的幅度转换为数字值的过程。
这一过程的目的是将连续的信号转化为离散的信号。
量化的结果就是采样信号的幅度值的数字表示。
量化过程需要选定量化级别,即量化器的输出具有的精度。
精度越高,量化误差就越小。
通常情况下,16位或24位的量化器就足以满足大部分需要。
然而,要注意,使用高精度的量化器并不能保证完美的质量。
如果将量化误差忽视,就会发生失真。
因此,在选择量化器时,需要平衡精度和成本之间的关系。
四、数字信号处理数字信号处理是指将数字信号模拟成可识别的信息的技术。
这些技术包括放大、滤波、数字降噪等。
第四讲信号的数字化过程随着数字电子技术的飞速发展,特别是信息技术的发展与普及,数字电视、液晶屏、数字音频、网络视频等用数字电路处理模拟信号的应用越来越广泛。
自然界中存在的声音、电压、电流、温度、时间、速度、压力以及利用摄像机摄制的反映客观世界的图像都是连续变化的模拟量,为让计算机等数字设备能够识别这些自然物理量并保证模拟设备和数字设备之间的有效通信,则需要在连续的模拟量和离散的数字量之间进行转换。
本讲中,我们将要对模拟信号的数字化过程进行学习,了解模数转换和数模转换的原理和过程。
AV系统中,前端信号源设备最初多以模拟电信号形式生成音视频信号,在之后对信号的处理、传输和接收过程中则可能要进过一次或多次模数转换或数模转换。
信号的数字化实际上需要进过采样、保持、量化和编码四个过程,这样得到的数字信号可以通过电缆、微波干线、卫星通道等数字线路传输,并在接收端则与上述模拟信号数字化过程相反,再经过后置滤波又恢复成原来的模拟信号。
信号的数字化过程又称为脉冲编码调制。
一、信号采样采样是对模拟信号进行周期性抽取样值的过程,即把随时间连续变化的信号转换成在时间上断续、在幅度上等于采样时间内模拟信号大小的一串脉冲(数码信号),采样间隔时间T称为采样周期,单位是秒,采样频率f=1/T,定义了每秒从连续信号中提取并组成离散信号的采样个数,单位是赫兹(Hz)。
为了保证在采样之后数字信号能完整地保留原始信号中的信息,能不失真地恢复成原模拟信号,采样频率应不小于输入模拟信号频谱中最高频率的两倍。
一般实际应用中采样频率为信号最高频率的5至10倍。
显然,采样频率越高,采样输出的信号就越接近连续的模拟信号。
在数字音频领域,常用的采样率有:8,000 Hz 电话所用采样率;22,050 Hz 无线电广播所用采样率,称为广播音质;44,100 Hz 音频 CD, 电脑声卡,也常用于 MPEG-1 音频(VCD,SVCD, MP3)所用采样率;48,000 Hz 数字电视、DVD、DAT、电影和专业音频所用的数字声音所用采样率;96,000 或192,000 Hz DVD-Audio、HD-DVD (高清晰度DVD)。
音频信号的数字化处理技术摘要:数字处理技术是通过相关载体实现对信号的采集,利用数字化转换实现对信息的针对化读取。
从信号读取形式看,数字处理技术可以有效对含有一定信息属性的文字图片、音视频等进行模拟转变,通过处理器实现对信息的有效录入。
伴随着计算机网络体系的逐步优化,数字信号处理技术的应用范围也随之拓宽,其在运行过程中也不仅仅是对信息进行转变处理,而是通过多途径的应用令技术本体可以在相关领域内实现最大化应用。
关键词:音频信号;数字化;处理技术引言随着科技的不断发展,数字信号处理技术在日常生活中的应用越来越广泛,越来越多地应用于通信、医学、公共交通和工程等领域。
大大提高了处理不同领域信息的能力,从而提高了工作效率。
DSP是将模拟信号转换为所需数字信号的处理器,而处理器的处理速度是衡量数字转换效率的最直接指标。
数字信号技术是一种非常实用的技术,包括数字信号处理的硬件部分、数字信号处理技术的理论部分、软件部分等。
1数字信号的特点数字信号在提取之后,对其进行分析以及处理,将提取内容中有效的信息以及无效的信息进行合理性分离,并且将提取的内容中有效的数据信息进行充分的使用,将其基于信号的形式进行展现,从整体上来提高数字信号的稳定性。
另外,在对数字信号进行处理的过程中,工作人员还要结合信息来源环境的变化,完成对于信息数据的合理化处理,进而做好信息的输出以及输入工作,体现出数字信号的重要价值。
将数字信号传输到数字处理系统中,在此之后根据处理器来完成后续的操作,实现数字信号处理等编程工作内容,另外是在数字信息的处理过程中,专业的数字信号处理技术的处理能力已经达到了一定的水平,这种处理技术能够将处理之后的数字信息基于合理的方式进行储存。
除此之外,数字信号处理技术还可以基于单片的计算机芯片来对数字信号进行合理的处理,使其满足21世纪发展需求。
尤其和其他的处理器相比较,数字信号技术的功能更强,体积更小,这就使数字信号处理技术在不同的领域中都实现了普遍的应用,纷纷体现出了良好的效果。