直线的方程
- 格式:docx
- 大小:64.22 KB
- 文档页数:3
第6讲直线的方程新课标要求根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式)。
知识梳理1.直线的点斜式方程2.直线的斜截式方程3.直线的两点式方程和截距式方程4.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22.5.直线的一般式方程6.直线的一般式与点斜式、斜截式、两点式、截距式的关系3.2.1 直线的点斜式方程名师导学【例1-1】(南京校级模拟)根据条件写出下列直线的点斜式方程: (1)过点A (-4,3),斜率k =3; (2)经过点B (-1,4),倾斜角为135°; (3)过点C (-1,2),且与y 轴平行; (4)过点D (2,1)和E (3,-4). 【分析】求直线的点斜式方程的思路【解答】 (1)由点斜式方程可知,所求直线方程为:y -3=3[x -(-4)].(2)由题意知,直线的斜率k =tan 135°=-1,故所求直线的方程为y -4=-(x +1).(3)∵直线与y 轴平行,斜率不存在,∴直线的方程不能用点斜式表示,由于直线上所有点的横坐标都是-1, 故这条直线的方程为x =-1. (4)∵直线过点D (2,1)和E (3,-4), ∴斜率k =-4-13-2=-5.由点斜式得y -1=-5(x -2).【变式训练1-1】(蜀山区校级月考)根据条件写出下列直线的点斜式方程: (1)经过点A (2,5),斜率是4; (2)经过点B (2,3),倾斜角是45°; (3)经过点C (-1,-1),与x 轴平行.【解析】 (1)由点斜式方程可知,所求直线方程为y -5=4(x -2); (2)∵直线的斜率k =tan 45°=1, ∴直线方程为y -3=x -2; (3)y =-1.【例2-1】(菏泽调研)根据条件写出下列直线的斜截式方程. (1)斜率为2,在y 轴上的截距是5; (2)倾斜角为150°,在y 轴上的截距是-2;(3)倾斜角为60°,与y 轴的交点到坐标原点的距离为3. 【分析】直线的斜截式方程的求解策略:(1)求直线的斜截式方程只要分别求出直线的斜率和在y 轴上的截距,代入方程即可. (2)当斜率和截距未知时,可结合已知条件,先求出斜率和截距,再写出直线的斜截式方程.【解答】 (1)由直线方程的斜截式可知, 所求直线方程为y =2x +5.(2)∵倾斜角α=150°,∴斜率k =tan 150°=-33. 由斜截式可得方程为y =-33x -2. (3)∵直线的倾斜角为60°,∴其斜率k =tan 60°= 3.∵直线与y 轴的交点到原点的距离为3, ∴直线在y 轴上的截距b =3或b =-3. ∴所求直线方程为y =3x +3或y =3x -3.【变式训练2-1】(宁波校级月考)写出下列直线的斜截式方程: (1)直线斜率是3,在y 轴上的截距是-3; (2)直线倾斜角是60°,在y 轴上的截距是5; (3)直线在x 轴上的截距为4,在y 轴上的截距为-2.【解析】 (1)由直线方程的斜截式可知,所求方程为y =3x -3. (2)∵k =tan 60°=3,∴y =3x +5.(3)∵直线在x 轴上的截距为4,在y 轴上的截距为-2, ∴直线过点(4,0)和(0,-2). ∴k =-2-00-4=12,∴y =12x -2.【例3-1】(新华区校级期末)(1)当a 为何值时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行? (2)当a 为何值时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直?【分析】在解决有关直线位置关系的问题时,常常用到数形结合思想和待定系数法.数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法.而待定系数法是解析几何中求直线方程或其他曲线方程的重要方法.【解答】(1)∵l 1∥l 2,∴a 2-2=-1, 又2a ≠2,解得a =-1.(2)∵l 1⊥l 2,∴4(2a -1)=-1,解得a =38.【变式训练3-1】(黄冈期末)求证:不论m 为何值,直线l :y =(m -1)x +2m +1总过第二象限. 【证明】 法一 直线l 的方程可化为y -3=(m -1)(x +2), ∴直线l 过定点(-2,3),由于点(-2,3)在第二象限,故直线l 总过第二象限. 法二 直线l 的方程可化为m (x +2)-(x +y -1)=0.令⎩⎪⎨⎪⎧x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3. ∴无论m 取何值,直线l 总经过点(-2,3). ∵点(-2,3)在第二象限,∴直线l 总过第二象限.【变式训练3-2】(赤峰期末)是否存在过点(-5,-4)的直线l ,使它与两坐标轴围成的三角形的面积为5? 【解析】 假设存在过点(-5,-4)的直线l ,使它与两坐标轴围成的三角形的面积为5.由题意可知,直线l 的斜率一定存在且不为零,设直线的斜率为k (k ≠0),则直线方程为y +4=k (x +5),则分别令y =0,x =0,可得直线l 与x 轴的交点为(-5k +4k ,0),与y 轴的交点为(0,5k -4).因为直线l 与两坐标轴围成的三角形的面积为5,所以12|-5k +4k |·|5k -4|=5,所以-5k +4k ·(5k -4)=±10,即25k 2-30k +16=0(无解)或25k 2-50k +16=0,所以k =85或k =25,所以存在直线l 满足题意,直线l 的方程为y +4=85(x +5)或y +4=25(x +5).名师导练A 组-[应知应会]1.(宣城期末)过点()3,2,斜率是23的直线方程是( ) A .243y x =+ B .223y x =+ C .230x y -=D .320x y -=【答案】C【解析】∵直线过点()3,2且斜率为23, 由直线方程的点斜式得:22(3)3y x -=-, 整理得:230x y -=. 故选C.2.