山西省吕梁市孝义市2016-2017学年八年级上学期期末数
- 格式:pdf
- 大小:133.11 KB
- 文档页数:4
2014-2015学年山西省吕梁市孝义市八年级(上)期末数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或172.(2分)禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为()A.1.02×10﹣7m B.10.2×10﹣7m C.1.02×10﹣6m D.1.0×10﹣8m 3.(2分)要使分式的值为零,则x()A.x=﹣1B.x=1C.x=±1D.x=﹣24.(2分)如果(x﹣1)(x+4)=x2+mx+n,那么()A.m=5,n=5B.m=3,n=﹣4C.m=5,n=4D.m=﹣3,n=5 5.(2分)下列5个式子:①x•x7;②(x2)3;③(﹣x2)4;④(x2y4)2÷y4;⑤(x﹣2)﹣4.其中结果为x8的有()A.5个B.4个C.3个D.2个6.(2分)根据分式的基本性质,分式可变形为()A.B.C.D.7.(2分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.4B.3C.2D.18.(2分)如果一个多边形的内角和等于它的外角和,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形9.(2分)根据下面已知条件,能画出唯一的△ABC的是()A.AB=3,BC=4,∠C=30°B.AB=3,BC=5,∠A=90°C.AB:AC:BC=3:4:5D.∠A=45°,∠B=45°,∠C=90°10.(2分)如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)11.(3分)当x时,分式有意义.12.(3分)若m、n互为相反数,则m2+2mn+n2﹣9=.13.(3分)已知点A(2,﹣3)与点B(x,y)关于x轴对称,则x=,y=.14.(3分)方程的解是.15.(3分)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,∠ABC=45°,∠BAC=75°,CD=5cm,则BF=.16.(3分)如图△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB、AC相交于点M、N且MN∥BC,若AB=9,AC=7,则△AMN的周长为.三、解答题(共7小题,满分52分)17.(8分)(1)分解因式:a2﹣2a(b+c)+(b+c)2(2)计算:3(x﹣1)(x+2)﹣(2x+1)2+(x+1)(x﹣1)18.(6分)先化简,再求值:,其中,a=﹣1.19.(4分)如图是两个4×4的正方形网格,在每个网格中,把其中的5个小正方形涂上阴影,使整个图案为轴对称图形.要求:在两个图中分别涂出不同的图案,若形状相同,视为一种.20.(6分)如图,△ABC,AB=5,BC=4,AC=3.(1)用直尺和圆规作边AB的垂直平分线MN;(2)在直线MN上找一点D,使△ADC周长最小,并写出△ADC最小周长是.21.(8分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?22.(8分)如图,在等边△ABC中,AD⊥BC,BE是中线,AD与BE交于点M.(1)猜想线段AM与DM的数量关系,并证明.(2)请你写出(1)证明过程中所用到的两条定理的详细内容.23.(12分)【问题情镜】如图1,∠B=∠C=90°,点E在BC上,AE平分∠DAB,DE平分∠ADC.【探究展示】求证:(1)∠AED=90°(2)点E是BC的中点(3)AB+DC=AD.【拓展延伸】如图2,AB∥CD,点E在BC上,AE平分∠DAB,DE平分∠ADC,问点E是BC 中点吗?说明理由.2014-2015学年山西省吕梁市孝义市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或17【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.2.(2分)禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为()A.1.02×10﹣7m B.10.2×10﹣7m C.1.02×10﹣6m D.1.0×10﹣8m【解答】解:0.000000102m=1.02×10﹣7m;故选:A.3.(2分)要使分式的值为零,则x()A.x=﹣1B.x=1C.x=±1D.x=﹣2【解答】解:由分式的值为零的条件得|x|﹣1=0,且x+2≠0,由|x|﹣1=0,x=﹣1或x=1,由x+2≠0,得x≠﹣2,则x=±1.故选:C.4.(2分)如果(x﹣1)(x+4)=x2+mx+n,那么()A.m=5,n=5B.m=3,n=﹣4C.m=5,n=4D.m=﹣3,n=5【解答】解:∵(x﹣1)(x+4)=x2+3x﹣4=x2+mx+n,∴m=3,n=﹣4,故选:B.5.(2分)下列5个式子:①x•x7;②(x2)3;③(﹣x2)4;④(x2y4)2÷y4;⑤(x﹣2)﹣4.其中结果为x8的有()A.5个B.4个C.3个D.2个【解答】解::①x•x7=x8;②(x2)3=x6;③(﹣x2)4=x8;④(x2y4)2÷y4=x4y8÷y4=x4y4;⑤(x﹣2)﹣4=x8,其中结果为x8的有3个,故选:C.6.(2分)根据分式的基本性质,分式可变形为()A.B.C.D.【解答】解:依题意得:=,故选C.7.(2分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.4B.3C.2D.1【解答】解:第一个图形是轴对称图形,有2条对称轴,第二个图形是轴对称图形,有2条对称轴,第三个图形是轴对称图形,有2条对称轴,第四个图形是轴对称图形,有3条对称轴,所以,是轴对称图形,且对称轴的条数为2的图形的个数是3.故选:B.8.(2分)如果一个多边形的内角和等于它的外角和,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【解答】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°=360°,n﹣2=2,n=4.故选:C.9.(2分)根据下面已知条件,能画出唯一的△ABC的是()A.AB=3,BC=4,∠C=30°B.AB=3,BC=5,∠A=90°C.AB:AC:BC=3:4:5D.∠A=45°,∠B=45°,∠C=90°【解答】解:A、根据AB=3,BC=4,∠C=30°不能画出唯一三角形,故A错误;B、当三角形为直角三角形时,斜边和一条直角边确定,则满足HL,可知该三角形是唯一确定的;C、当三角形的三边的比确定时,可知这个三角形是不能确定的,所以C错误;D、知道3个角的度数,只能证明相似,不能得到全等.故D错误;故选:B.10.(2分)如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)当x≠时,分式有意义.【解答】解:由题意得,2x﹣1≠0,解得x≠.故答案为:≠.12.(3分)若m、n互为相反数,则m2+2mn+n2﹣9=﹣9.【解答】解:∵m、n互为相反数,∴m+n=0,∴m2+2mn+n2﹣9=(m+n)2﹣9=﹣9,故答案为﹣9.13.(3分)已知点A(2,﹣3)与点B(x,y)关于x轴对称,则x=2,y= 3.【解答】解:∵点A(2,﹣3)与点B(x,y)关于x轴对称,∴x=2,y=3.故答案为:2,3.14.(3分)方程的解是x=1.【解答】解:去分母得:x=﹣1﹣x+3,移项合并得:2x=2,解得:x=1,经检验x=1是分式方程的解,故答案为:x=115.(3分)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,∠ABC=45°,∠BAC=75°,CD=5cm,则BF=10cm.【解答】解:∵AD⊥BC,∠ABC=45°,∴BD=AD,∠BDF=∠ADC=90°,∵BE⊥AC,∴∠FBD+∠C=∠CAD+∠C=90°,∴∠FBD=∠CAD,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA),∴BF=AC,∵∠BAC=75°,∠BAD=45°,∴∠DAC=30°,∴AC=2CD=10cm,∴BF=10cm,故答案为:10cm.16.(3分)如图△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB、AC相交于点M、N且MN∥BC,若AB=9,AC=7,则△AMN的周长为16.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=9,AC=7,∴△AMN的周长=AM+MN+AN=AB+AC=9+7=16.故答案为:16.三、解答题(共7小题,满分52分)17.(8分)(1)分解因式:a2﹣2a(b+c)+(b+c)2(2)计算:3(x﹣1)(x+2)﹣(2x+1)2+(x+1)(x﹣1)【解答】解:(1)分解因式:a2﹣2a(b+c)+(b+c)2=[a﹣(b+c)]2=(a﹣b﹣c)2.(2)计算:3(x﹣1)(x+2)﹣(2x+1)2+(x+1)(x﹣1)=3(x2+x﹣2)﹣(4x2+4x+1)+(x2+1),=3x2+3x﹣6﹣4x2﹣4x﹣1+x2+1,=﹣x﹣8.18.(6分)先化简,再求值:,其中,a=﹣1.【解答】解:原式=•﹣1=a﹣1,当a=﹣1时,原式=﹣1﹣1=﹣2.19.(4分)如图是两个4×4的正方形网格,在每个网格中,把其中的5个小正方形涂上阴影,使整个图案为轴对称图形.要求:在两个图中分别涂出不同的图案,若形状相同,视为一种.【解答】解:如图所示.20.(6分)如图,△ABC,AB=5,BC=4,AC=3.(1)用直尺和圆规作边AB的垂直平分线MN;(2)在直线MN上找一点D,使△ADC周长最小,并写出△ADC最小周长是7.【解答】解:(1)边AB的垂直平分线MN如图所示;(2)由轴对称确定最短路线问题,点D为MN与BC的交点,∵MN垂直平分AB,∴AD=BD,∴△ADC最小周长=AC+BC=3+4=7.故答案为:7.21.(8分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【解答】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.22.(8分)如图,在等边△ABC中,AD⊥BC,BE是中线,AD与BE交于点M.(1)猜想线段AM与DM的数量关系,并证明.(2)请你写出(1)证明过程中所用到的两条定理的详细内容.【解答】解:(1)AM=2DM.理由如下:∵△ABC为等边三角形,∴BA=BC,∠BAC=∠ABC=60°,∵AD⊥BC,BE是中线,∴AD平分∠BAC,BE平分∠ABC,∴∠BAD=30°,∠ABE=∠CBE=30°,∴AM=BM,在Rt△BDM中,∵∠DBM=30°,∴BM=2DM,∴AM=2DM;(2)等腰三角形顶角的平分线、底边上的高和底边的中线互相重合;在直角三角形中,30°角所对的直角边等于斜边的一半.23.(12分)【问题情镜】如图1,∠B=∠C=90°,点E在BC上,AE平分∠DAB,DE平分∠ADC.【探究展示】求证:(1)∠AED=90°(2)点E是BC的中点(3)AB+DC=AD.【拓展延伸】如图2,AB∥CD,点E在BC上,AE平分∠DAB,DE平分∠ADC,问点E是BC 中点吗?说明理由.【解答】解:【探究展示】(1)如图1,过点E作EF⊥AD;∵AE平分∠DAB,且∠B=90°,∴BE=FE;在Rt△ABE与Rt△AFE中,,∴Rt△ABE≌Rt△AFE(HL),∴AF=AB,∠AEB=∠AEF;同理可证:DF=DC,EC=EF,∠DEC=∠DEF;∴2∠AED=180°,∠AED=90°.(2)由(1)知:EB=EF,EC=EF,∴EB=EC,点E是BC的中点.(3)由(1)知:AF=AB、DF=DC,∴AD=AB+DC.【拓展延伸】点E是BC中点;探究如下:如图2,过点E作EF⊥CD,MN⊥AB,交DC的延长线于点N;∵AB∥DC,∴MN⊥DC;而AE平分∠DAB,DE平分∠ADC,∴EM=EF,EN=EF,∴EM=EN;而CN∥MB,∴=1,∴CE=BE,点E是BC中点.附赠:初中数学易错题填空专题一、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。
2015-2016学年山西省吕梁市孝义市八年级(上)期末数学试卷一、选择题:每小题2分,共20分.下面各小题都给出四个备选答案,其中只有一个是符合题意的,请将符合题意的字母代号填入下表相应的方格中.1.(2分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1 B.5 C.7 D.92.(2分)如图,在△ABC中,∠B=45°,∠D=64°,AC=BC,则∠E的度数是()A.45°B.26°C.36°D.64°3.(2分)孝义剪纸悠久历史,内容丰富,形式多样,造型独特,下列剪纸作品中,是轴对称图形的为()A.B.C.D.4.(2分)要使分式有意义,则x的取值是()A.x≠±1 B.x=±1 C.x≠﹣2 D.x=﹣25.(2分)如果x2+mx﹣12=(x+3)(x+n),那么()A.m=﹣1,n=﹣4 B.m=7,n=4 C.m=1,n=﹣4 D.m=﹣7,n=﹣46.(2分)下列运算正确的是()A.a3•a2=a6 B.a3+a2=2a5C.(2a2)3=2a6D.2a6÷a2=2a47.(2分)分式方程的解是()A.x=﹣1 B.x= C.x=﹣3 D.x=8.(2分)若点A(3,2)和点B(a,b)关于x轴对称,则a b的值为()A.9 B.C.8 D.9.(2分)如图,在△ABC中,AD⊥BC垂足为点D,AD是BC边上的中线,BE⊥AC,垂足为点E.则以下4个结论:①AB=AC;②∠EBC=;③AE=CE;④∠EBC=中正确的有()A.①②B.②③C.①②③D.①②③④10.(2分)如图,△ABC的内角∠ABC与外角∠ACD的平分线交于点E,且CE ∥AB,AC与BE交于点F,则下列结论错误的是()A.CB=CE B.∠A=∠ECD C.∠A=2∠E D.AB=BF二、填空题:每小题2分,共12分.11.(2分)PM2.5颗粒为小于或等于0.0000025米的微粒,直径虽小,但活性强,易附带有毒、有害物质,且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大.0.0000025这个数字用科学记数法表示为.12.(2分)分解因式:3a3﹣12a2+12a=.13.(2分)一个多边形的每一个外角是72°,则这个多边形共有条对角线.14.(2分)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.15.(2分)如图,△ABC,点E是AB上一点,D是BC的中点,连接ED并延长至点F,使DF=DE,连接CF,则线段BE与线段CF的关系为.16.(2分)如图,在等边△ABC中,AD⊥BC于D,若AB=4cm,AD=2cm,E 为AB的中点,P为AD上一点,PE+PB的最小值为.三、解答题:17题(1)5分,(2)6分,18题7分,共18分.17.(11分)(1)计算:(2x﹣3)2﹣2(3﹣x)(3+x)+9.(2)观察下列等式①1×3=22﹣1 ②2×4=32﹣1 ③3×5=42﹣1请你按照三个等式的规律写出第④个,第⑤个算式,并把这个规律用含字母n(n 为正整数)的式子表示出来,说明其正确性.18.(7分)先化简,再求值:÷(1﹣),其中x=0.四、完成下列各题:19题6分,20题7分,21题7分,共20分.19.(6分)如图1为L形的一种三格骨牌,它是由三个全等的正方形连接而成.请以L形的三格骨牌为基本图形,在图2和图3中各设计1个轴对称图形.要求如下:1、每个图形由3个L形三格骨牌组成,骨牌的顶点都在小正方形的顶点上.2、设计的图形用斜线涂出,若形状相同,则视为一种.20.(7分)如图,已知△ABC,∠C=90°,∠B=30°.(1)用直尺和圆规在BC上找一点D,使DA=DB.(不写作法,保留作图痕迹)(2)若BC=8,求点D到边AB的距离.21.(7分)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?五、完成下列各题:22题8分,23题12分,共20分.22.(8分)如图,四边形ABCD中,AB∥CD,AB∥CD,AD∥BC,AC和BD交于点O.求证:OA=OC.23.(12分)情境观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系是.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.拓展延伸:如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE.要求:请你写出辅助线的作法,并在图3中画出辅助线,不需要证明.2015-2016学年山西省吕梁市孝义市八年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题2分,共20分.下面各小题都给出四个备选答案,其中只有一个是符合题意的,请将符合题意的字母代号填入下表相应的方格中.1.(2分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1 B.5 C.7 D.9【解答】解:根据三角形的三边关系,得:第三边>两边之差,即4﹣3=1,而<两边之和,即4+3=7,即1<第三边<7,∴只有5符合条件,故选:B.2.(2分)如图,在△ABC中,∠B=45°,∠D=64°,AC=BC,则∠E的度数是()A.45°B.26°C.36°D.64°【解答】解:∵在△ABC中,∠B=45°,AC=BC,∴∠A=∠B=45°,∴∠DCE=∠ACB=180°﹣∠A﹣∠B=90°,∵∠D=64°,∴∠E=90°﹣∠D=26°.故选B.3.(2分)孝义剪纸悠久历史,内容丰富,形式多样,造型独特,下列剪纸作品中,是轴对称图形的为()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、是轴对称图形,故正确;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选B.4.(2分)要使分式有意义,则x的取值是()A.x≠±1 B.x=±1 C.x≠﹣2 D.x=﹣2【解答】解:∵分式有意义,∴x+2≠0.∴x≠﹣2.故选:C.5.(2分)如果x2+mx﹣12=(x+3)(x+n),那么()A.m=﹣1,n=﹣4 B.m=7,n=4 C.m=1,n=﹣4 D.m=﹣7,n=﹣4【解答】解:∵x2+mx﹣12=(x+3)(x+n),∴x2+mx﹣12=x2+(3+n)x+3n,故,解得:.故选:A.6.(2分)下列运算正确的是()A.a3•a2=a6 B.a3+a2=2a5C.(2a2)3=2a6D.2a6÷a2=2a4【解答】解:A、a3•a2=a5,故此选项错误;B、a3+a2,无法计算,故此选项错误;C、(2a2)3=4a6,故此选项错误;D、2a6÷a2=2a4,正确.故选:D.7.(2分)分式方程的解是()A.x=﹣1 B.x= C.x=﹣3 D.x=【解答】解:去分母得:2﹣x﹣2=3x﹣3,移项合并得:4x=3,解得:x=,经检验x=是分式方程的解.故选D.8.(2分)若点A(3,2)和点B(a,b)关于x轴对称,则a b的值为()A.9 B.C.8 D.【解答】解:A(3,2)和点B(a,b)关于x轴对称,得b=﹣2,a=3,a b=3﹣2=.故选:B.9.(2分)如图,在△ABC中,AD⊥BC垂足为点D,AD是BC边上的中线,BE⊥AC,垂足为点E.则以下4个结论:①AB=AC;②∠EBC=;③AE=CE;④∠EBC=中正确的有()A.①②B.②③C.①②③D.①②③④【解答】解:∵AD⊥BC垂足为点D,AD是BC边上的中线,∴AD垂直平分BC,∴AB=AC,∴①正确;∵AB=AC,AD⊥BC,∴∠BAD=∠CAD=∠BAC,∵BE⊥AC,AD⊥BC,∴∠EBC+∠C=90°,∠DAC+∠C=90°,∴∠EBC=∠DAC,∴∠EBC=∠BAC,∴②正确;∵AE2=AB2﹣BE2,CE2=BC2﹣BE2,AB≠BC,∴AE≠CE,∴③错误;∵∠BAC≠∠ABC,∠EBC=∠BAC,∴∠EBC≠∠ABC,∴④错误;∴①②都正确;故选A.10.(2分)如图,△ABC的内角∠ABC与外角∠ACD的平分线交于点E,且CE ∥AB,AC与BE交于点F,则下列结论错误的是()A.CB=CE B.∠A=∠ECD C.∠A=2∠E D.AB=BF【解答】解:∵△ABC的内角∠ABC与外角∠ACD的平分线交于点E,∴∠ABF=∠CBF,∠FCE=∠ECD,∵CE∥AB,∴∠A=∠FCE,∠E=∠ABE,∴∠A=∠ECD,∠FBC=∠E,∴CB=CE,∵∠ACD=∠A+∠ABC,CE平分∠ACD,∴∠ECD=∠ACD=(∠A+∠ABC)(角平分线的定义),∵BE平分∠ABC,∴∠EBC=∠ABC(角平分线的定义),∵∠ECD是△BCE的外角,∴∠E=∠ECD﹣∠EBC=∠A,即∠A=2∠E;根据已知条件不能推出∠A=∠AFB,即不能推出AB=BF;所以选项A、B、C的结论都正确,只有选项D的结论错误;故选D.二、填空题:每小题2分,共12分.11.(2分)PM2.5颗粒为小于或等于0.0000025米的微粒,直径虽小,但活性强,易附带有毒、有害物质,且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大.0.0000025这个数字用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.12.(2分)分解因式:3a3﹣12a2+12a=3a(a﹣2)2.【解答】解:原式=3a(a2﹣4a+4)=3a(a﹣2)2,故答案为:3a(a﹣2)2.13.(2分)一个多边形的每一个外角是72°,则这个多边形共有5条对角线.【解答】解:多边形边数:360÷72=5,对角线条数:=5,故答案为:5.14.(2分)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是SSS.【解答】解:由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),故答案为:SSS.15.(2分)如图,△ABC,点E是AB上一点,D是BC的中点,连接ED并延长至点F,使DF=DE,连接CF,则线段BE与线段CF的关系为BE=CF且BE∥CF.【解答】解:∵D是BC的中点,∴BD=CD,在△BDE与△CDF中,,∴△BDE≌△CDF,∴BE=CF,∠B=∠DCF,∴BE∥CF.故答案为:BE=CF,BE∥CF.16.(2分)如图,在等边△ABC中,AD⊥BC于D,若AB=4cm,AD=2cm,E 为AB的中点,P为AD上一点,PE+PB的最小值为2.【解答】解:连接EC交于AD于点P.∵AB=AC,BD=DC,∴AD⊥BC.∴AD是BC的垂直平分线.∴PB=PC.∴PE+PB=EP+PC=EC.∵△ABC为等边三角形,∴∠EAC=∠ACD=60°,AB=BC.∵点E和点D分别是AB和BC的中点,∴AE=DC.在△ACE和△CAD中,,∴△ACE≌△CAD.∴EC=AD=2.故答案为:2.三、解答题:17题(1)5分,(2)6分,18题7分,共18分.17.(11分)(1)计算:(2x﹣3)2﹣2(3﹣x)(3+x)+9.(2)观察下列等式①1×3=22﹣1 ②2×4=32﹣1 ③3×5=42﹣1请你按照三个等式的规律写出第④个,第⑤个算式,并把这个规律用含字母n(n 为正整数)的式子表示出来,说明其正确性.【解答】解:(1)(2x﹣3)2﹣2(3﹣x)(3+x)+9=4x2﹣12x+9﹣2(9﹣x2)+9=4x2﹣12x+9﹣18+2x2+9=6x2﹣12x;(2)第④个算式:4×6=52﹣1,第⑤个算式:5×7=62﹣1,n(n+2)=(n+1)2﹣1,理由:左边=n2+2n,右边=n2+2n+1﹣1=n2+2n,因为:左边=右边,所以:n(n+2)=(n+1)2﹣1.18.(7分)先化简,再求值:÷(1﹣),其中x=0.【解答】解:原式=÷(﹣)=•=,当x=0时,原式=.四、完成下列各题:19题6分,20题7分,21题7分,共20分.19.(6分)如图1为L形的一种三格骨牌,它是由三个全等的正方形连接而成.请以L形的三格骨牌为基本图形,在图2和图3中各设计1个轴对称图形.要求如下:1、每个图形由3个L形三格骨牌组成,骨牌的顶点都在小正方形的顶点上.2、设计的图形用斜线涂出,若形状相同,则视为一种.【解答】解:如图所示:.20.(7分)如图,已知△ABC,∠C=90°,∠B=30°.(1)用直尺和圆规在BC上找一点D,使DA=DB.(不写作法,保留作图痕迹)(2)若BC=8,求点D到边AB的距离.【解答】解:(1)如图所示:点D即为所求;(2)∵DE是AB的垂直平分线,∴AD=DB,DE⊥AB,∴∠DAB=∠B=30°,∵∠BAC=60°,∴∠CAD=∠DAB=30°,∵∠C=90°,DE⊥AB,∴DC=DE,∵DE⊥AB,∠B=30°,∴BD=2DE,∴2DE+DE=BC=8,∴DE=.21.(7分)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?【解答】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得:=,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.五、完成下列各题:22题8分,23题12分,共20分.22.(8分)如图,四边形ABCD中,AB∥CD,AB∥CD,AD∥BC,AC和BD交于点O.求证:OA=OC.【解答】证明:∵AB∥CD,AD∥BC,∴∠ABD=∠CDB,∠ADB=∠CBD,在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),∴AD=CB,在△AOD和△COB中,,∴△AOD≌△COB(AAS),∴OA=OC.23.(12分)情境观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形△ABE≌△ACE,△ADF≌△CDB;②线段AF与线段CE的数量关系是AF=2CE.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.拓展延伸:如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE.要求:请你写出辅助线的作法,并在图3中画出辅助线,不需要证明.【解答】情境观察:解:①图1中所有的全等三角形为△ABE≌△ACE,△ADF≌△CDB;故答案为:△ABE≌△ACE,△ADF≌△CDB②线段AF与线段CE的数量关系是:AF=2CE;故答案为:AF=2CE.问题探究:证明:延长AB、CD交于点G,如图2所示:∵AD平分∠BAC,∴∠CAD=∠GAD,∵AD⊥CD,∴∠ADC=∠ADG=90°,在△ADC和△ADG中,,∴△ADC≌△ADG(ASA),∴CD=GD,即CG=2CD,∵∠BAC=45°,AB=BC,∴∠ABC=90°,∴∠CBG=90°,∴∠G+∠BCG=90°,∵∠G+∠BAE=90°,∴∠BAE=∠BCG,在△ABE和△CBG中,,∴△ADC≌△CBG中(ASA),∴AE=CG=2CD.拓展延伸:解:作DG⊥BC交CE的延长线于G,如图3所示.。
2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。
2016-2017学年八年级(上)期末数学试卷两套合集二附答案解析2016-2017学年八年级(上)期末数学试卷一、选择题:每题2分,共12分.1.要使分式成心义,那么x的取值应知足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣12.以下大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.人民大学D.浙江大学3.以下计算正确的选项是()A.3a﹣a=2 B.a2•a3=a6C.a2+2a2=3a2D.(a+b)2=a2+b24.假设三角形两边长别离为6cm,2cm,第三边长为偶数,那么第三边长为()A.2cm B.4cm C.6cm D.8cm5.如下图,亮亮书上的三角形被墨迹污染了一部份,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.化简的结果是()A.B.C.a﹣b D.b﹣a二、填空题:每题3分,共24分.7.写出一个运算结果是a6的算式.8.计算:(2016)0+()2﹣(﹣1)2016= .9.分解因式:a3﹣a= .10.假设3x=15,3y=5,那么3x﹣2y= .11.一个多边形内角和是一个四边形内角和的4倍,那么那个多边形的边数是.12.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是.13.假设分式的值为0,那么x的值为.14.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= .三、解答题:每题5分,共20分.15.因式分解:2a2﹣4a+2.16.化简:x(4x+3y)﹣(2x+y)(2x﹣y)17.解分式方程:.18.先化简,再求值:(﹣)÷,其中x=﹣3.四、解答题:每题7分,共28分.19.已知:图①、图②均为5×6的正方形网格,点A、B、C在格点(小正方形的极点)上.请你别离在图①、图②中确信格点D,画出一个以A、B、C、D为极点的四边形,使其为轴对称图形,并画出对称轴.20.如图是一个长为2a、宽为2b的长方形,沿图中虚线用剪子均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)请利用图2中的空白部份面积的不同表示方式,写出一个关于a、b的恒等式.(2)假设a+b=10,ab=6,依照你所取得的恒等式,求(a﹣b)的值.21.如图AB=AC,BD=CD,DE⊥BA,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.22.已知,小敏、小聪两人在x=2,y=﹣1的条件下别离计算P和Q的值,小敏说P的值比Q大,小聪说Q的值比P大,请你判定谁的结论正确?并说明理由.五、解答题:每题8分,共16分.23. 2016年中秋节期间,某商城隆重开业,某商家有打算选购甲、乙两种礼盒作为开业期间给予买家的礼物,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.(1)求甲、乙两种礼盒的单价别离为多少元?(2)假设商家打算购买这两种礼盒共40个,且投入的经费不超过1050元,那么购买的甲种礼盒最多买多少个?24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)假设∠ABC=70°,那么∠MNA的度数是.(2)连接NB,假设AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是不是存在P,使由P、B、C组成的△PBC的周长值最小?假设存在,标出点P的位置并求△PBC的周长最小值;假设不存在,说明理由.六、解答题:每题10分,共20分.25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(极点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是不是成立?假设不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.26.研究性学习:在平面直角坐标系中,等腰三角形ABC的极点A的坐标为(2,2).(1)假设底边BC在x轴上,请写出1组知足条件的点B、点C的坐标:;设点B、点C的坐标别离为(m,0)、(n,0),你以为m、n应知足如何的条件?答:.(2)假设底边BC的两头点别离在x轴、y轴上,请写出1组知足条件的点B、点C的坐标:;设点B、点C的坐标别离为(m,0)、(0,n),你以为m、n应知足如何的条件?答:.参考答案与试题解析一、选择题:每题2分,共12分.1.要使分式成心义,那么x的取值应知足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1【考点】分式成心义的条件.【分析】依照分式成心义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.应选:A.【点评】此题考查了分式成心义的条件,从以下三个方面透彻明白得分式的概念:(1)分式无心义⇔分母为零;(2)分式成心义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.以下大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.人民大学D.浙江大学【考点】轴对称图形.【分析】依照轴对称图形的概念对各选项分析判定即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.应选B.【点评】此题考查了轴对称图形的概念,轴对称图形的关键是寻觅对称轴,图形两部份折叠后可重合.3.以下计算正确的选项是()A.3a﹣a=2 B.a2•a3=a6C.a2+2a2=3a2D.(a+b)2=a2+b2【考点】同底数幂的乘法;归并同类项;完全平方公式.【分析】依照同底数幂的乘法、归并同类项、完全平方公式的运算法那么结合选项求解.【解答】解:A、3a﹣a=2a,计算错误,故本选项错误;B、a2•a3=a5,计算错误,故本选项错误;C、a2+2a2=3a2,计算正确,故本选项正确;D、(a+b)2=a2+2ab+b2,计算错误,故本选项错误.应选C.【点评】此题考查了同底数幂的乘法、归并同类项、完全平方公式等知识,把握各知识点的运算法那么是解答此题的关键.4.假设三角形两边长别离为6cm,2cm,第三边长为偶数,那么第三边长为()A.2cm B.4cm C.6cm D.8cm【考点】三角形三边关系.【分析】依照三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,求得第三边的取值范围,再进一步进行分析.【解答】解:依照三角形的三边关系,得第三边大于4cm,而小于8cm.又第三边是偶数,那么应是6cm.应选C.【点评】此题考查了三角形的三边关系,同时注意偶数这一条件.5.如下图,亮亮书上的三角形被墨迹污染了一部份,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的判定.