(绵阳期末)已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B 直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为1【答案】C【解析】方程可化为y -(-2)=-[x -(-1)],所以直线过点(-1,-2),斜率为-1.选C. 3.(上饶期末)直线y =3(x -3)的斜率与在y 轴上的截距分别是( ) A .3,3 B .3,-3 C .3,3 D .-3,-3 【答案】B【解析】由直线方程知直线斜率为3,令x =0可得在y 轴上的截距为y =-3.故选B. 4.(通州区期末)直线y =kx +b 经过第一、三、四象限,则有( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0D .k <0,b <0【答案】 B【解析】 ∵直线经过第一、三、四象限,∴图形如图所示,由图知,k >0,b <0.5.(龙凤区校级期末)过点()2,0且与直线25y x =+垂直的直线l 的方程是( )A .24y x =-B .24y x =-+C .112y x =- D .112y x =-+ 【答案】D【解析】因为所求直线与直线25y x =+垂直,所以其斜率为12k =-, 又所求直线过点()2,0, 因此,所求直线方程为:()122y x =--,即112y x =-+. 故选D.6.(南关区校级期末)已知直线l 过点()2,0,且与直线21y x =-+平行,则直线l 的方程为( )A .24y x =-B .24y x =+C .24y x =-+D .24y x =--【答案】C 【解析】直线l 与直线21y x =-+平行,∴直线l 的斜率与21y x =-+的斜率相等,即直线l 的斜率:2k =-;又直线l 过点()2,0,则由点斜式可知直线方程为()022y x -=-- 整理可得:24y x =-+ 故选C.7.(兴庆区校级期末)直线y =2x -5在y 轴上的截距是________. 【答案】 -5【解析】 ∵令x =0,则y =-5, ∴直线y =2x -5在y 轴上的截距是-5.8.(无锡期末)在y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是________. 【答案】 y =3x -6或y =-3x -6【解析】 与y 轴相交成30°角的直线方程的斜率为: k =tan 60°=3,或k =tan 120°=-3,∴y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是:y =3x -6或y =-3x -6.9.(金牛区校级期末)与直线l :y =34x +1平行,且在两坐标轴上截距之和为1的直线l 1的方程为________.【答案】 y =34x -3【解析】 根据题意知直线l 的斜率k =34,故直线l 1的斜率k 1=34.设直线l 1的方程为y =34x +b ,则令y =0,得它在x 轴上的截距a =-43b .∵a +b =-43b +b =-13b =1,∴b =-3.∴直线l 1的方程为y =34x -3.10.(南岗区校级期末)斜率为34,且与坐标轴所围成的三角形的周长是12的直线方程是________.【答案】 y =34x ±3【解析】 设所求直线方程为y =34x +b ,令y =0得x =-4b3.由题意得:|b |+⎪⎪⎪⎪-43b +b 2+16b 29=12, 即|b |+43|b |+53|b |=12,即4|b |=12,∴b =±3, ∴所求直线方程为y =34x ±3.11.(金华校级月考)写出下列直线的斜截式方程: (1)直线的倾斜角为45°且在y 轴上的截距是2; (2)直线过点A (3,1)且在y 轴上的截距是-1.【解析】 (1)斜率k =tan 45°=1,可得斜截式:y =x +2. (2)k =-1-10-3=23,可得斜截式方程:y =23x -1.12.(洛龙区校级期末)(1)求经过点(1,1),且与直线y =2x +7平行的直线的点斜式方程; (2)求经过点(-2,-2),且与直线y =3x -5垂直的直线的斜截式方程. 【解析】 (1)∵所求直线与直线y =2x +7平行, ∴所求直线斜率为2, 由点斜式方程可得 y -1=2(x -1).(2)∵所求直线与直线y =3x -5垂直, ∴所求直线的斜率为-13,由点斜式方程得:y +2=-13(x +2),即y =-13x -83.故所求的直线方程为y =-13x -83.B 组-[素养提升]1.(诸暨市校级期中)已知三角形的顶点坐标是A (-5,0),B (3,-3),C (0,2),试求这个三角形的三条边所在直线的斜截式方程.【解析】 直线AB 的斜率k AB =-3-03-(-5)=-38,又过点A (-5,0),∴直线AB 的点斜式方程为y =-38(x+5),即所求边AB 所在直线的斜截式方程为y =-38x -158.同理,直线BC 的方程为y -2=-53x ,即y =-53x +2.直线AC 的方程为y -2=25x ,即y =25x +2.∴边AB ,BC ,AC 所在直线的斜截式方程分别为y = -38x -158,y =-53x +2,y =25x +2. 3.2.2 直线的两点式方程名师导学知识点1 直线的两点式方程【例1-1】(武侯区校级期末)已知三角形的顶点是A (1,3),B (-2,-1),C (1,-1),求这个三角形三边所在直线的方程.【分析】当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件,若满足即可考虑用两点式求方程.在斜率存在的情况下,也可以先应用斜率公式求出斜率,再用点斜式写方程. 【解答】直线AB 过A (1,3),B (-2,-1),其两点式方程为y -3-1-3=x -1-2-1,整理,得4x -3y +5=0,这就是直线AB 的方程.直线AC 垂直于x 轴,其方程为x =1.直线BC 平行于x 轴,其方程为y =-1.【变式训练1-1】(开江县校级开学考)过(1,1),(2,-1)两点的直线方程为 ( ) A .2x -y -1=0 B .x -2y +3=0 C .2x +y -3=0 D .x +2y -3=0 【答案】C【解析】∵直线过两点(1,1)和(2,-1),∴直线的两点式方程为y -(-1)1-(-1)=x -21-2,整理得2x +y -3=0,故选C.知识点2 直线的截距式方程【例2-1】(诸暨市校级期中)求过点A (3,4),且在两坐标轴上的截距互为相反数的直线l 的方程. 【分析】如果题目中出现直线在两坐标轴上的“截距相等”、“截距互为相反数”、“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,采用截距式求直线方程,一定要注意考虑“零截距”的情况. 【解答】(1)当直线l 在两坐标轴上的截距互为相反数且不为0时,可设直线l 的方程为x a +y-a =1.又l 过点A (3,4),所以3a +4-a =1,解得a =-1.所以直线l 的方程为x -1+y1=1,即x -y +1=0.(2)当直线l 在两坐标轴上的截距互为相反数且为0时,即直线l 过原点时,设直线l 的方程为y =kx ,因为l 过点A (3,4),所以4=k ·3,解得k =43,直线l 的方程为y =43x ,即4x -3y =0.综上,直线l 的方程为x -y +1=0或4x -3y =0.【变式训练2-1】若将例2-1中“截距互为相反数”改为“截距相等”呢? 【解析】(1)当截距不为0时,设直线l 的方程为x a +ya =1,又知l 过(3,4),∴3a +4a =1,解得a =7, ∴直线l 的方程为x +y -7=0.(2)当截距为0时,直线方程为y =43x ,即4x -3y =0.综上,直线l 的方程为x +y -7=0或4x -3y =0. 知识点3 直线的综合应用【例3-1】(沭阳县校级期中)已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),求BC 边所在直线的方程,以及该边上中线所在直线的方程.【分析】(1)已知一点的坐标,求过该点的直线方程,一般选取点斜式方程,再由其他条件确定直线的斜率. (2)若已知直线的斜率,一般选用直线的斜截式,再由其他条件确定直线的一个点或者截距. (3)若已知两点坐标,一般选用直线的两点式方程,若两点是与坐标轴的交点,就用截距式方程.(4)不论选用怎样的直线方程,都要注意各自方程的限制条件,对特殊情况下的直线要单独讨论解决. 【解答】如图,过B (3,-3),C (0,2)的两点式方程为y -2-3-2=x -03-0,整理得5x +3y -6=0.这就是BC 边所在直线的方程.BC 边上的中线是顶点A 与BC 边中点M 所连线段,由中点坐标公式可得点M 的坐标为(3+02,-3+22),即(32,-12).过A (-5,0),M (32,-12)的直线的方程为y -0-12-0=x +532+5,即x +13y +5=0. 这就是BC 边上中线所在直线的方程.【变式训练3-1】(天心区校级期末)求过点A (4,2),且在两坐标轴上的截距的绝对值相等的直线l 的方程. 【解析】当直线过原点时,它在x 轴、y 轴上的截距都是0,满足题意. 此时,直线的斜率为12,所以直线l 的方程为y =12x ,即x -2y =0.当直线不过原点时,由题意可设直线方程为x a +yb =1.又因为过点A ,所以4a +2b =1. ①因为直线在两坐标轴上的截距的绝对值相等, 所以|a |=|b |. ② 由①②联立方程组,解得⎩⎪⎨⎪⎧a =6,b =6或⎩⎪⎨⎪⎧a =2,b =-2. 所以所求直线的方程为x 6+y 6=1或x 2+y-2=1,化简得直线l 的方程为x +y =6或x -y =2, 即直线l 的方程为x +y -6=0或x -y -2=0,综上,直线l 的方程为x -2y =0或x +y -6=0或x -y -2=0.名师导练A 组-[应知应会]1.(锡山区校级期中)过两点(-2,1)和(1,4)的直线方程为 ( ) A .y =x +3 B .y =-x +1 C .y =x +2D .y =-x -2【解析】 代入两点式得直线方程y -14-1=x +21+2,整理得y =x +3.【答案】 A2.(红桥区期中)经过P (4,0),Q (0,-3)两点的直线方程是 ( ) A.x 4+y3=1 B.x 3+y 4=1 C.x 4-y3=1D.x 3-y 4=1 【解析】 由P ,Q 两点坐标知直线在x 轴、y 轴上的截距分别为4,-3,所以直线方程为x 4+y -3=1,即x4-y3=1. 【答案】 C3.(江宁区校级月考)过点P (4,-3)且在坐标轴上截距相等的直线有 ( ) A .1条B .2条C .3条D .4条【解析】 当直线过原点时显然符合条件;当直线不过原点时,设所求直线的方程为x a +ya =1,把点P (4,-3)代入方程得a =1.因而所求直线有2条. 【答案】 B4.(临泉县校级月考)经过两点(5,0),(2,-5)的直线方程为 ( ) A .5x +3y -25=0 B .5x -3y -25=0 C .3x -5y -25=0D .5x -3y +25=0【解析】 经过两点(5,0),(2,-5)的直线方程为: y -0-5-0=x -52-5,整理,得5x -3y -25=0. 故选B. 【答案】 B5.(朝阳区校级月考)已知直线l :ax +y -2=0在x 轴和y 轴上的截距相等,则实数a 的值是( ) A .1B .-1C .-2或-1D .-2或1【解析】 显然a ≠0.把直线l :ax +y -2=0化为x 2a +y2=1.∵直线l :ax +y -2=0在x 轴和y 轴上的截距相等, ∴2a =2,解得a =1,故选A. 【答案】 A6.(庐江县校级期末)点M (4,m )关于点N (n ,-3)的对称点为P (6,-9),则 ( ) A .m =-3,n =10 B .m =3,n =10 C .m =-3,n =5D .m =3,n =5【解析】 ∵M (4,m )关于点N (n ,-3)的对称点为P (6,-9),∴4+62=n ,m -92=-3;∴n =5,m =3,故选D. 