【分析】依照图象,三角形有两角和它们的夹边是完整的,因此能够依照“角边角”画出.【解答】解:依照题意,三角形的两角和它们的夹边是完整的,因此能够利用“角边角”定理作出完全一样的三角形.应选D.【点评】此题考查了三角形全等的判定的实际运用,熟练把握判定定理并灵活运用是解题的关键.6.化简的结果是()A.B.C.a﹣b D.b﹣a【考点】分式的混合运算.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:原式=()•==﹣,应选B.【点评】分式的四那么运算是整式四那么运算的进一步进展,在计算时,第一要弄清楚运算顺序,先去括号,再进行分式的乘除.二、填空题:每题3分,共24分.7.(2021•滨州)写出一个运算结果是a6的算式a2•a4(答案不唯一).【考点】幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.【专题】开放型.【分析】依照同底数幂的乘法法那么,底数不变,指数相加,可得答案.【解答】解:a2•a4=a6,故答案为:a2•a4(答案不唯一).【点评】此题考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.8.计算:(2016)0+()2﹣(﹣1)2016= .【考点】零指数幂.【分析】依照非零的零次幂等于1,负数的偶数次幂是正数,可得答案.【解答】解:原式=1+﹣1=,故答案为:.【点评】此题考查了零次幂,利用非零的零次幂等于1,负数的偶数次幂是正数是解题关键.9.分解因式:a3﹣a= a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】此题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解完全.10.假设3x=15,3y=5,那么3x﹣2y= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】直接利用同底数幂的除法运算法那么将原式变形进而得出答案.【解答】解:∵3x=15,3y=5,∴3x﹣2y=3x÷(3y)2=15÷25=.故答案为:.【点评】此题要紧考查了同底数幂的除法运算法那么,正确将原式变形是解题关键.11.一个多边形内角和是一个四边形内角和的4倍,那么那个多边形的边数是10 .【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的外角和是内角和的4倍,那么多边形的内角和是360×4=1440度,再由多边形的内角和列方程解答即可.【解答】解:设那个多边形的边数是n,由题意得,(n﹣2)×180°=360°×4解得n=10.故答案为:10.【点评】此题要紧考查了多边形的内角和定理与外角和定理,熟练把握定理是解题的关键.12.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是P1(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】依照关于x轴对称的点,横坐标相同,纵坐标互为相反数;那么P1的坐标为(﹣2,﹣3).【解答】解:∵P(﹣2,3)与P1关于x轴对称,∴横坐标相同,纵坐标互为相反数,∴P1的坐标为(﹣2,﹣3).故答案为(﹣2,﹣3).【点评】考查了关于x轴、y轴对称的点的坐标,解决此题的关键是把握好对称点的坐标规律,注意结合图象,进行经历和解题.13.假设分式的值为0,那么x的值为﹣3 .【考点】分式的值为零的条件.【分析】依照分式成心义的条件可得x2﹣9=0,且(x﹣1)(x﹣3)≠0,再解即可.【解答】解:由题意得:x2﹣9=0,且(x﹣1)(x﹣3)≠0,解得:x=﹣3,故答案为:﹣3.【点评】此题要紧考查了分式值为零的条件,关键是把握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”那个条件不能少.14.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= 6 .【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB∴AD=BD∴∠DBA=∠A=30°∴∠CBD=30°∴BD=2CD=4∴AC=CD+AD=CD+BD=2+4=6.答案6.【点评】此题要紧考查线段的垂直平分线的性质和直角三角形的性质.三、解答题:每题5分,共20分.15.因式分解:2a2﹣4a+2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取2,利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练把握因式分解的方式是解此题的关键.16.化简:x(4x+3y)﹣(2x+y)(2x﹣y)【考点】整式的混合运算.【专题】计算题.【分析】原式第一项利用单项式乘以多项式法那么计算,第二项利用平方差公式化简,去括号归并即可取得结果.【解答】解:原式=4x2+3xy﹣4x2+y2=3xy+y2.【点评】此题考查了整式的混合运算,熟练把握运算法那么是解此题的关键.17.解分式方程:.【考点】解分式方程.【专题】计算题;压轴题.【分析】观看可得2﹣x=﹣(x﹣2),因此方程的最简公分母为:(x﹣2),去分母将分式方程化为整式方程后再求解,注意查验.【解答】解:方程两边同乘(x﹣2),得:1=﹣(1﹣x)﹣3(x﹣2)整理得:1=x﹣1﹣3x+6,解得:x=2,经查验x=2是增根,∴原分式方程无解.【点评】(1)解分式方程的大体思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程必然注意要验根;(3)分式方程去分母时不要漏乘.18.先化简,再求值:(﹣)÷,其中x=﹣3.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分取得最简结果,将x的值代入计算即可求出值.【解答】解:原式=[﹣]•=﹣=﹣,当x=﹣3时,原式=.【点评】此题考查了分式的化简求值,熟练把握运算法那么是解此题的关键.四、解答题:每题7分,共28分.19.已知:图①、图②均为5×6的正方形网格,点A、B、C在格点(小正方形的极点)上.请你别离在图①、图②中确信格点D,画出一个以A、B、C、D为极点的四边形,使其为轴对称图形,并画出对称轴.【考点】利用轴对称设计图案.【分析】依照轴对称图形的性质设计出轴对称图形即可.【解答】解:如下图:.【点评】此题要紧考查了利用轴对称设计图案,正确把握轴对称图形概念是解题关键.20.如图是一个长为2a、宽为2b的长方形,沿图中虚线用剪子均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)请利用图2中的空白部份面积的不同表示方式,写出一个关于a、b的恒等式(a+b)2=(a ﹣b)2+4ab .(2)假设a+b=10,ab=6,依照你所取得的恒等式,求(a﹣b)的值.【考点】完全平方公式的几何背景.【分析】(1)阴影部份的面积能够看做是边长(a﹣b)的正方形的面积,也能够看做边长(a+b)的正方形的面积减去4个小长方形的面积;(2)利用(1)的结论,把(a﹣b)2=(a+b)2﹣4ab,把数值整体代入即可.【解答】解:(1)恒等式为:(a+b)2=(a﹣b)2+4ab.例如:当a=5,b=2时,(a+b)2=(5+2)2=49(a﹣b)2=(5﹣2)2=94ab=4×5×2=40因为49=40+9,因此(a+b)2=(a﹣b)2+4ab.故答案为::(a+b)2=(a﹣b)2+4ab.(2)∵a+b=10,(a+b)2=100,∵(a+b)2=(a﹣b)2+4ab,ab=6,∴(a﹣b)2=(a+b)2﹣4ab=100﹣4×6=76,∴a﹣b=2或a﹣b=﹣2,∵a>b,∴a﹣b=2.【点评】此题考查了列代数式,完全平方公式的实际应用,完全平方公式与正方形的面积公式和长方形的面积公式常常联系在一路.要学会观看.21.如图AB=AC,BD=CD,DE⊥BA,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】利用“边边边”证明△ABD和△ACD全等,依照全等三角形对应角相等可得∠BAD=∠CAD,再依照角平分线上的点到角的两边的距离相等即可得证.【解答】证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵DE⊥BA,DF⊥AC,∴DE=DF.【点评】此题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,求出∠BAD=∠CAD是解题的关键.22.已知,小敏、小聪两人在x=2,y=﹣1的条件下别离计算P和Q的值,小敏说P的值比Q大,小聪说Q的值比P大,请你判定谁的结论正确?并说明理由.【考点】分式的化简求值;整式的混合运算—化简求值.【专题】探讨型.【分析】先依照分式及整式混合运算的法那么把原式进行化简,再把x=2,y=﹣1时期入求出P、Q 的值,比较出其大小即可.【解答】解:都不正确.∵P=﹣==x﹣y,∴当x=2,y=﹣1时,P=2+1=3;∵Q=(x+y)(x+y﹣2y)=(x+y)(x﹣y),∴当x=2,y=﹣1时,Q=(2﹣1)(2+1)=3,∴P=Q.【点评】此题考查的是分式的化简求值及整式的化简求值,熟知分式及整式混合运算的法那么是解答此题的关键.五、解答题:每题8分,共16分.23.2016年中秋节期间,某商城隆重开业,某商家有打算选购甲、乙两种礼盒作为开业期间给予买家的礼物,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.(1)求甲、乙两种礼盒的单价别离为多少元?(2)假设商家打算购买这两种礼盒共40个,且投入的经费不超过1050元,那么购买的甲种礼盒最多买多少个?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)依照题意能够取得相应的分式方程,从而能够解答此题;(2)依照题意能够取得相应的不等式,从而能够解答此题.【解答】解:(1)设乙种礼盒购买了x个,解得,x=20,经查验x=20是原分式方程的解,那么1.5x=30,即甲、乙两种礼盒的单价别离为30元、20元;(2)设购买甲种礼盒x个,30x+20(40﹣x)≤1050,解得,x≤25即购买的甲种礼盒最多买25个.【点评】此题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)假设∠ABC=70°,那么∠MNA的度数是50°.(2)连接NB,假设AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是不是存在P,使由P、B、C组成的△PBC的周长值最小?假设存在,标出点P的位置并求△PBC的周长最小值;假设不存在,说明理由.【考点】轴对称-最短线路问题;线段垂直平分线的性质;等腰三角形的性质.【分析】(1)依照等腰三角形的性质得出∠ABC=∠ACB=70°,求得∠A=40°,依照线段的垂直平分线的性质得出AN=BN,进而得出∠ABN=∠A=40°,依照三角形内角和定理就可得出∠ANB=100°,依照等腰三角形三线合一就可求得∠MNA=50°;(2)①依照△NBC的周长=BN+CN+BC=AN+NC+BC=AC+BC就可求得.②依照轴对称的性质,即可判定P确实是N点,因此△PBC的周长最小值确实是△NBC的周长.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=40°,∵MN是AB的垂直平分线,∴AN=BN,∴∠ABN=∠A=40°,∴∠ANB=100°,∴∠MNA=50°;故答案为50°.(2)①∵AN=BN,∴BN+CN=AN+CN=AC,∵AB=AC=8cm,∴BN+CN=8cm,∵△NBC的周长是14cm.∴BC=14﹣8=6cm.②∵A、B关于直线MN对称,∴连接AC与MN的交点即为所求的P点,现在P和N重合,即△BNC的周长确实是△PBC的周长最小值,∴△PBC的周长最小值为14cm.【点评】此题考查了等腰三角形的性质,线段的垂直平分线的性质,三角形内角和定理和轴对称的性质,熟练把握性质和定理是解题的关键.六、解答题:每题10分,共20分.25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(极点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是不是成立?假设不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,从而得出结论;(2)依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,就能够够得出BD=CE,就能够够得出AC=CE﹣CD;(3)先依照条件画出图形,依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,就能够够得出BD=CE,就能够够得出AC=CD﹣CE.【解答】解:(1)∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE.∵BC=BD+CD,AC=BC,∴AC=CE+CD;(2)AC=CE+CD不成立,AC、CE、CD之间存在的数量关系是:AC=CE﹣CD.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE ∴CE﹣CD=BD﹣CD=BC=AC,∴AC=CE﹣CD;(3)补全图形(如图)AC、CE、CD之间存在的数量关系是:AC=CD﹣CE.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE.∵BC=CD﹣BD,∴BC=CD﹣CE,∴AC=CD﹣CE.【点评】此题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.26.研究性学习:在平面直角坐标系中,等腰三角形ABC的极点A的坐标为(2,2).(1)假设底边BC在x轴上,请写出1组知足条件的点B、点C的坐标:(0,0)(4,0);设点B、点C的坐标别离为(m,0)、(n,0),你以为m、n应知足如何的条件?答:m+n=4 .(2)假设底边BC的两头点别离在x轴、y轴上,请写出1组知足条件的点B、点C的坐标:(2,0)(0,2);设点B、点C的坐标别离为(m,0)、(0,n),你以为m、n应知足如何的条件?答:m=n .【考点】等腰三角形的性质;坐标与图形性质.【分析】(1)假设底边BC在x轴上,那么B,C必然关于直线x=2对称.(2)假设底边BC的两头点别离在x轴、y轴上,那么B,C必然关于直线y=x对称.【解答】解:(1)假设底边BC在x轴上,那么点B、点C的坐标能够是:(0,0)(4,0);设点B、点C的坐标别离为(m,0)、(n,0),那么B、C关于点(2,0)对称,∴m+n=4.(2)假设底边BC的两头点别离在x轴、y轴上,点B、点C的坐标能够是:(2,0)(0,2);设点B、点C的坐标别离为(m,0)、(0,n),那么点B、C关于直线y=x对称,∴m=n.故别离填:(0,0)(4,0),m+n=4,(2,0)(0,2),m=n(m、n≠4、0).【点评】此题考查了的研究性的性质及坐标与图形的性质;解题要紧应用了等腰三角形的三线合必然理,等腰三角形的顶角极点必然在底边的垂直平分线上,结合图形做题是比较关键的.2016-2017学年八年级(上)期末数学试卷一、填空题1.如图,△ABC≌△DEF,EB=8,AE=2,那么DE= .2.分式无心义的条件是x= .3.化简:÷= .4.假设方程无解,那么m= .5.已知a+b=2,那么a2﹣b2+4b的值为.6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是(只需填写一个你以为适合的条件).7.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= .8.如图,∠1=∠2=30°,∠3=∠4,∠A=80°,那么x= 度,y= 度.二、选择题9.以下长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,1010.以下计算正确的选项是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a211.在如图的网格中,在网格上找到点C,使△ABC为等腰三角形,如此的点有几个()A.8 B.9 C.10 D.1112.计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2 B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+113.如图,在△ABC中,∠ACB=90°,∠A=20°,假设将△ABC沿CD折叠,使点B落在AC边上的点E处,那么∠CED的度数是()A.30° B.40° C.50° D.70°14.如下图,l是四边形ABCD的对称轴,AD∥BC,现给出以下结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个三、计算与作图题(本大题共4小题,每题6分,共24分)15.分解因式:3x2y+12xy2+12y3.16.先化简,再求值:,其中m=9.17.解方程: =﹣1.18.