【答案】 D7.(海淀区校级期末)已知A (2,-1),B (6,1),则在y 轴上的截距是-3,且经过线段AB 中点的直线方程为________.【解析】 由于A (2,-1),B (6,1),故线段AB 中点的坐标为(4,0), 又直线在y 轴上的截距是-3,∴直线方程为x 4-y3=1,即3x -4y -12=0.【答案】 3x -4y -12=08.(红岗区校级期末)过点P (3,2),且在坐标轴上截得的截距相等的直线方程是________. 【解析】 当直线过原点时,斜率等于2-03-0=23,故直线的方程为y =23x ,即2x -3y =0.当直线不过原点时,设直线的方程为x +y +m =0,把P (3,2)代入直线的方程得m =-5, 故求得的直线方程为x +y -5=0,综上,满足条件的直线方程为2x -3y =0或x +y -5=0. 【答案】 2x -3y =0或x +y -5=09.(兴庆区校级期末)求经过点A (-2,3),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 【解】 (1)当横截距、纵截距都是零时,设所求的直线方程为y =kx ,将(-2,3)代入y =kx 中,得k =-32,此时,直线方程为y =-32x ,即3x +2y =0.(2)当横截距、纵截距都不是零时, 设所求直线方程式为x 2a +ya=1,将(-2,3)代入所设方程,解得a =2,此时,直线方程为x +2y -4=0. 综上所述,所求直线方程为x +2y -4=0或3x +2y =0.10.(城关区校级期末)求经过点A (-2,3),B (4,-1)的直线的两点式方程,并把它化成点斜式、斜截式和截距式.【解】 过A ,B 两点的直线的两点式方程是y +13+1=x -4-2-4.点斜式为:y +1=-23(x -4),斜截式为:y =-23x +53,截距式为:x 52+y53=1.B 组-[素养提升]1.(鼓楼区校级期末)两条直线l 1:x a -y b =1和l 2:x b -ya=1在同一直角坐标系中的图象可以是( )【解析】 化为截距式x a +y -b =1,x b +y-a=1.假定l 1的位置,判断a ,b 的正负,从而确定l 2的位置,知A 项符合. 【答案】 A2.(秦州区校级期末)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是 ( ) A.⎝⎛⎭⎫-1,15B.⎝⎛⎭⎫-∞,12∪(1,+∞) C .(-∞,1)∪⎝⎛⎭⎫15,+∞D .(-∞,-1)∪⎝⎛⎭⎫12,+∞【解析】 设直线的斜率为k ,如图,过定点A 的直线经过点B (3,0)时,直线l 在x 轴上的截距为3,此时k =-1;过定点A 的直线经过点C (-3,0)时,直线l 在x 轴的截距为-3,此时k =12,满足条件的直线l的斜率范围是(-∞,-1)∪⎝⎛⎭⎫12,+∞.【答案】 D3.(金湖县校级期中)垂直于直线3x -4y -7=0,且与两坐标轴围成的三角形的面积为6的直线在x 轴上的截距是________.【解析】 设直线方程是4x +3y +d =0,分别令x =0和y =0,得直线在两坐标轴上的截距分别是-d 3,-d4,∴6=12×|-d 3|×|-d 4|=d 224,∴d =±12,则直线在x 轴上的截距为3或-3.【答案】 3或-34.(启东市校级月考)已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________. 【解析】 直线AB 的方程为x 3+y 4=1,设P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3,即当P 点坐标为⎝⎛⎭⎫32,2时,xy 取得最大值3. 【答案】 35.(杨浦区校级期末)在△ABC 中,已知A (5,-2),B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求:(1)顶点C 的坐标;(2)直线MN 的方程. 【解】 (1)设C (x 0,y 0),则AC 边的中点为M ⎝⎛⎭⎫x 0+52,y 0-22,BC 边的中点为N ⎝⎛⎭⎫x 0+72,y 0+32.因为M 在y 轴上,所以x 0+52=0,得x 0=-5.又因为N 在x 轴上,所以y 0+32=0,所以y 0=-3.所以C (-5,-3). (2)由(1)可得M ⎝⎛⎭⎫0,-52,N (1,0),所以直线MN 的方程为x 1+y-52=1,即5x -2y -5=0.3.2.3 直线的一般式方程名师导学知识点1 直线的一般式方程与其他形式的转化【例1-1】(水富市校级期末)(1)下列直线中,斜率为-43,且不经过第一象限的是( )A .3x +4y +7=0B .4x +3y +7=0C .4x +3y -42=0D .3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于( ) A.3B .-5C.95D .-33【分析】(1)当A ≠0时,方程可化为x +B A y +C A =0,只需求B A ,C A 的值;若B ≠0,则方程化为A B x +y +CB =0,只需确定A B ,CB的值.因此,只要给出两个条件,就可以求出直线方程.(2)在求直线方程时,设一般式方程有时并不简单,常用的还是根据给定条件选用四种特殊形式之一求方程,然后可以转化为一般式.【解答】(1)将一般式化为斜截式,斜率为-43的有:B 、C 两项.又y =-43x +14过点(0,14)即直线过第一象限,所以只有B 项满足要求. (2)令y =0,则x =-3 3.【变式训练1-1】(包河区校级期末)根据下列条件分别写出直线的方程,并化为一般式方程. (1)斜率是3,且经过点A (5,3); (2)斜率为4,在y 轴上的截距为-2; (3)经过A (-1,5),B (2,-1)两点; (4)在x ,y 轴上的截距分别是-3,-1.