请在以下三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形通过轴对称变换后取得的图形,且所画的三角形极点与方格中的小正方形极点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)四、(本大题共3小题,每题8分,共24分)19.如下图,点B、F、C、E在同一条直线上,AB∥DF,AC∥DE,AC=DE,FC与BE相等吗?请说明理由.20.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE.(1)求证:△ACE≌△BCD;(2)线段AE与BC有什么位置关系?请说明理由.21.千年古镇赵化开发的鑫城小区的内坝是一块长为(3a+b)米,宽为(2a+b)米的长方形地,物业部门打算将内坝进行绿化(如图阴影部份),中间部份将修建一仿古小景点(如图中间的正方形),那么绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.五、(本大题共2小题,每题9分,共18分)22.在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有无等腰三角形?假设有,请一一写出来(不要求证明);假设没有,请说明理由.23.为庆贺2021年元旦的到来,学校决定举行“庆元旦迎新年”文艺演出,依照演出需要,用700元购进甲、乙两种花束共260朵,其中甲种花束比乙种花束少用100元,已知甲种花束单价比乙种花束单价高20%,乙种花束的单价是多少元?甲、乙两种花束各购买了多少朵?六、(本大题共1小题,共12分)24.小敏与同桌小颖在课下学习中碰到如此一道数学题:“如图(1),在等边三角形ABC中,点E 在AB上,点D在CB的延长线上,且ED=EC,试确信线段AE与DB的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情形,探讨讨论:当点E为AB的中点时,如图(2),确信线段AE与DB的大小关系,请你写出结论:AE DB(填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图(3),过点E作EF∥BC,交AC于点F.(请你将剩余的解答进程完成)(3)拓展结论,设计新题:在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,假设△ABC的边长为1,AE=2,求CD的长(请你画出图形,并直接写出结果).参考答案与试题解析一、填空题1.如图,△ABC≌△DEF,EB=8,AE=2,那么DE= 10 .【考点】全等三角形的性质.【分析】结合图形和已知条件求出AB的长度,再依照全等三角形对应边相等得DE=AB.【解答】解:∵EB=8,AE=2,∴AB=EB+AE=8+2=10,∵△ABC≌△DEF,∴DE=AB=10.【点评】此题要紧考查全等三角形对应边相等的性质,熟练把握性质并灵活运用是解题的关键.2.分式无心义的条件是x= ﹣3 .【考点】分式成心义的条件.【分析】依照分式无心义的条件进行填空即可.【解答】解:∵分式无心义,∴x+3=0,∴x=﹣3,故答案为﹣3.【点评】此题考查了分式无心义的条件,分母为0分式无心义.3.化简:÷= .【考点】分式的乘除法.【专题】计算题;分式.【分析】原式利用除法法那么变形,约分即可取得结果.【解答】解:原式=•=,故答案为:【点评】此题考查了分式的乘除法,熟练把握运算法那么是解此题的关键.4.假设方程无解,那么m= 1 .【考点】分式方程的解.【专题】计算题.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解那个整式方程取得的解使原方程的分母等于0.【解答】解:方程去分母得:(x﹣3)(2﹣x)=m(x﹣2)解得:x=3﹣m,∴当x=2时分母为0,方程无解,即3﹣m=2,∴m=1时方程无解.故答案为:1.【点评】此题考查了分式方程无解的条件,是需要识记的内容.5.已知a+b=2,那么a2﹣b2+4b的值为 4 .【考点】因式分解的应用.【分析】把所给式子整理为含(a+b)的式子的形式,再代入求值即可.【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.【点评】此题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b的形式是求解此题的关键,同时还隐含了整体代入的数学思想.6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是∠A=∠D或∠ABC=∠DCB或BD=AC (只需填写一个你以为适合的条件).【考点】全等三角形的判定.【专题】开放型.【分析】已知一条公共边和一个角,有角边角或角角边定理,再补充一组对边相等或一组对角相等即可.【解答】解:添加∠A=∠D,∠ABC=∠DCB,BD=AC后可别离依照AAS、SAS、SAS判定△ABC≌△ADC.故填∠A=∠D或∠ABC=∠DCB或BD=AC.【点评】此题考查三角形全等的判定方式;判定两个三角形全等的一样方式有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,依照已知结合图形及判定方式选择条件是正确解答此题的关键.7.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= 6 .【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB。
12016—2017学年度第一学期阶段性质量监测参考答案及评分意见八年级数学说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、 选择题:(本题共8个小题,每小题3分,共24分)1. D2. A3. C4.B5. B6. D7. D8. A 二、 填空题(本题共有8个小题,每小题3分,满分24分)9. 23— ; 10. 如果两个角是等腰三角形的两底角,那么这两个角相等; 11. -1;12. 乙 ; 13. 40°; 14. ⎩⎨⎧=+++=-5050)100()100(10x y y x y x ; 15. 13; 16. 26731344+三、 作图题:(4分)17.(图形略) 作图正确,作图痕迹必须清楚得3分,结论1分. 四、解答题(共68分)18.计算:(本题满分14分,(1)、(2)每小题3分,(3)、(4)每小题4分)适当考虑分步得分解:(1)原式=3413- (2) 原式=56-(3)原方程组的解为: ⎩⎨⎧==180120y x (4)点P 的坐标为:(4 , 2)19.(本小题满分8分)(1)通过以上统计图提取有关信息完成下面两个表格:甲队员的信息表-1 乙队员的信息表-2分 (2)根据以上信息,整理分析数据如下表-3,请填写完整.………………………………………………………………………………6分(3)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,2BAEF CD G214 第21题3综合以上各因素,若选派一名学生参加比赛的话,可选择 乙 参赛,因为乙获得高分的可能更大.………………………………………………………………………………8分20. 列方程(组)解应用题.(本题8分)(方法不唯一,正确即得分) 设定价为x 元,进价为y 元,由题意可知:……………………………1分⎩⎨⎧--=-=-)35(12)%85(845y x y x y x ………………………………………5分 解得: ⎩⎨⎧==155200y x ……………………………………………..7分答:该商品定价为200元,进价为155元. ……………………….8分 21.(本题8分)证明:∵AD ⊥BC ,EF ⊥BC∴∠ADC =∠EFC =90°∴A C ‖ GD ………………………………3分 ∴∠3=∠2又∵∠1=∠2 ∴∠1=∠3………………………………5分∴A C ‖GD∴∠4 =∠C ………………………………8分 22. (本小题满分8分) (1)解:根据题意得:60015200400151+=++=x x y ………………1分100252+=x y ………………………2分(2) 由y 1=y 2得:15x+600=25x+100解得:x=50∴A 地到B 地的路程为50千米时两种运输方式的总运费一样. ………5分(3) 当x=120时,2400600120151=+⨯=y ………………………6分3100100120252=+⨯=y ………………………..7分 ∵21y y <∴若A 地到B 地的路程为120km ,采用铁路运输节省总运费 …………………8分 23. (本小题满分10分)(1)∠P=120°+13∠A ………………………………..2分……………..6分∴∠PBC+∠PCB=13(∠ABC+∠ACB )=13(180°-∠A ) ∴∠P =180°-∠(PBC+∠PCB ) =180°-13(180°-∠A )13证明:∵点P 是∠ABC 、∠ACB 的三等分线的交点.∴∠PBC=13∠ABC ;∠PCB=13∠ACB ∴∠PBC+∠PCB=13(∠ABC+∠ACB )又∵∠A+(∠ABC +∠ACB )=180° ∴∠ABC+∠ACB=180°-∠AA BCP图23(2)∠P=135°+14∠A ……8分 (3)∠P=1n n -180°+1n∠A ……10分24:(本小题满分12分)(1)M (2l +1,0)………………………………………..2分 (2)设AC 的解析式为y=kx +b ,依题可知:⎩⎨⎧+==b k b 402 解得:⎪⎩⎪⎨⎧=-=221b k 所以221+-=x y ; ……………………………………….5分(3) ①当0<l <1.5时:x=l ,y=122l -+即QP=122l -+, 4(21)32MC l l =-+=-2111111(32)2322224QMC S MC QP l l l l ∆⎛⎫∴=⋅=-⋅-+=-+ ⎪⎝⎭……………………8分 ②当l =1.5时, M 与C 重合,S △QMC=0.(注:可并于①或③中)……………………9分③当1.54t<<时, (21)423MC l l =+-=-2111111(23)2322224QMC S MC QP l l l l ∆⎛⎫∴=⋅=-⋅-+=-+- ⎪⎝⎭……………12分。
一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √3B. πC. 2/3D. 2/π2. 已知a=3,b=-2,则a²-b²的值为()A. 7B. -7C. 5D. -53. 若一个等腰三角形的底边长为8cm,腰长为6cm,则该三角形的面积为()A. 16cm²B. 24cm²C. 32cm²D. 48cm²4. 下列函数中,有最小值的是()A. y=x²B. y=2x+3C. y=-x²+2xD. y=x³5. 已知二次方程x²-4x+3=0的两个根为a和b,则a+b的值为()A. 4B. 3C. 2D. 1二、填空题(每题5分,共20分)6. 若a,b,c成等差数列,且a+b+c=12,则a²+b²+c²的值为______。
7. 已知sinα=3/5,cosα=4/5,则tanα的值为______。
8. 在直角三角形ABC中,∠C=90°,AB=10cm,AC=6cm,则BC的长度为______cm。
9. 若一个等边三角形的边长为a,则其面积为______。
10. 若一次函数y=kx+b的图象经过点(1,2),则k+b的值为______。
三、解答题(共60分)11. (10分)解下列方程:(1)2x²-5x+2=0;(2)3(x-2)²-4=0。
12. (10分)已知等差数列{an}的前三项分别为2,5,8,求:(1)该等差数列的通项公式;(2)第10项的值。
13. (10分)已知函数f(x)=2x²-3x+1,求:(1)函数f(x)的对称轴;(2)函数f(x)在x=1时的最大值。
14. (10分)已知三角形ABC中,∠A=60°,AB=8cm,AC=6cm,求BC的长度。
15. (10分)若一次函数y=kx+b的图象经过点(-2,3)和(4,-1),求:(1)该一次函数的解析式;(2)当x=0时,函数y的值。
2016-2017学年山西省吕梁市孝义市八年级(下)期末数学试卷一、选择题(每小题2分,共20分)下面各小题都给出四个备选答案,其中只有一个是符合题意的,请将符合题意的字母代号填入下表相应的方格中1.(2分)二次根式中,x的值可以是()A.﹣6 B.﹣5 C.﹣4 D.﹣32.(2分)与﹣互为倒数的是()A.+B.﹣ C.﹣ D.﹣﹣3.(2分)等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8 C.25 D.644.(2分)某班七个课外学习小组人数如下:4,5,5,x,7,7,9,已知这组数据的平均数是6,则这组数据的众数是()A.5 B.6 C.7 D.95.(2分)下列给出的四个点中,不在直线y=2x﹣3上的是()A.(1,﹣1)B.(0,﹣3)C.(2,1) D.(﹣1,5)6.(2分)某次射击,甲、乙二人各射靶5次,命中的环数如下:甲:7,8,6,8,6 乙:9,5,6,7,8,则射击技术稳定的是()A.甲B.乙C.一样D.不确定7.(2分)在一个标准大气压下,能反映水在均匀加热过程中,水的稳定(T)随加热时间(t)变化的函数图象大致是()A.B.C.D.8.(2分)菱形具有,矩形也具有的性质是()A.四个角都相等B.对角线互相垂直平分C.对角线相等D.对边平行且相等9.(2分)如图,平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()A.6 B.8 C.9 D.1010.(2分)如图,点E在正方形ABCD的边BC上,且∠CDE=30°,DE=2,则BD 等于()A.3 B.2 C.D.4二、填空题(每小题3分,共15分)11.(3分)比较大小:.12.(3分)当自变量x的值满足时,直线y=﹣2x+1上的点在x轴的下方.13.(3分)已知△ABC的三边AB=、AC=、BC=,则BC边的中线长为.14.(3分)某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.15.(3分)如图,正方形ABCD中,点O是AC的中点,点E、F分别在AB、BC 上,且∠EOF=90°,若AC=2,则BE+BF=.三、完成下列各题(55分)16.(8分)计算:(1)﹣(3+)(2)(2+)(2﹣)+(3﹣)2.17.(8分)直线AB:y=x+2分别与x轴、y轴交于点A,点B,直线CD:y=kx+12与x轴的正半轴交于点C,与y轴交于点D,且OC=3OB,直线CD与直线AB交于点E.(1)根据题意画出直线AB、CD,并标出点E(2)求点E的坐标;(3)直接写出四边形OBEC的面积.18.(8分)操作与计算:如图①②,四边形ABCD是菱形,AB=6,∠A=60°.操作:请你设计两种裁剪方法,将菱形ABCD进行适当的分割,使得分割后的各部分恰好拼成矩形.要求:(1)在图中画出剪拼示意图;(2)拼图的各部分之间不能互相重叠,不能留有空隙;(3)拼成的矩形相同,只能算一种.计算:写出所拼出的矩形的长、宽的值①②.19.(6分)我们知道,像3、4、5这样能构成为直角三角形三边长的三个正整数,称为勾股数,古希腊的哲学家柏拉图提出的构造勾股数组的公式为:如果m 表示大于1的整数,a=2m,b=m2+1,c=m2﹣1,则a、b、c为勾股数.利用柏拉图公式构造出的勾股数,斜边和其中一直角边的差为2,特别地,当n 为大于2的整数时,可以构造出最短边的长度为偶数的勾股数.任务:(1)请你证明柏拉图公式的正确性.(2)请你利用柏拉图公式,写出两组勾股数(数据从小到大排列)第一组:8、、;第二组:、37.20.(6分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解我市中学生每天进行体育锻炼的时间情况,随机抽样调查了200名中学生,根据调查结果得到如图所示的统计图表,请根据图表信息解答下列问题:(1)a=;(2)补全条形统计图;(3)王斌说:“我每天的锻炼时间是调查所得数据的中位数”,请你根据图表信息,分析说明王斌每天进行体育锻炼的时间在什么范围内?(3)据了解该市大约有3万名中学生,请估计我市中学生每天进行体育锻炼时间在1小时以上的人数.21.(9分)甲乙两家葡萄采摘圆的葡萄品质相等,销售价格均为每千克15元.暑假期间,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进圆需购买24元的门票,采摘的葡萄8折优惠;乙采摘园的优惠方案是:游客进圆不需购买门票,采摘园的葡萄超过10千克以后,超过部分6折优惠,优惠期间,设某游客的葡萄采摘为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元)(1)求y1、y2与x的函数关系式.(2)求选择甲采摘园所需总费用较少时,葡萄采摘量x的范围.22.(10分)阅读材料:通过一次函数的学习,小明知道:当已知直线上两个点的坐标时,可以用特定系数法,求出这个一次函数的解析式.有这样一个问题:直线l1的解析式为y=﹣2x+6,若直线l2与直线l1关于y轴对称,求直线l2的解析式.下面是小明的解题思路,请补充完整.第一步:求出直线l1与x轴的交点A的坐标(3,0),与y轴的交点B的坐标(0,6);第二步:在所给的平面直角坐标系中(图1),作出直线l1;第三步:求点A关于y轴的对称点C的坐标为(﹣3,0);第四步:由点B,点C的坐标;利用待定系数法,即可求出直线l2的解析式.小明求出的直线l2的解析式是.(1)若直线l3与直线l1关于直线y=x对称,求出直线的解析式;(2)若点M(m,4)在直线l1上,过点M作直线l1的垂线l A,求直线l A的解析式.2016-2017学年山西省吕梁市孝义市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)下面各小题都给出四个备选答案,其中只有一个是符合题意的,请将符合题意的字母代号填入下表相应的方格中1.(2分)二次根式中,x的值可以是()A.﹣6 B.﹣5 C.﹣4 D.﹣3【分析】根据二次根式有意义的条件可得x的取值范围,据此可得.【解答】解:由二次根式的性质知x+3≥0,则x≥﹣3,在四个选项中只有﹣3符合题意,故选:D.【点评】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式中被开方数不小于0.2.(2分)与﹣互为倒数的是()A.+B.﹣ C.﹣ D.﹣﹣【分析】根据乘积为1的两个数互为倒数,即可解答.【解答】解:()×()==3﹣2=1,故选:D.【点评】本题考查了倒数,解决本题的关键是熟记乘积为1的两个数互为倒数.3.(2分)等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8 C.25 D.64【分析】先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.【解答】解:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选:B.【点评】本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线.然后根据勾股定理即可求出底边上高的长度.4.(2分)某班七个课外学习小组人数如下:4,5,5,x,7,7,9,已知这组数据的平均数是6,则这组数据的众数是()A.5 B.6 C.7 D.9【分析】根据平均数的计算公式先求出x的值,再根据众数的定义求解即可.【解答】解:∵4、5、5、x、7、7、9的平均数是6,∴(4+5+5+x+7+7+9)÷7=6,解得:x=5,这组数据为4、5、5、5、7、7、9,最中间的数是6,则这组数据的中位数是6;5出现了3次,出现的次数最多,则众数是5.故选:A.【点评】此题考查众数与平均数,众数是一组数据中出现次数最多的数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.5.(2分)下列给出的四个点中,不在直线y=2x﹣3上的是()A.(1,﹣1)B.(0,﹣3)C.(2,1) D.(﹣1,5)【分析】只需把每个点的横坐标即x的值分别代入y=2x﹣3,计算出对应的y值,然后与对应的纵坐标比较即可.【解答】解:A、当x=1时,y=﹣1,(1,﹣1)在直线y=2x﹣3上;B、当x=0时,y=﹣3,(0,﹣3)在直线y=2x﹣3上;C、当x=2时,y=1,(2,1)在直线y=2x﹣3上;D、当x=﹣1时,y=﹣5,(﹣1,5)不在直线y=2x﹣3上.故选:D.【点评】本题考查的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.6.(2分)某次射击,甲、乙二人各射靶5次,命中的环数如下:甲:7,8,6,8,6 乙:9,5,6,7,8,则射击技术稳定的是()A.甲B.乙C.一样D.不确定【分析】求出二者方差,较小者稳定.【解答】解:∵=×(7+8+6+8+6)=7;=×(9+5+6+7+8)=7;=×[(7﹣7)2+(8﹣7)2+(6﹣7)2+(8﹣7)2+(6﹣7)2]=0.8,=×[(9﹣7)2+(5﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]=2,∴<,甲稳定,故选:A.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.(2分)在一个标准大气压下,能反映水在均匀加热过程中,水的稳定(T)随加热时间(t)变化的函数图象大致是()A.B.C.D.【分析】根据在一个标准大气压下水加热到100℃后水温不会继续增加,而是保持100℃不变,据此可以得到函数的图象.【解答】解:当水均匀加热时,吸热升温,当温度达到100℃时,水开始沸腾,此时温度又会保持不变.故选:D.【点评】此题主要考查了函数的图象.解决本题时要有一定的物理知识,同时要知道水在沸腾过程中吸热,但温度保持不变.8.(2分)菱形具有,矩形也具有的性质是()A.四个角都相等B.对角线互相垂直平分C.对角线相等D.对边平行且相等【分析】菱形和矩形都具有的性质即为平行四边形的性质,由此可得出答案.【解答】解:四个角都相等、对角线相等是矩形所特有的性质,故A、C不正确;对角线互相垂直平分是菱形所特有的性质,故B不正确;对边平行且相等是平行四边形所具有的性质,而矩形和菱形都是平行四边形,∴对边平行且相等是菱形和矩形都具有的性质,故选:D.【点评】本题主要考查矩形和菱形的性质,掌握矩形和菱形都是特殊的平行四边形是解题的关键.9.(2分)如图,平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()A.6 B.8 C.9 D.10【分析】根据线段垂直平分线的性质和平行四边形的性质可知,△CDE的周长=CD+DE+CE=CD+DE+AE=CD+AD=AB+BC=3+5=8.【解答】解:根据垂直平分线上点到线段两个端点的距离相等知,EC=AE;根据在平行四边形ABCD中有BC=AD,AB=CD,∴△CDE的周长等于CD+DE+CE=CD+DE+AE=CD+AD=AB+BC=3+5=8.故选:B.【点评】本题结合线段垂直平分线的性质考查了平行四边形的性质,利用中垂线将已知转化是解题的关键.10.(2分)如图,点E在正方形ABCD的边BC上,且∠CDE=30°,DE=2,则BD 等于()A.3 B.2 C.D.4【分析】在Rt△DCE中求出CD,再在Rt△BCD中求出BD即可.【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠C=90°,∵DE=2,∠CDE=30°,∴cos30°=,∴CD=,在Rt△BDC中,易知BD=CD,∴BD=,故选:C.【点评】本题考查正方形的性质、解直角三角形、锐角三角函数等知识,解题的关键是熟练掌握解直角三角形,属于中考常考题型.二、填空题(每小题3分,共15分)11.(3分)比较大小:<.【分析】先把﹣5和﹣6写成﹣和﹣的形式,然后再按照实数大小比较的法则计算即可.【解答】解:﹣5=﹣,﹣6=﹣,∴﹣<﹣,∴﹣5<﹣6.故答案为<.【点评】本题考查了实数大小比较的法则,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.此题比较简单,易于掌握.12.(3分)当自变量x的值满足x>时,直线y=﹣2x+1上的点在x轴的下方.【分析】直线y=﹣2x+1上的点在x轴下方时,应有﹣2x+1<0,求解不等式即可.【解答】解:直线y=﹣2x+1上的点在x轴下方.则y<0,即﹣2x+1<0,解得:x>,即当自变量x的值满足x>时,直线y=﹣2x+1上的点在x轴下方.故答案为:x>.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.13.(3分)已知△ABC的三边AB=、AC=、BC=,则BC边的中线长为.【分析】先根据勾股定理的逆定理,即可得到△ABC是直角三角形,且∠A=90°,再根据直角三角形斜边上中线的性质,即可得到结论.【解答】解:∵AB=、AC=、BC=,∴AB2+AC2=5=BC2,∴△ABC是直角三角形,且∠A=90°,∴BC边的中线长为BC=×=,故答案为:.【点评】本题主要考查了勾股定理的逆定理,解题时注意:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.14.(3分)某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是88分.【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88分,故答案为:88.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.15.(3分)如图,正方形ABCD中,点O是AC的中点,点E、F分别在AB、BC上,且∠EOF=90°,若AC=2,则BE+BF=.【分析】根据四边形ABCD是正方形,即可得到BO=CO,∠BOC=90°,∠EBO=∠FCO=45°,进而判定△BOE≌△COF(ASA),可得BE=CF,根据等腰Rt△ABC中,BC=AC×cos45°=,可得BE+BF的长.【解答】解:∵四边形ABCD是正方形,∴BO=CO,∠BOC=90°,∠EBO=∠FCO=45°,∵∠EOF=90°,∴∠BOE=∠COF,在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴BE=CF,∵等腰Rt△ABC中,BC=AC×cos45°=2×=,∴BE+BF=CF+BF=BC=,故答案为:.【点评】本题考查了正方形的性质,全等三角形的判定和性质的运用,解题时注意:正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.三、完成下列各题(55分)16.(8分)计算:(1)﹣(3+)(2)(2+)(2﹣)+(3﹣)2.【分析】(1)先把二次根式化为最简二次根式,然后去括号后合并即可;(2)利用平方差公式和完全平方公式计算.【解答】解:(1)原式=﹣﹣2(2)原式=4﹣5+9﹣6+2=10﹣6.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(8分)直线AB:y=x+2分别与x轴、y轴交于点A,点B,直线CD:y=kx+12与x轴的正半轴交于点C,与y轴交于点D,且OC=3OB,直线CD与直线AB交于点E.(1)根据题意画出直线AB、CD,并标出点E(2)求点E的坐标;(3)直接写出四边形OBEC的面积.【分析】(1)根据题意作出图形即可;(2)解方程组即可得到结论;(3)根据梯形和三角形的面积公式即可得到结论.【解答】解:(1)∵y=x+2分别与x轴、y轴交于点A,点B,∴A(﹣4,0),B(0,2),∴OB=2,∵OC=3OB,∴OC=6,∵y=kx+12与x轴的正半轴交于点C,与y轴交于点D,∴C(6,0),D(0,12),(2)把C(6,0)代入y=kx+12得k=﹣2,∴直线CD的解析式为:y=﹣2x+12,解得,,∴E(4,4);(3)四边形OBEC的面积=(2+4)×4+×2×4=16.【点评】本题考查了两直线的交点,要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.18.(8分)操作与计算:如图①②,四边形ABCD是菱形,AB=6,∠A=60°.操作:请你设计两种裁剪方法,将菱形ABCD进行适当的分割,使得分割后的各部分恰好拼成矩形.要求:(1)在图中画出剪拼示意图;(2)拼图的各部分之间不能互相重叠,不能留有空隙;(3)拼成的矩形相同,只能算一种.计算:写出所拼出的矩形的长、宽的值①6,3②6,3.【分析】直接利用菱形的性质结合矩形的分别分析得出答案.【解答】解:如图①所示:矩形的长、宽的值分别为:6,3;如图②所示:矩形的长、宽的值分别为:6,3.故答案为:6,3;6,3.【点评】此题主要考查了图形的剪拼以及菱形的性质,正确应用菱形的性质是解题关键.19.(6分)我们知道,像3、4、5这样能构成为直角三角形三边长的三个正整数,称为勾股数,古希腊的哲学家柏拉图提出的构造勾股数组的公式为:如果m 表示大于1的整数,a=2m,b=m2+1,c=m2﹣1,则a、b、c为勾股数.利用柏拉图公式构造出的勾股数,斜边和其中一直角边的差为2,特别地,当n 为大于2的整数时,可以构造出最短边的长度为偶数的勾股数.任务:(1)请你证明柏拉图公式的正确性.(2)请你利用柏拉图公式,写出两组勾股数(数据从小到大排列)第一组:8、15、17;第二组:12、3537.【分析】(1)欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.(2)利用a=2m,b=m2+1,c=m2﹣1,则a、b、c为勾股数进行计算即可.【解答】(1)证明:∵m表示大于1的整数,∴a,b,c都是正整数,且c是最大边,∵(2m)2+(m2﹣1)2=(m2+1)2,∴a2+c2=b2,即a、b、c为勾股数.(2)第一组:8,15,17;第二组:12,35,37.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.20.(6分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解我市中学生每天进行体育锻炼的时间情况,随机抽样调查了200名中学生,根据调查结果得到如图所示的统计图表,请根据图表信息解答下列问题:(1)a=70;(2)补全条形统计图;(3)王斌说:“我每天的锻炼时间是调查所得数据的中位数”,请你根据图表信息,分析说明王斌每天进行体育锻炼的时间在什么范围内?(3)据了解该市大约有3万名中学生,请估计我市中学生每天进行体育锻炼时间在1小时以上的人数.【分析】(1)根据题意和表格中的数据可以求得a的值;(2)根据(1)中a的值即可将条形统计图补充完整;(3)根据中位数的定义可以得到中位数所在的范围,从而可以解答本题;(4)根据表格中的数据可以估计该市中学生每天进行体育锻炼时间在1小时以上的人数.【解答】解:(1)a=200﹣10﹣40﹣60﹣20=70,故答案为:70;(2)由(1)知,a=70,补全的条形统计图如右图所示;(3)由题意可得,由图表可知,中位数在1<t≤1.5范围内,即王斌每天进行体育锻炼的时间在1<t≤1.5范围内;(4)由题意可得,3×=2.25(万名),答:该市中学生每天进行体育锻炼时间在1小时以上的有2.25万名学生.【点评】本题考查条形统计图、用样本估计总体、频数分布表、中位数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(9分)甲乙两家葡萄采摘圆的葡萄品质相等,销售价格均为每千克15元.暑假期间,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进圆需购买24元的门票,采摘的葡萄8折优惠;乙采摘园的优惠方案是:游客进圆不需购买门票,采摘园的葡萄超过10千克以后,超过部分6折优惠,优惠期间,设某游客的葡萄采摘为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元)(1)求y1、y2与x的函数关系式.(2)求选择甲采摘园所需总费用较少时,葡萄采摘量x的范围.【分析】(1)根据题意可以分别得到y1、y2与x的函数关系式;(2)根据(1)中的函数关系式可以得到选择甲采摘园所需总费用较少时,葡萄采摘量x的范围.【解答】解:(1)由题意可得,y1=24+15x×0.8=12x+24,当0≤x≤10时,y2=15x,当x>10时,y2=15×10+(x﹣10)×15×0.6=9x+60,即y1与x的函数关系式是y1=12x+24,y2与x的函数关系式是y2=;(2)当0≤x≤10时,12x+24<15x,得x>8,当x>10时,12x+24<9x+60,得x<12,由上可得,选择甲采摘园所需总费用较少时,葡萄采摘量x的范围是8<x<12.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.22.(10分)阅读材料:通过一次函数的学习,小明知道:当已知直线上两个点的坐标时,可以用特定系数法,求出这个一次函数的解析式.有这样一个问题:直线l1的解析式为y=﹣2x+6,若直线l2与直线l1关于y轴对称,求直线l2的解析式.下面是小明的解题思路,请补充完整.第一步:求出直线l1与x轴的交点A的坐标(3,0),与y轴的交点B的坐标(0,6);第二步:在所给的平面直角坐标系中(图1),作出直线l1;第三步:求点A关于y轴的对称点C的坐标为(﹣3,0);第四步:由点B,点C的坐标;利用待定系数法,即可求出直线l2的解析式.小明求出的直线l2的解析式是y=2x+6.(1)若直线l3与直线l1关于直线y=x对称,求出直线的解析式;(2)若点M(m,4)在直线l1上,过点M作直线l1的垂线l A,求直线l A的解析式.【分析】求出A、B两点的坐标,再求出C点坐标,利用待定系数法即可得出直线B、C的解析式;(1)分别求出A、B两点的坐标关于直线y=x的对称点,再利用待定系数法求出其解析式即可;(2)过M点作直线l4⊥l1,l4交y轴于点D,作MN⊥y轴于点N,求出MN与BN的长,设ND=a,则MN=,BN=1,BD=a+1,根据勾股定理求出a的值,利用待定系数法求出直线l4的表达式即可.【解答】解:如图1,∵直线l1的表达式为y=﹣2x+6,∴直线l1与x轴的交点A的坐标为(3,0),与y轴的交点B的坐标为(0,6),∴点A关于y轴的对称点C的坐标为(﹣3,0).设直线BC的解析式为y=kx+b(k≠0),则,解得k=2,∴直线l2的表达式为:y=2x+6.故答案为:y=2x+6;(1)如图2,∵A(3,0),B(0,6),∴A、B两点的坐标关于直线y=x的对称点分别为A′(0,3),B′(6,0),设直线A′B′的解析式为y=ax+c,则,解得,∴直线l3的表达式为:y=﹣x+3.(2)如图3,过M点作直线l A⊥l1,l A交y轴于点D,作MN⊥y轴于点N.∵点M(m,4)在直线l1上,∴﹣2m+6=4,∴m=1,∴MN=1,BN=2,∴BM=.设ND=a,则MN=1,BN=2,BD=a+2,由勾股定理得:(a+2)2=a2+12+()2,解得:a=∴D(0,).设直线l A的表达式y=kx+.把M(1,4)代入得:k=∴直线l A的表达式y=x+.【点评】本题考查了一次函数综合题,需要掌握一次函数的图象与几何变换,根据题意画出函数图象,利用待定系数法求解是解答此题的关键.。