【解析】(1)由点斜式方程可知,所求直线方程为:y -3=3(x -5),化为一般式为:3x -y +3-53=0. (2)由斜截式方程可知,所求直线方程为:y =4x -2,化为一般式为:4x -y -2=0.(3)由两点式方程可知,所求直线方程为:y -5-1-5=x -(-1)2-(-1).化为一般式方程为:2x +y -3=0.(4)由截距式方程可得,所求直线方程为x -3+y-1=1,化成一般式方程为:x +3y +3=0.知识点2 直线的一般式方程的应用【例2-1】(上虞区期末)(1)若方程(m 2+5m +6)x +(m 2+3m )y +1=0表示一条直线,则实数m 满足________. (2)已知方程(2m 2+m -3)x +(m 2-m )y =4m -1表示直线.当m =____________时,直线的倾斜角为45°;当m =____________时,直线在x 轴上的截距为1.【解析】(1)若方程不能表示直线,则m 2+5m +6=0且m 2+3m =0.解方程组⎩⎪⎨⎪⎧m 2+5m +6=0,m 2+3m =0,得m =-3,所以m ≠-3时,方程表示一条直线. (2)因为已知直线的倾斜角为45°, 所以此直线的斜率是1,所以-2m 2+m -3m 2-m =1,所以⎩⎪⎨⎪⎧m 2-m ≠0,2m 2+m -3=-(m 2-m ),解得⎩⎪⎨⎪⎧m ≠0且m ≠1,m =-1或m =1.所以m =-1.因为已知直线在x 轴上的截距为1, 令y =0得x =4m -12m 2+m -3,所以4m -12m 2+m -3=1,所以⎩⎪⎨⎪⎧2m 2+m -3≠0,4m -1=2m 2+m -3,解得⎩⎨⎧m ≠1且m ≠-32,m =-12或m =2.所以m =-12或m =2.【例2-2】(柳南区校级期末)已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直. 【解析】l 的方程可化为y =-34x +3,∴l 的斜率为-34.法一 (1)∵l ′与l 平行,∴l ′的斜率为-34.又∵l ′过点(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)∵l ′与l 垂直,∴l ′的斜率为43,又l ′过点(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.法二 (1)由l ′与l 平行,可设l ′的方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9. ∴所求直线的方程为3x +4y -9=0.(2)由l ′与l 垂直,可设l ′的方程为4x -3y +n =0. 将(-1,3)代入上式得n =13. ∴所求直线的方程为4x -3y +13=0.【变式训练2-1】(佛山校级月考)已知直线l 经过点P (2,1),且与直线2x -y +2=0平行,那么直线l 的方程是( ) A .2x -y -3=0B .x +2y -4=0C .2x -y -4=0D .x -2y -4=0【解析】 由题意可设所求的方程为2x -y +c =0(c ≠2), 代入已知点(2,1),可得4-1+c =0,即c =-3, 故所求直线的方程为:2x -y -3=0,故选A. 【答案】 A【变式训练2-2】(西湖区校级月考)设直线l 1:(a +1)x +3y +2=0,直线l 2:x +2y +1=0.若l 1∥l 2,则a =________;若l 1⊥l 2,则a =________.【解析】 直线l 1:(a +1)x +3y +2=0,直线l 2:x +2y +1=0,分别化为:y =-a +13x -23,y =-12x -12.若l 1∥l 2,则-a +13=-12,解得a =12.若l 1⊥l 2,则-a +13×(-12)=-1,解得a =-7.【答案】 12-7名师导练A 组-[应知应会]1.(芜湖校级月考)已知ab <0,bc <0,则直线ax +by =c 通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限【解析】 由题意可把ax +by =c 化为y =-a b x +c b .∵ab <0,bc <0,∴直线的斜率k =-ab >0,直线在y 轴上的截距cb<0.由此可知直线通过第一、三、四象限. 【答案】 C2.(南岸区校级期末)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0【解析】 由题意,得所求直线斜率为12,且过点(1,0).故所求直线方程为y =12(x -1),即x -2y -1=0.【答案】 A3.(辽源期末)若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A .-1B .1C.12D .-12【解析】 由两直线垂直,得1×2+(-2)m =0,解得m =1. 【答案】 B4.(宜兴县校级期中)直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是( )【解析】 将l 1与l 2的方程化为斜截式得: y =ax +b ,y =bx +a ,根据斜率和截距的符号可得选C. 【答案】 C5.(城关区校级期末)直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角45°,则m 的值为( ) A .-2 B .2C .-3D .3 【解析】∵直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角45°,当m 2=4时,与题意不符,∴2m 2-5m +2m 2-4=tan 45°=1,解得m =3或m =2(舍去). 故选D. 【答案】 D6.(金凤区校级期末)若直线ax +2y +1=0与直线x +y -2=0互相平行,那么a 的值等于________. 【解析】 ∵直线ax +2y +1=0与直线x +y -2=0分别化为y =-a 2x -12,y =-x +2,则-a2=-1,解得a =2. 【答案】 27.