2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a22.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)23.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)9.计算:+=__________.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于__________.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是__________度.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为__________.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为__________.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=__________.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是__________cm2.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式__________;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式__________.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是__________;(2)添加了条件后,证明△ABC≌△EFD.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标__________;(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a2【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.【解答】解:(a2)3=a6.故选:B.【点评】本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)2【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故选D.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.3.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)【考点】解分式方程.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出结论.【解答】解:∵AC=DF,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据AAS,也可证明△ABC≌△DEF,故B正确;但添加AB=DE时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形全等的HL定理.5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°【考点】三角形内角和定理.【分析】先根据∠A=50°,∠ABC=70°得出∠C的度数,再由BD平分∠ABC求出∠ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ABC=70°,BD平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,故选:A.【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】由3x=4,9y=7与3x﹣2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7=.故选A.【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x﹣2y变形为3x÷(32)y是解此题的关键.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共7小题,每小题3分,满分21分)9.计算:+=2.【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式===2,故答案为:2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2.【考点】因式分解-提公因式法.【专题】因式分解.【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是60度.【考点】三角形的外角性质.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为60【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为13或14.【考点】等腰三角形的性质;三角形三边关系.【分析】分4是腰长和底边两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形解答.【解答】解:①若4是腰长,则三角形的三边分别为4、4、5,能组成三角形,周长=4+4+5=13,②若4是底边,则三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=14,综上所述,这个三角形周长为13或14.故答案为:13或14.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=4.【考点】含30度角的直角三角形;角平分线的性质.【分析】作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.【解答】解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴∴EF=2EG=4.故答案为:4.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是18cm2.【考点】翻折变换(折叠问题).【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,利用三角形面积公式即可求解.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×6×6=18cm2.故答案是:18.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式(a+b)2=a2+2ab+b2;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.【考点】完全平方公式的几何背景.【分析】(1)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,2个矩形的边长相同,且长为a,宽为b,则2个矩形的面积为2ab,空白的是两个正方形,较大的正方形的边长为a,面积等于a2,小的正方形边长为b,面积等于b2,大正方形面积减去2个阴影矩形的面积就等于空白部分的面积.(2)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,4个矩形的边长相同,且长为a,宽为b,则4个矩形的面积为4ab,中间空心的正方形的边长为a﹣b,面积等于(a﹣b)2,大正方形面积减去4个阴影矩形的面积就等于中间空白部分的面积.【解答】解:(1)∵阴影部分都是全等的矩形,且长为a,宽为b,∴2个矩形的面积为2ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴空白正方形的面积为a2和b2,∴(a+b)2=a2+2ab+b2.故答案为(a+b)2=a2+2ab+b2.(2)∵四周阴影部分都是全等的矩形,且长为a,宽为b,∴四个矩形的面积为4ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴中间小正方形的面积为(a+b)2﹣4ab,∵中间小正方形的面积也可表示为:(a﹣b)2,∴(a﹣b)2=(a+b)2﹣4ab.【点评】本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.【考点】整式的混合运算—化简求值;零指数幂.【专题】计算题;整式.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣y2+x2﹣2xy+y2+2xy=2x2,当x=(3﹣π)0=1时,原式=2.【点评】此题考查了整式的混合运算﹣化简求值,以及零指数幂,熟练掌握运算法则是解本题的关键.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=,当x=2时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式(β﹣α).【考点】三角形内角和定理.【分析】(1)根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后求解即可.(2)同(1)即可得出结果.【解答】解:(1)∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°,∵AE是角平分线,∴∠BAE=∠BAC=×80°=40°,∵AD是高,∴∠BAD=90°﹣∠B=90°﹣40°=50°,∴∠DAE=∠BAD﹣∠BAE=50°﹣40°=10°;(2)∵∠B=α,∠C=β(α<β),∴∠BAC=180°﹣(α+β),∵AE是角平分线,∴∠BAE=∠BAC=90°﹣(α+β),∵AD是高,∴∠BAD=90°﹣∠B=90°﹣α,∴∠DAE=∠BAD﹣∠BAE=90°﹣α﹣[90°﹣(α+β)]=(β﹣α);故答案为:(β﹣α).【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F 或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【考点】全等三角形的判定.【专题】证明题;开放型.【分析】(1)本题要判定△ABC≌△EFD,已知BC=DF,AB=EF,具备了两组边对应相等,故添加∠B=∠F或AB∥EF或AC=ED后可分别根据SAS、AAS、SSS来判定其全等;(2)因为AB=EF,∠B=∠F,BC=FD,可根据SAS判定△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【考点】等边三角形的判定与性质.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?【考点】分式方程的应用.【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220﹣90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王先生所用的时间,然后进行判断.【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=8,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),从9:20到下午1:40,共计4小时>4.25小时,故王先生能在开会之前到达.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标(0,2);(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.【考点】全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.【分析】(1)作CD⊥BO,易证△ABO≌△BCD,根据全等三角形对应边相等的性质即可解题;(2)作EG⊥y轴,易证△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=AO,即可解题.【解答】解:(1)如图1,作CD⊥BO于D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO和△BCD中,,∴△ABO≌△BCD(AAS),∴CD=BO=2,∴B点坐标(O,2);故答案为:(0,2);(2)如图3,作EG⊥y轴于G,∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,∴∠BAO=∠EBG,在△BAO和△EBG中,,∴△BAO≌△EBG(AAS),∴BG=AO,EG=OB,∵OB=BF,∴BF=EG,在△EGP和△FBP中,,∴△EGP≌△FBP(AAS),∴PB=PG,∴PB=BG=AO=3.【点评】本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.。
2017-2018学年山西省吕梁市孝义市八年级(上)期末数学试卷一、选择题(每小题2分,共20分)下面各小题都给出四个备选答案,其中只有一个是符合题意的,请将符合题意的字母代号填入下表相应的方格中.1.(2分)点P(2,﹣3)关于y轴的对称点的坐标是()A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3)D.(﹣3,2)2.(2分)使分式有意义的x的取值范围是()A.x=2B.x≠2C.x=﹣2D.x≠﹣23.(2分)下列线段或直线中,能把三角形的面积分成相等的两部分的是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形任意一边的垂直平分线4.(2分)下列计算正确的是()A.(3xy3)2=6x2y6B.(﹣x)2•x3=x5C.x10÷x2=x5D.(﹣)0=05.(2分)如图,AE∥DF,AE=DF,则添加下列条件还不能使△EAC≌△FDB的为()A.AB=CD B.CE∥BF C.∠E=∠F D.CE=BF6.(2分)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.2B.3C.4D.57.(2分)如图,把一张长方形纸条ABCD沿EF折叠,使点C的对应点C′恰好与点A重合,若∠1=70°,则∠FEA的度数为()A.40°B.50°C.60°D.70°8.(2分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,DE⊥AC,垂足为E,ED的延长线与直线AB交于点F,则图中与∠EDC相等的角(∠EDC除外)有()A.1个B.2个C.3个D.4个9.(2分)如图,五边形ABCDE中,AE∥BC,则∠C+∠D+∠E的度数为()A.180°B.270°C.360°D.450°10.(2分)若x+y=12,xy=35,则x﹣y的值为()A.2B.﹣2C.4D.±2二、填空题(每小题3分,共18分)11.(3分)如图,把两根钢条的中点连在一起,就可以做成一个测量工件内槽宽AB的卡钳.其测量的依据是.12.(3分)分式与的最简公分母是.13.(3分)石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成的六角型呈蜂巢晶格的平面薄膜,是目前发现的厚度最薄、强度最大、导电导热性能最强的一种新型纳米材料,其厚度仅为0.334纳米(1纳米=0.000000001).数据0.334纳米用科学记数法可以表示为米.14.(3分)多项式x2+2mx+64是完全平方式,则m=.15.(3分)将几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式例如,由图(1)可得等式:x2+(p+q)x+pq=(x+p)(x+q).将图(2)所示的卡片若干张进行拼图,可以将二次三项式a2+3ab+2b2分解因式为.16.(3分)如图,在四边形ABCD中,AC平分∠DAB,∠D+∠ABC=180°,CE⊥AB,垂足为E,若△ACD和△ABC的面积分别为50和38,则△CBE的面积为.三、解答题(本大题共6个小题,共52分.解答题应写出文字说明、证明过程或演算步骤) 17.(9分)(1)分解因式:x4y﹣6x3y+9x2y(2)先化简.再求值:[2x(x2y+xy2)﹣xy(xy+x2)]÷x2y,其中x,y互为相反数.18.(7分)计算:(﹣)÷.19.(7分)如图,△ABC中,AB=AC,∠A=108°.(1)实践与操作:作AB的垂直平分线DE,与AB,BC分别交于点D,E(用尺规作图.保留作图痕迹,不要求写作法)(2)推理与计算:求∠AEC的度数.20.(7分)阅读下列材料,解决提出的问题:最短路径问题如图(1),点A,B分别是直线l异侧的两个点,如何在直线l上找到一个点C,使得点C 到点A,点B的距离和最短?我们只需连接AB,与直线l相交于一点,可知这个交点即为所求.如图(2),如果点A,B分别是直线l同侧的两个点,如何在l上找到一个点C,使得这个点到点A、点B的距离和最短?我们可以利用轴对称的性质,作出点B关于的对称点B,这时对于直线l上的任一点C,都保持CB=CB,从而把问题(2)变为问题(1).因此,线段AB与直线l的交点C的位置即为所求.为了说明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′.因为AB′≤AC′+C′B′,∴AC+CB<AC'+C′B,即AC+BC最小.任务:数学思考(1)材料中划线部分的依据是.(2)材料中解决图(2)所示问题体现的数学思想是.(填字母代号即可)A.转化思想B.分类讨论思想C.整体思想迁移应用(3)如图,在Rt△ABC中,∠C=90°,∠BAC=15°,点P为C边上的动点,点D为AB边上的动点,若AB=8cm,则BP+DP的最小值为cm.21.(10分)随着科技与经济的发展,机器人自动化线的市场越来越大,并且逐渐成为自动化生产线的主要方式某化工厂要在规定时间内搬运1800千克化工原料,现有A,B两种机器人可供选择,已知A型机器人每小时完成的工作量是B型机器人的1.5倍,A型机器人单独完成所需的时间比B型机器人少10小时.(1)求两种机器人每小时分别搬运多少千克化工原料?(2)若A型机器人工作1小时所需的费用为80元,B型机器人工作1小时所需的费用为60元,若该工厂在两种机器人中选择其中的一种机器人单独完成搬运任务,则选择哪种机器人所需费用较小?请计算说明.22.(12分)综合与探究问题背景在综合实践课上,老师让同学们根据如下问题情境,写出两个教学结论:如图,点C在线段BD上,点E在线段AC上.∠ACB=∠ACD=90°,AC=BC;DC=CE,M,N分别是线段BE,AD上的点.“兴趣小组”写出的两个教学结论是:①△BCE≌△ACD;②当CM,CN分别是△BCE和△ACD的中线时,△MCN是等腰直角三角形.解决问题(1)请你结合图(1).证明“兴趣小组”所写的两个结论的正确性.类比探究受到“兴趣小组”的启发,“实践小组”的同学们写出如下结论:如图(2),当∠BCM=∠ACN时,△MCN是等腰直角三角形.(2)“实践小组”所写的结论是否正确?请说明理由.感悟发现“奋进小组”认为:当点M,N分别是BE,AD的三等分点时,△MCN仍然是等腰直角三角形请你思考:(3)“奋进小组”所提结论是否正确?答:(填“正确”、“不正确”或“不一定正确”.)(4)反思上面的探究过程,请你添加适当的条作,再写出使得△MCN是等腰直角三角形的数学结论.(所写结论必须正确,写出1个即可,不要求证明)2017-2018学年山西省吕梁市孝义市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)下面各小题都给出四个备选答案,其中只有一个是符合题意的,请将符合题意的字母代号填入下表相应的方格中.1.(2分)点P(2,﹣3)关于y轴的对称点的坐标是()A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3)D.(﹣3,2)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点P(2,﹣3)关于y轴的对称点的坐标是(﹣2,﹣3),故选:B.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.2.(2分)使分式有意义的x的取值范围是()A.x=2B.x≠2C.x=﹣2D.x≠﹣2【分析】根据分式有意义的条件可得x﹣2≠0,再解即可.【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:B.【点评】此题主要考查了分式有意义,关键是掌握分式有意义,分母不为0.3.(2分)下列线段或直线中,能把三角形的面积分成相等的两部分的是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形任意一边的垂直平分线【分析】根据三角形的中线的性质解答即可.【解答】解:三角形的中线能将三角形的面积分成相等两部分.故选:B.【点评】此题考查三角形面积问题,关键是根据三角形的中线能将三角形的面积分成相等两部分解答.4.(2分)下列计算正确的是()A.(3xy3)2=6x2y6B.(﹣x)2•x3=x5C.x10÷x2=x5D.(﹣)0=0【分析】根据同底数幂的乘法和除法,以及幂的乘方判断即可.【解答】解:A、(3xy3)2=9x2y6,错误;B、(﹣x)2•x3=x5,正确;C、x10÷x2=x8,错误;D、(﹣)0=1,错误;故选:B.【点评】此题考查同底数幂的乘法和除法,关键是根据同底数幂的乘法和除法,以及幂的乘方解答.5.(2分)如图,AE∥DF,AE=DF,则添加下列条件还不能使△EAC≌△FDB的为()A.AB=CD B.CE∥BF C.∠E=∠F D.CE=BF【分析】判定三角形全等的方法主要有SAS、ASA、AAS、SSS等,根据所添加的条件判段能否得出△EAC≌△FDB即可【解答】解:(A)当AB=CD时,AC=DB,根据SAS可以判定△EAC≌△FDB;(B)当CE∥BF时,∠ECA=∠FBD,根据AAS可以判定△EAC≌△FDB;(C)当∠E=∠F时,根据ASA可以判定△EAC≌△FDB;(D)当CE=BF时,不能判定△EAC≌△FDB;故选:D.【点评】本题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.解题时注意:判定两个三角形全等时,必须有边相等的条件,若有两边一角对应相等时,角必须是两边的夹角.6.(2分)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.2B.3C.4D.5【分析】利用轴对称图形的性质进而求出即可.【解答】解:如图所示:符合题意的图形有3种.故选:B.【点评】此题主要考查了利用轴对称设计图案,正确利用轴对称图形的定义得出是解题关键.7.(2分)如图,把一张长方形纸条ABCD沿EF折叠,使点C的对应点C′恰好与点A重合,若∠1=70°,则∠FEA的度数为()A.40°B.50°C.60°D.70°【分析】根据翻折不变性即可解决问题;【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠FEC,由翻折不变性可知:∠FEA=∠FEC,∵∠1=70°,∴∠FEA=70°,故选:D.【点评】本题考查矩形的性质、平行线的性质、翻折变换等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(2分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,DE⊥AC,垂足为E,ED的延长线与直线AB交于点F,则图中与∠EDC相等的角(∠EDC除外)有()A.1个B.2个C.3个D.4个【分析】根据等腰三角形的性质和直角三角形的性质解答即可.【解答】解:∵AD⊥BC,DE⊥AC,∴∠EDC+∠C=90°,∠C+∠CAD=90°,∴∠CAD=∠EDC,∵AB=AC,AD⊥BC,∴∠CAD=∠BAD,∴∠BAD=∠EDC,∵∠EDC=∠BDF,故图中与∠EDC相等的角有三个;故选:C.【点评】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出∠CAD=∠BAD.9.(2分)如图,五边形ABCDE中,AE∥BC,则∠C+∠D+∠E的度数为()A.180°B.270°C.360°D.450°【分析】首先过点D作DF∥AE,交AB于点F,由AE∥BC,可证得AE∥DF∥BC,然后由两直线平行,同旁内角互补,证得∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,继而证得结论.【解答】解:过点D作DF∥AE,交AB于点F,∵AE∥BC,∴AE∥DF∥BC,∴∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,∴∠C+∠CDE+∠E=360°,故选:C.【点评】此题考查了平行线的性质.此题比较适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.(2分)若x+y=12,xy=35,则x﹣y的值为()A.2B.﹣2C.4D.±2【分析】利用完全平方公式计算即可求出所求.【解答】解:∵x+y=12,xy=35,∴(x﹣y)2=(x+y)2﹣4xy=144﹣140=4,则x﹣y=±2,故选:D.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题(每小题3分,共18分)11.(3分)如图,把两根钢条的中点连在一起,就可以做成一个测量工件内槽宽AB的卡钳.其测量的依据是SAS.【分析】本题让我们了解测量两点之间的距离,只要符合全等三角形全等的条件之一SAS,只需要测量易测量的边A′B′上.测量方案的操作性强.【解答】解:∵O是AA′,BB′的中点,∴AO=A′O,BO=B′O,又∵∠AOB与∠A′OB′是对顶角,∴∠AOB=∠A′OB′.在△AOB和△A′OB′中,∵,∴△AOB≌△A′OB′(SAS),∴AB=A′B′.故答案为SAS.【点评】本题考查全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.12.(3分)分式与的最简公分母是6a3b4c.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母,即可得出答案.【解答】解:分式与的最简公分母是6a3b4c,故答案为:6a3b4c.【点评】此题考查了最简公分母,关键是把各个分式中分母因式分解,确定最简公分母的方法一定要掌握.13.(3分)石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成的六角型呈蜂巢晶格的平面薄膜,是目前发现的厚度最薄、强度最大、导电导热性能最强的一种新型纳米材料,其厚度仅为0.334纳米(1纳米=0.000000001).数据0.334纳米用科学记数法可以表示为 3.34×10﹣10米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.334纳米=0.000000001×0.334m=3.34×10﹣10m.故答案为:3.34×10﹣10.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(3分)多项式x2+2mx+64是完全平方式,则m=±8.【分析】根据完全平方公式结构特征,这里首尾两数是x和8的平方,所以中间项为加上或减去它们乘积的2倍.【解答】解:∵x2+2mx+64是完全平方式,∴2mx=±2•x•8,∴m=±8.【点评】本题是完全平方公式的应用,要熟记完全平方公式的结构特征:两数的平方和,再加上或减去它们乘积的2倍,为此应注意积的2倍有符号有正负两种,避免漏解.15.(3分)将几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式例如,由图(1)可得等式:x2+(p+q)x+pq=(x+p)(x+q).将图(2)所示的卡片若干张进行拼图,可以将二次三项式a2+3ab+2b2分解因式为(a+b)(a+2b).【分析】作出图形,利用所示图形的面积间的和差关系解答.【解答】解:2a2+3ab+b2=(a+b)(2a+b),画图如下:故答案是:(a+b)(2a+b).【点评】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.16.(3分)如图,在四边形ABCD中,AC平分∠DAB,∠D+∠ABC=180°,CE⊥AB,垂足为E,若△ACD和△ABC的面积分别为50和38,则△CBE的面积为6.【分析】过C作CF⊥AD于F,先判定△CDF≌△CBE(AAS),即可得出S△CDF=S△CBE,设S△CDF=S△CBE=x,再根据Rt△ACF≌Rt△ACE(HL),即可得出S△ACF=S△ACE,最后解方程即可得到△CBE的面积.【解答】解:如图,过C作CF⊥AD于F,则∠CFD=∠E=90°,∵∠D+∠ABC=180°,∠CBE+∠ABC=180°,∴∠D=∠CBE,∵AC平分∠DAE,CF⊥AD,CE⊥AE,∴CF=CE,∴△CDF≌△CBE(AAS),∴S△CDF=S△CBE,设S△CDF=S△CBE=x,又∵∠AFC=∠E=90°,AC=AC,∴Rt△ACF≌Rt△ACE(HL),∴S△ACF=S△ACE,又∵△ACD和△ABC的面积分别为50和38,∴50﹣x=38+x,解得x=6,故答案为:6.【点评】本题考查了全等三角形的判定与性质的运用,角平分线的判定及性质的运用,一元一次方程的运用,解答时证明三角形全等是关键.三、解答题(本大题共6个小题,共52分.解答题应写出文字说明、证明过程或演算步骤) 17.(9分)(1)分解因式:x4y﹣6x3y+9x2y(2)先化简.再求值:[2x(x2y+xy2)﹣xy(xy+x2)]÷x2y,其中x,y互为相反数.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式中括号中利用单项式乘以多项式法则计算,去括号合并后再利用多项式除以单项式法则计算得到最简结果,利用相反数性质求出x+y的值,代入计算即可求出值.【解答】解:(1)原式=x2y(x2﹣6x+9)=x2y(x﹣3)2;(2)原式=(2x3y+2x2y2﹣x2y2﹣x3y)÷x2y=x+y,由x,y互为相反数,得到x+y=0,则原式=0.【点评】此题考查了整式的混合运算﹣化简求值,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.18.(7分)计算:(﹣)÷.【分析】首先将括号里面通分运算,进而利用分式的性质化简求出即可.【解答】解:(﹣)÷=[﹣]×=[﹣]×=×=.【点评】此题主要考查了分式的混合运算,正确进行通分运算是解题关键.19.(7分)如图,△ABC中,AB=AC,∠A=108°.(1)实践与操作:作AB的垂直平分线DE,与AB,BC分别交于点D,E(用尺规作图.保留作图痕迹,不要求写作法)(2)推理与计算:求∠AEC的度数.【分析】(1)作AB的垂直平分线DE;(2)根据等腰三角形的性质计算∠B的度数,根据线段的垂直平分线的性质得AE=BE,可计算∠BAE=36°,由外角性质可得结论.【解答】解:(1)如图所示:则DE是AB的垂直平分线;(2)∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,∵DE是AB的垂直平分线,∴AE=BE,∴∠B=∠BAE=36°,∴∠AEC=∠B+∠BAE=36°+36°=72°.【点评】本题考查基本作图、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(7分)阅读下列材料,解决提出的问题:最短路径问题如图(1),点A,B分别是直线l异侧的两个点,如何在直线l上找到一个点C,使得点C 到点A,点B的距离和最短?我们只需连接AB,与直线l相交于一点,可知这个交点即为所求.如图(2),如果点A,B分别是直线l同侧的两个点,如何在l上找到一个点C,使得这个点到点A、点B的距离和最短?我们可以利用轴对称的性质,作出点B关于的对称点B,这时对于直线l上的任一点C,都保持CB=CB,从而把问题(2)变为问题(1).因此,线段AB与直线l的交点C的位置即为所求.为了说明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′.因为AB′≤AC′+C′B′,∴AC+CB<AC'+C′B,即AC+BC最小.任务:数学思考(1)材料中划线部分的依据是两点之间线段最短或三角形两边之和大于第三边.(2)材料中解决图(2)所示问题体现的数学思想是A.(填字母代号即可)A.转化思想B.分类讨论思想C.整体思想迁移应用(3)如图,在Rt△ABC中,∠C=90°,∠BAC=15°,点P为C边上的动点,点D为AB边上的动点,若AB=8cm,则BP+DP的最小值为4cm.【分析】(1)依据是两点之间线段最短或三角形的两边之和大于第三边;(2)材料中解决图(2)所示问题体现的数学思想是转化的思想;(3)如图(3)中,作点B关于点C的对称点B′,连接AB′.作BH⊥AB′于H.作点D关于AC的对称点D′,则PD=PD′,推出PB+PD=PB+PD′,根据垂线段最短可知,当点D′与H重合,B,P,D′共线时,PB+PD的最小值=线段BH的长;【解答】解:(1)1)材料中划线部分的依据是两点之间线段最短或三角形的两边之和大于第三边;故答案为:两点之间线段最短或三角形的两边之和大于第三边;(2)材料中解决图(2)所示问题体现的数学思想是转化的思想,故答案为A.(3)如图(3)中,作点B关于点C的对称点B′,连接AB′.作BH⊥AB′于H.