(越秀区校级期末)已知过点A (-2,m ),B (m ,4)的直线与直线2x +y -1=0互相垂直,则m =________. 【解析】 因为两条直线垂直,直线2x +y -1=0的斜率为-2,所以过点A (-2,m ),B (m ,4)的直线的斜率4-m m +2=-12,解得m =2.【答案】 28.(凯里市校级期末)已知两条直线a 1x +b 1y +4=0和a 2x +b 2y +4=0都过点A (2,3),则过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程为________________.【解析】 由条件知⎩⎪⎨⎪⎧2a 1+3b 1+4=0,2a 2+3b 2+4=0,易知两点P 1(a 1,b 1),P 2(a 2,b 2)都在直线2x +3y +4=0上,即2x +3y +4=0为所求. 【答案】 2x +3y +4=09.(和平区校级期中)若方程(m 2-3m +2)x +(m -2)y -2m +5=0表示直线. (1)求实数m 需满足的条件;(2)若该直线的斜率k =1,求实数m 的值.【解】 (1)由题意知⎩⎪⎨⎪⎧m 2-3m +2≠0,m -2≠0,解得m ≠2.(2)由题意知,m ≠2,由-m 2-3m +2m -2=1,解得m =0. 10.(如东县期中)(1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值;(2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?【解】 法一 (1)由l 1:2x +(m +1)y +4=0,l 2:mx +3y -2=0知:①当m =0时,显然l 1与l 2不平行.②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2. 解得m =2或m =-3,∴m 的值为2或-3.(2)由题意知,直线l 1⊥l 2.①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直.②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直. ③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3. 当l 1⊥l 2时,k 1·k 2=-1,即(-a +21-a )·(-a -12a +3)=-1, ∴a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2.法二 (1)令2×3=m (m +1),解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0,显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0,显然l 1与l 2不重合,∴l 1∥l 2.∴m 的值为2或-3.(2)由题意知直线l 1⊥l 2,∴(a +2)(a -1)+(1-a )(2a +3)=0,解得a =±1,将a =±1代入方程,均满足题意.故当a =1或a =-1时,直线l 1⊥l 2.B 组-[素养提升]1.(昌江区校级期末)若三条直线x +y =0,x -y =0,x +ay =3能构成三角形,则a 满足的条件是________.【解析】 由直线x +y =0与x -y =0都过(0,0)点,而x +ay =3不过(0,0)点,故只需满足x +ay =3不与x +y =0与x -y =0平行即可,故a ≠±1.【答案】 a ≠±12.(河南校级月考)已知直线l :5ax -5y -a +3=0.(1)求证:不论a 为何值,直线l 总经过第一象限;(2)为使直线不经过第二象限,求a 的取值范围.(1)【证明】 将直线l 的方程整理为y -35=a (x -15),∴l 的斜率为a ,且过定点A (15,35),而点A (15,35)在第一象限,故不论a 为何值,l 恒过第一象限.(2)【解】 当a =0时,直线l 的方程为5y -3=0,不符合题意,故要使l 不经过第二象限,需a >0且l 在y 轴上的截距不大于零,即⎩⎪⎨⎪⎧a >0,-a -35≤0,∴a ≥3. 3.(镜湖区校级期中)已知平面内两点A (8,-6),B (2,2).(1)求AB 的中垂线方程;(2)求过点P (2,-3)且与直线AB 平行的直线l 的方程;(3)一束光线从B 点射向(2)中的直线l ,若反射光线过点A ,求反射光线所在直线的方程.【解】 (1)因为8+22=5,-6+22=-2, 所以AB 的中点坐标为(5,-2).因为k AB =-6-28-2=-43, 所以AB 的中垂线的斜率为34, 故AB 的中垂线的方程为y +2=34(x -5) 即3x -4y -23=0.(2)由(1)知k AB =-43, 所以直线l 的方程为y +3=-43(x -2), 即4x +3y +1=0.(3)设B (2,2)关于直线l 的对称点为B ′(m ,n ),由⎩⎪⎨⎪⎧n -2m -2=34,4×m +22+3×n +22+1=0,解得⎩⎨⎧m =-145,n =-85,所以B ′(-145,-85),k B ′A =-6+858+145=-1127, 所以反射光线所在直线方程为y +6=-1127(x -8). 即11x +27y +74=0.。
数学直线的方程公式
我们在初中学习的直线的方程包括有平面方程和空间方程两种,相较于空间方程来说,平面方程的运用比较的多。
平面方程
1、一般式:适用于所有直线
Ax+By+C=0 (其中A、B不同时为0)
2、点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为
y-y0=k(x-x0)
当k不存在时,直线可表示为
x=x0
3、斜截式:在y轴上截距为b(即过(0,b)),斜率为k 的直线
由点斜式可得斜截式y=kx+b
与点斜式一样,也需要考虑K存不存在
4、截距式:不适用于和任意坐标轴垂直的直线
知道直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为
bx+ay-ab=0
特别地,当ab均不为0时,斜截式可写为x/a+y/b=1
5、两点式:过(x1,y1)(x2,y2)的直线
(y-y1)/(y1-y2)=(x-x1)/(x1-x2)(斜率k需存在)
6、法线式
Xcosθ+ysinθ-p=0
其中p为原点到直线的距离,θ为法线与X轴正方向的夹角
7、点方向式 (X-X0)/U=(Y-Y0)/V
(U,V不等于0,即点方向式不能表示与坐标平行的式子)
8、点法向式
a(X-X0)+b(y-y0)=0
空间方程
1、一般式
ax+bz+c=0,dy+ez+fc=0
2、点向式:
设直线方向向量为(u,v,w ),经过点( x0,y0,z0) (X-X0)/u=(Y-Y0)/v=(x-x0)/w
3、x0y式
x=kz+b,y=lz+b
总结归纳一共有11个直线的方程公式,要运用好的时候也请大家选择了。
直线的直线系方程直线是解析几何中的一个基础概念,其方程是研究直线性质的重要工具之一。
直线系方程则是描述多条直线共同满足的条件的一组方程。
直线的一般方程直线可以用不同的方式来描述。
其中,直线的一般方程是一种常用的表达方式。
直线的一般方程可以表示为:Ax + By + C = 0其中A、B和C是实数,且A和B不同时为0。
这个方程中的A和B描述了直线的斜率,C则与直线的截距有关。
直线的斜截式方程直线也可以用斜截式方程来表示。
斜截式方程可以表示为:y = mx + b其中m代表直线的斜率,b代表直线与y轴的截距。
斜截式方程形式简单,易于理解和计算。
可以通过观察直线在坐标系中的特征来确定斜截式方程。
直线系方程的表示形式直线系方程是指由多条直线组成的方程组。
直线系方程的一般形式可以表示为:A1x + B1y + C1 = 0A2x + B2y + C2 = 0...Anx + Bny + Cn = 0其中n表示直线的数量,A、B、C分别描述了每条直线的斜率和截距。
直线系方程描述了多条直线共同满足的条件,可以用于解决多个直线相关的问题。
直线系方程的解要求解直线系方程,需要找到满足所有方程的变量值。
当直线系方程中的直线相交于同一点时,称直线系方程是一致的,此时方程组有唯一解。
当直线系方程中的直线平行并且不重合时,方程组无解。
当直线系方程中的直线重合时,方程组有无穷多解。
解直线系方程的过程通常是通过解方程组得到变量的值。
可以采用消元法、代入法、高斯消元法等数学方法来解直线系方程。
具体方法取决于方程的形式和数量。
使用直线系方程的应用直线系方程在解析几何和物理学等领域中有广泛应用。
例如,在计算机图形学中,直线系方程可用于描述线段、多边形等。
在物理学中,直线系方程可用于分析力学问题中的力的合成和分解等。
此外,直线系方程也可以与其他方程系统结合,进行更复杂的数学和物理问题求解。
因此,了解和掌握直线系方程的概念和求解方法,对于理工科学生和从事相关领域工作的人员来说是必不可少的。
直线的方程(解析版)直线的方程(解析版)直线是几何学中的基本元素,也是数学中的重要概念之一。
直线的方程是研究直线性质和解决相关问题的基础。
在本文中,我们将详细讨论直线的方程及其解析表示方法。
一、直线的定义直线是由无数个点组成的,这些点满足连接其中任意两点的线段都完全在这条线上。
直线可以用来描述两个平面上的对应点之间的关系。
直线是平面几何学中最基本的图形之一。
二、直线方程的基本形式直线方程的基本形式是y = kx + b,其中k是直线的斜率,b是直线在y轴上的截距。
斜率用来描述直线的倾斜程度,截距则表示直线与y轴的交点。
三、一般形式求解直线方程1. 已知两点求直线方程假设已知直线上的两个点A(x₁, y₁)和B(x₂, y₂),我们可以通过以下步骤求解直线方程:(1) 计算斜率k = (y₂ - y₁) / (x₂ - x₁);(2) 根据其中一个点和斜率,使用点斜式方程得到直线方程:y - y₁ = k(x - x₁);(3) 化简得到一般形式:y = kx - kx₁ + y₁。
2. 已知斜率和截距求直线方程假设已知直线的斜率k和截距b,我们可以通过以下步骤求解直线方程:(1) 使用斜截式方程:y = kx + b。
四、直线方程的特殊情况1. 垂直于x轴的直线对于垂直于x轴的直线,斜率为无穷大,因此直线方程可以简化为x = a的形式,其中a为直线与x轴的交点的横坐标。
2. 垂直于y轴的直线对于垂直于y轴的直线,斜率为0,因此直线方程可以简化为y = b的形式,其中b为直线与y轴的交点的纵坐标。
五、直线方程的性质1. 斜率直线的斜率用来描述直线的倾斜程度。
斜率为正表示直线向右上方倾斜,斜率为负表示直线向右下方倾斜,斜率为0表示直线水平。
2. 平行和垂直两条直线平行的条件是它们的斜率相等,两条直线垂直的条件是它们的斜率互为负倒数。
六、实例分析以下是一些实例,展示了如何根据已知条件来确定直线的方程。
直线方程直线方程的几种形式:点斜式、斜截式、两点式、截距式、一般式 (一)点斜式:已知点A ),(00y x ,斜率k ,则k=),(0x xy x x y ≠--直线方程为)(00x yx k y -=-(二)斜截式:已知斜率k ,直线经过点A (0,b )即y 轴上的截距为b , 直线方程为y=kx+b(三)两点式:已知两个点),(),,(2211y x y x B A 且xx 21≠,)(112121x yy yx y ---=-,直线方程为x x x yy y x y 121121--=--(四)截距式:过(a ,0),(0,b )即直线在x 、y 轴的截距分别为a ,b (a ≠0,b ≠0),直线方程为1bya x =+(五)一般式:Ax+By+C=0(A ,B 不全为0) k=BA-点斜式例1求过点(2,1)的倾斜角α满足54cos =α的直线方程练习 1.直线经过点(-1,2)且与直线2x-3y+4=0垂直,求直线方程2.直线经过点(-1,1)且斜率是直线222-=x y 的斜率的2倍,求直线方程3.已知一条直线与y 轴交于点(0,2),它的倾斜角的正弦值是54,求这条直线的直线方程例2已知过一点(-4,3)的直线,与两坐标轴围城的三角形的面积为3,求这条直线的直线方程练习1.