作点D关于AC的对称点D′,则PD=PD′,∴PB+PD=PB+PD′,根据垂线段最短可知,当点D′与H重合,B,P,D′共线时,PB+PD的最小值=线段BH 的长,∵BC=CB′,AC⊥BB′,∴AB=AB′,∴∠BAC=∠CAB′=15°,∴∠BAH=30°,在Rt△ABH中,∵AB=8cm,∠BAH=30°,∴BH=AB=4cm,∴PB+PD的最小值为4cm.故答案为4.【点评】本题考查三角形综合题、最短问题、两点之间线段最短、三角形的两边之和大于第三边、垂线段最短、轴对称等知识,解题的关键是灵活运用所学知识解决问题,学会利用轴对称解决最短问题,属于中考常考题型.21.(10分)随着科技与经济的发展,机器人自动化线的市场越来越大,并且逐渐成为自动化生产线的主要方式某化工厂要在规定时间内搬运1800千克化工原料,现有A,B两种机器人可供选择,已知A型机器人每小时完成的工作量是B型机器人的1.5倍,A型机器人单独完成所需的时间比B型机器人少10小时.(1)求两种机器人每小时分别搬运多少千克化工原料?(2)若A型机器人工作1小时所需的费用为80元,B型机器人工作1小时所需的费用为60元,若该工厂在两种机器人中选择其中的一种机器人单独完成搬运任务,则选择哪种机器人所需费用较小?请计算说明.【分析】(1)设B型机器人每小时搬运x千克化工原料,则A型机器人每小时搬运1.5x千克化工原料,根据A型机器人搬运900千克所用的时间与B型机器人搬运1800千克所用的时间差为10小时建立方程求出其解就可以得出结论.(2)分别计算两种机器人所需的费用,通过比较大小得到结论.【解答】解:(1)设B型机器人每小时搬运x千克化工原料,则A型机器人每小时搬运1.5x 千克化工原料,根据题意,得=﹣10整理,得1800=2700﹣1.5x解得x=60检验:当x=60时,1.5x≠0所以,原分式方程的解为x=60答:A型机器人每小时搬运90千克化工原料,B型机器人每小时搬运60千克化工原料;(2)A型机器人单独完成搬运任务所需的费用为:×80=1600(元)B型机器人单独完成搬运任务所需的费用为:×80=1800(元)因为1600<1800所以选择A型机器人所需费用较小.【点评】本题考查了列分时方程解实际问题的运用,分式方程的解法的运用,解答时根据A 型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.22.(12分)综合与探究问题背景在综合实践课上,老师让同学们根据如下问题情境,写出两个教学结论:如图,点C在线段BD上,点E在线段AC上.∠ACB=∠ACD=90°,AC=BC;DC=CE,M,N分别是线段BE,AD上的点.“兴趣小组”写出的两个教学结论是:①△BCE≌△ACD;②当CM,CN分别是△BCE和△ACD的中线时,△MCN是等腰直角三角形.解决问题(1)请你结合图(1).证明“兴趣小组”所写的两个结论的正确性.类比探究受到“兴趣小组”的启发,“实践小组”的同学们写出如下结论:如图(2),当∠BCM=∠ACN时,△MCN是等腰直角三角形.(2)“实践小组”所写的结论是否正确?请说明理由.感悟发现“奋进小组”认为:当点M,N分别是BE,AD的三等分点时,△MCN仍然是等腰直角三角形请你思考:(3)“奋进小组”所提结论是否正确?答:不一定准确.(填“正确”、“不正确”或“不一定正确”.)(4)反思上面的探究过程,请你添加适当的条作,再写出使得△MCN是等腰直角三角形的数学结论.(所写结论必须正确,写出1个即可,不要求证明)【分析】(1)由△BCE≌△ACD,推出BE=AD,∠EBC=∠DAC,因为BM=BE,AN=AD,推出BM=AN,再证明△BCM≌△ACN,即可解决问题;(2)实践小组”所写的结论正确.只要证明△BCM≌△ACN(ASA),即可解决问题;(3)“奋进小组”认为:当点M,N分别是BE,AD的三等分点时,△MCN仍然是等腰直角三角形.这个结论不一定准确.分两种情形说明即可;(4)答案不唯一.比如:当CM,CN分别是△BCE,△ACD的高时,△MCN是等腰直角三角形;当CM,CN分别是△BCE,△ACD的角平分线时,△MCN是等腰直角三角形;【解答】解:(1)在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD,∠EBC=∠DAC,∵CM,CN分别是△BCE和△ACD的中线,∴BM=BE,AN=AD,∴BM=AN,在△BCM和△ACN,,∴△BCM≌△ACN(SAS),∴CM=CN,∠BCM=∠ACN,∵∠BCM+∠MCE=90°,∴∠ACN+∠MCE=90°,∴MC⊥CN.∴△MCN是等腰直角三角形.(2)实践小组”所写的结论正确.理由:∵△BCE≌△ACD,∴∠EBC=∠DAC,在△BCM和△CAN中,,△BCM≌△ACN(ASA),∴CM=CN,∵∠BCM+∠MCE=∠ACB=90°,∴∠ACN+∠MCE=90°,∴MC⊥CN.∴△MCN是等腰直角三角形.(3)“奋进小组”认为:当点M,N分别是BE,AD的三等分点时,△MCN仍然是等腰直角三角形.这个结论不一定准确.理由:当BM=BE,AN=AD时,△MCN仍然是等腰直角三角形.当BM=BE,DN=AD时,△MCN不是等腰直角三角形.故答案为不一定准确.(4)答案不唯一.比如:当CM,CN分别是△BCE,△ACD的高时,△MCN是等腰直角三角形;当CM,CN分别是△BCE,△ACD的角平分线时,△MCN是等腰直角三角形;理由:只要证明△BCM≌△ACN(AAS),即可推出,∠BCM=∠ACN,推出∠MCN=90°,∵CM=CN,∴△MCN是等腰直角三角形.【点评】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。
2016—2017学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分30分. 1.下面有4个汽车标志图案,其中不是轴对称图形的是A. B. C. D.2.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为A.35° B.40° C.45°D.50°3.下列各图中,正确画出AC边上的高的是A. B. C. D.4.已知等腰三角形两边长为3和7,则周长为A.13 B.17 C.13或17 D.115.如图,△ABC 的两边AB 和AC 的垂直平分线分别交BC 于D 、E ,如果边BC 长为8cm ,则△ADE 的周长为 A .16cm B .8cm C .4cm D .不能确定6.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则下列结论:①AC =AF ,②EF =BC ,③∠F AB =∠EAB ,④∠EAB =∠F AC ,其中正确结论的个数是 A .1个B .2个C .3个D .4个7.无论a 取何值时,下列分式一定有意义的是A .221aa +B .21aa +C .112+-a aD .112+-a a 8.下列变形正确的是A .11+=--y x y x B .y x y x 11+-=-- C .y x y x -=--11 D .xyy x --=--11 9.已知03=-+y x ,则x2·y2的值是A .6B .﹣6C .D .8 10.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的 动点,△PMN 周长的最小值是5cm ,则 ∠AOB 的度数是 A .30° B .35°C .40°D .45°第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分.11.已知点A (x ,﹣4)与点B (3,y )关于x 轴对称,那么x +y 的值为 .(第5题图)(第6题图)(第10题图)ABMPON12.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是 度. 13.如图,AB =AC =AD ,∠BAD =80°,则∠BCD = .14.如图,用圆规以直角顶点O 为圆心,以适当半径画一条弧交两直角边于A 、B 两点,再以A 为圆心,以OA 为半径画弧,与弧AB 交于点C ,则∠AOC 的度数是 .15.如图,在Rt △ABC 中,∠C =90°,直线BD 交AC 于D ,把直角三角形沿着直线BD翻折,使点C 落在斜边AB 上,如果△ABD 是等腰三角形,那么∠A = . 16.多项式62++mx x 因式分解得))(2(n x x +-,则m = . 17.已知6=+y x ,2-=xy ,则=+2211y x . 18.观察下列等式:1)1)(1(2-=+-x x x , 1)1)(1(32-=++-x x x x , 1)1)(1(423-=+++-x x x x x ,…据此规律,当0)1)(1(2345=+++++-x x x x x x 时,代数式12017-x的值为 .三、解答题:本大题共7个小题,满分46分. 解答时请写出必要的演推过程. 19.计算:()()22017311932-⎪⎭⎫⎝⎛------. 20.计算:()()()()22352123b a b a b a a a b b a -÷+-+-+.(第13题图)(第14题图)(第15题图)ABCO21.分解因式:()()ab b a b a +--4.22.先化简,再求值: 12212122++-÷⎪⎭⎫⎝⎛+---x x x x x x xx ,其中2-=x . 23.解方程:42121-=+--x xx x . 24.已知△ABC 是等边三角形,点D 、E 分别在边BC 、CA 的延长线上,且DC =AE ,BE交DA 的延长线于点F ,求∠BFD 的度数.25. 过∠AOB 平分线上一点C 作CD ∥OB ,交OA 于点D ,E 是线段OC 的中点.(1)如图1,连接DE ,并延长DE 交OB 于点M ,若△OEM 的面积是6,则△ODC 的面积是 ;(2)如图2,过点E 的直线分别交射线OB 、线段CD 于点M 、N ,则线段OD 、DN 、OM 之间的数量关系是 ;(3)如图3,过点E 的直线分别交射线OB 、线段CD 的延长线于点M 、N ,探究线段OD 、DN 、OM 之间有怎样的数量关系?并证明你的结论.(第24题图)O (第25题图1)M(第25题图2)(第25题图3)2016—2017学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.7; 12.1800; 13.140°; 14.60°; 15.30°; 16.-5; 17.10; 18.0或-2. 三、解答题:(共46分) 19.解:()()22017311932-⎪⎭⎫⎝⎛------ =9131-+- ………………………………………… 4分= -10. ………………………………………… 5分 20.解:()()()()22352123b a b a b a a a b b a -÷+-+-+=24352224123b a b a ab a a b ÷+-+- ………………………………… 3分 =ab ab a a b 33222+-+- ………………………………… 4分 =.2b ………………………………… 5分 21.解:()()ab b a b a +--4=ab b ab ab a ++--2244 ………………………………… 2分 =2244b ab a +- ………………………………… 3分=.)22b a -( ………………………………… 5分 22.解:12212122++-÷⎪⎭⎫⎝⎛+---x x x x x x xx=)12()1()1()2()1)(1(2-+•+--+-x x x x x x x x x ………………………………… 3分=)12()1()1(122-+•+-x x x x x x ………………………………… 4分=.12xx + ………………………………… 5分 当2-=x 时,原式=.41212122-=-+-=+)(x x ……………………………… 6分 23.解:原方程可化为 )2(2121-=+---x xx x , ……………………………… 1分 方程两边同乘以2(x -2),得x x x =-+--)2(2)12(,……………………………… 3分 去括号,得x x x =-+-4222,移项,得2422-=-+-x x x , 合并同类项,得 2=-x ,系数化为1,得2-=x . ………………………………… 5分 检验:当x =-2时,2(x -2)≠0,所以原方程的解是x =-2. ………………………………… 7分 24.解:∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ACB =60°, ………………………………… 2分 ∴∠EAB =∠ACD =120°, ………………………………… 3分 在△ABE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=DC AE ACD EAB AC AB ∴△ABE ≌△ACD , ………………………………… 5分 ∴∠E =∠D , ………………………………… 6分 ∵∠EAF =∠CAD ,∠CAD+∠D =∠ACB =60°, ……………………… 7分 ∴∠EAF +∠E =60°,∴∠BFD=60°.………………………………… 8分25.解:(1)12;………………………………… 2分(2)OD=DN+OM;………………………………… 4分(3)线段OD、DN、OM之间的数量关系是OD= OM-DN. ……… 5分证明:∵E是OC的中点,∴OE=CE,………………………………… 6分∵CD∥OB,∴∠COM=∠DCO,………………………………… 7分又∠OEM=∠CEN,∴△OEM≌△CEN,∴OM=CN. ………………………………… 8分∵OC平分∠AOB,∴∠COM=∠COD,又∠COM=∠DCO,∴∠COD=∠DCO,………………………………… 9分∴OD=CD,∵CD=CN-DN,∴OD= OM-DN. ……………………………… 10分。
山西省吕梁市孝义市2016-2017学年八年级上学期期末数学试卷
一、精心选一选
1. 直角三角形的两直角边分别是3和4,则它的面积为( ) A . 24 B . 12 C . 6 D . 7
2. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A .
B .
C .
D .
3. 若一粒米的质量约是0.000021kg ,将数据0.000021用科学记数法表示为( )
A . 21×10
B . 2.1×10
C . 2.1×10
D . 2.1×10
4. 若点M (﹣3,2)和点N
(a ,b )关于y 轴对称,则 的值为( )
A .
B .
C . ﹣
D . ﹣
5. 如图,在等边三角形ABC 中,
AB=2,点D 为BC 的中点,DE ∥AB 交AC 于点E ,过点E 作EF ⊥DE ,交BC 的延长线于点F ,则图中长度为1的线段有( )
A . 3条
B . 4条
C . 5条
D . 6条
6. 如图,在证明“△ABC 内角和等于180°”时,延长
BC 至D ,过点C 作CE ∥AB ,得到∠ABC=∠ECD ,∠BAC=∠ACE ,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,这个证明方法体现的数学思想是( )
A . 数形结合
B . 特殊到一般
C . 一般到特殊
D . 转化
7. 已知点P (0,1),Q (5,4),点M 在x 轴上运动,当MP+MQ 的值最小时,点M 的坐标为( )
A . (0,0)
B . (1,0)
C . (3,0)
D . (5,0)
二、填空题
8. 五边形的内角和为________.
9. 分解因式:a (a ﹣2
)﹣2(a ﹣2)=________.
10. 已知|x ﹣y+2|+ =0,则x ﹣y 的值为________.
11. 当x=________时,分式
的值为0.﹣4﹣6﹣5﹣4
22
12. 如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是________.
13. 如图,一张三角形纸片ABC ,AB=AC=5.折叠该纸片使点A 落在边BC 的中点上,折痕经过AC 上的点E ,则线段A E 的长为________
.
14. 如图,△ABC 与△ECD 都是等边三角形,AB≠EC ,下列结论中:①BE=AD ;②∠BOD=120°;③OA=OD .正确的序号是________.15. 如图,在△ABC 中,∠C=90°,∠
B=30°,AD 是△ABC 的角平分线,DE
⊥AB ,垂足为E ,DE=
,则BC=____
____.三、解答题
16. 解方程:
= +1.17. 如图,有正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果用这三类卡片拼一个长为2a+b 、宽为a+2b 的大长方形,通过计算说明三类卡片各需多少张?
四、完成下列各题
18. 先化简,再化简: ÷ ﹣1,其中x=2
.
19. 如图,已知△ABC ,∠C=90°,AC <BC ,D 为BC 上一点,且到A 、B 两点的距离相等.
(1) 用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹);
(2) 连结AD
,若∠B=32°,求∠CAD 的度数.
20. 已知,如图,AB ∥CD ,E 是AB 的中点,CE=DE ,求证:AC=BD .
﹣1
参考答案1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.。