已知直线的斜率为6,且被两坐标轴截得的线段长为37,求直线的方程2.直线的倾斜角为45度,且过点(4,-1),则这条直线被坐标轴所截得的线段长是例3求过点(2,-1)且倾斜角为直线x-3y+4=0的倾斜角的2倍的直线方程练习1.求过点(2,-1)且倾斜角是直线4x-3y+4=0的倾斜角的一半的直线方程斜截式例4已知直线0322=++y x ,求直线的斜率及直线在y 轴的截距练习1.方程aax y 1+=表示的直线可能为下图中的( )A . B. C.例5求经过点P(3,2)且在两坐标轴上截距相等的直线方程练习1. 直线2x-3y+6=0在x,y两轴的截距分别为2.求经过(2,-1),在坐标轴上的截距分别为a,b,且满足a=3b的直线方程3.经过点A(1,4)且在两坐标轴上的截距的绝对值相等的直线共有多少条?4.直线经过(-2,3),且与两坐标轴围成的三角形的面积为4,求直线方程两点式例6已知直线经过(1,1)和(m,2)两点,求直线方程练习1.已知三角形三个顶点的坐标为A(-3,0)B(2,1)C(-2,3)(1)求BC边所在的直线方程(2)求BC边上的中线AD所在的直线方程(3)求BC边上的垂直平分线DE的方程例7(1)当a为何值时,直线x+2ay+1=0和直线(3a-1)x-ay+1=0平行?(2)当a为何值时,直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直?例8已知直线kx-y+1+2k=0(k为实数)(1)求证直线恒过定点(2)若直线与x轴负半轴交于点A,交于y轴正半轴于点B,三角形AOB 的面积为S,求S的最小值,并求出此时直线的方程练习1.直线x+2ay-1=0与直线(a-1)x-ay+1=0平行,则a的值为2.已知直线l1的倾斜角为43 ,直线l1经过点A(3,2)和B(a,-1),且直线l1与直线l垂直,直线l2:2x+by+1=0有直线l1平行,则a+b的值为3.直线x-2y+2k=0与两坐标轴围成的三角形的面积不小于1,则实数k的取值范围是4.已知直线的方程为(2+m)x+(1-2m)y+4-3m=0(1)求证直线过定点(2)若直线分别与x,y轴的负半轴交于A,B两点,求三角形AOB面积的最小值及此时直线的方程平行直线系和垂直直线系与Ax+By+C=0平行的直线为Ax+By+c1=0(C≠c1)与Ax+By+C=0垂直的直线为Bx-Ay+c1=0A.y=-2x+4B.y=x+4C.y=-2x-D.y=x-A.2B.C.-2D.--2 D.( ) A.- B.1 C.1- D.-1一、点关于点的对称问题点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解,熟练掌握和灵活运用中点坐标公式是处理这类问题的关键例1求点A(2,4)关于点B(3,5)对称的点二、点关于直线的对称问题点关于直线的对称问题是点关于点的对称问题的延伸,处理这类问题主要抓住两个方面:①两点连线与已知直线斜率乘积等于-1,②两点的中点在已知直线上例2求点A(1,3)关于直线l:x+2y-3=0的对称点A′的坐标三、直线关于某点对称的问题直线关于点的对称问题,可转化为直线上的点关于某点对称的问题,这里需要注意到的是两对称直线是平行的.我们往往利用平行直线系去求解.例3求直线2x+11y+16=0关于点P(0,1)对称的直线方程四、直线关于直线的对称问题直线关于直线对称问题,包含有两种情形:①两直线平行,②两直线相交. 对于①,我们可转化为点关于直线的对称问题去求解;对于②,其一般解法为先求交点,再用“到角”,或是转化为点关于直线对称问题.例4求直线l1:x-y-1=0关于直线l2:x-y+1=0对称的直线l的方程例5 试求直线l1:x-y-2=0关于直线l2:3x-y+3=0对称的直线l的方程.。
直线的方程
【学习目标】
1. 掌握直线方程的两点式和一般式;
2. 经历用代数方法研究直线问题的过程;在从直观到抽象、从几何到代数的过程中初步掌握解析几何的基本思想。
3. 认识数学内容之间的内在联系,加强数形结合认识问题的观念,感受坐标系的价值。
【学习重点】
两点式方程与一般式方程
【学习难点】
两点式方程的记忆和一般式中的系数与斜截式方程中系数的关系.
【课前预习案】
1.若直线l 上过点),(11y x A ,),(22y x B (其中21x x ≠),则直线l 的方程为 ,这个方程称为直线方程的 。
2.若直线l 过点)0)(,0(),0,≠ab b B a A ,则直线l 的方程为___________,此方程称为直线方程的 ,其中a 为直线在 的截距,b 为直线在 的截距。
3.关于y x ,的二元一次方程 叫作直线方程的 .直线方程的一般式中斜率为 。
【预习自测】
1.过)3,0( A ,)0,4(B 的直线方程为( ) A.134=+y x B.143=+y x C.134=-y x D.14
3=-x y 2.在y x ,轴上的截距分别为5,3-的直线方程为( ) A.153=+-y x B.153=-+y x C.153=+y x D.13
5=-+y x 3.已知直线l 经过)5,1(-A 和)1,2( -B ,求直线l 的一般式和截距式方程。
【课堂探究案】
【探究一】求经过点)1,1(--A 和)2,1( B 的直线方程的两点式,并画出图形.将两点式方程分别化成点斜式,斜截式,和一般式.,
【探究二】已知直线l 经过)4,5(--P ,且直线l 与坐标轴围成的三角形的面积为5,求直线l 的方程。
【课后检测案】
1.求经过点)1,2(-A 和)2,6( -B 的直线的两点式方程,
再将它化成一般式、点斜式、截距式和斜截式方程,并画出直线。
2.已知直线l 经过)2
3,3(P ,且直线l 与两坐标轴上的截距和为9,求直线l 的方程.
3.如果 0<AC 且 0<BC ,那么直线0=++C By Ax 不通过 象限.说明理由。
(拓展)4、已知直线22=+y x 与x 轴、y 轴分别交于A 、B 两点若动点),(b a P 在线段AB 上,求ab 的最大值。
5.已知直线l :a ax y -+=1只能通过第一、二、三象限,求a 的取值范围。