高中数学-平面向量专题
- 格式:doc
- 大小:486.50 KB
- 文档页数:16
高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。
2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。
3. 相等:两个向量大小相等且方向相同时,这两个向量相等。
4. 零向量:大小为零的向量,没有特定方向。
二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。
- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。
- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。
2. 减法:- 规则:与加法类似,但方向相反。
- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。
3. 数乘:- 定义:向量与实数相乘。
- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。
- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。
- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。
三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。
2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。
3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。
- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。
- 数乘:$k(x, y) = (kx, ky)$。
四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。
平面向量知识点归纳总结图一、平面向量的定义1.1 平面向量的概念在平面上任意选定一个起点和一个终点之间的有序对称就称为平面向量,记作。
平面向量可以用有向线段来表示,有向线段的起点就是平面向量的起点,终点就是平面向量的终点。
1.2 平面向量的表示平面向量可以用坐标表示,设平面向量的起点为原点O,终点为点A(x, y),则平面向量记作。
1.3 平面向量的相等两个平面向量相等指的是它们的模相等,并且方向相同,即两个平面向量相等当且仅当。
二、平面向量的运算2.1 平面向量的加法设和,平面向量+的结果是一个新的平面向量,其起点为向量的起点,终点为向量的终点。
2.2 平面向量的减法设,平面向量-的结果是一个新的平面向量,其起点为向量的起点,终点为向量的终点。
2.3 数乘设,数的积是一个新的平面向量,其长度是向量的倍数,方向与向量相同。
三、平面向量的运算性质3.1 交换律3.2 结合律3.3 分配律四、平面向量的应用4.1 平面向量的线段设线段的两个端点分别为A(x1, y1)和B(x2, y2),则向量的终点减去起点的坐标差即为该线段的平面向量表示。
4.2 平面向量的位置关系(1) 共线若向量平行,则它们共线。
(2) 垂直若,则它们垂直。
4.3 平面向量的运动学应用若一个物体在平面内的任意两点A、B之间作平移运动,其位矢向量表示。
五、平面向量的数量积5.1 定义设,,则积。
5.2 计算(1)坐标法(2)数量积的几何意义5.3 性质(1)交换律(2)结合律(3)分配律5.4 应用(1)判断共线若,则共线。
(2)判断垂直若,则垂直。
(3)夹角公式若,则夹角α的余弦值是的数量积。
六、平面向量的叉乘6.1 定义设,把数视为数乘6.2 计算6.3 性质6.4 应用七、平面向量的混合积7.1 定义设、,则混合积7.2 计算7.3 性质7.4 应用八、几何向量8.1 平面向量的模8.2 单位向量8.3 平行四边形法则8.4 平面向量的夹角公式8.5 平面向量的坐标表示8.6 平面向量的位置关系总结平面向量是高中数学中的一个重要概念,它不仅有着丰富的几何意义,还具有广泛的物理意义。
高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。
平面向量题型包括向量的加减、数量积、向量方向等。
本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。
一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。
2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。
其中,-b表示b的反向量,即方向相反的向量,模长相等。
二、数量积数量积又称为内积或点积,记作a·b。
1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。
另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。
2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。
三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。
2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。
在解决平面向量题型时,可以利用这两种方式来确定向量的方向。
【高中数学】平面向量微专题一、平面向量线性运算【定理1】平面上O ,A ,B 三点不共线,D 在直线AB 上,且AD AB λ=u u u r u u u r,令a OA =,b OB =,x OD =,则有(1)x b a λλ=+-r r r其表达意思就是从一个顶点O 引出三个向量,且它们共线,每一个向量a ,b 分别乘以它对面的比值,特殊点:当D 为AB 中点时,12=λ,1122x b a =+rrr(中线定理)【定理2】[等和(高)线定理]如图设1e ,2e 是平面内两个不共线向量,若OP =21e y e x +,且1=+y x ,21'e y e x OQ +'=且k y x =+'',则有OQ k OP=u u u ru u u r .证明:设OP OQ λ=,根据相似三角形关系可知 :()121212''OQ xe ye xe ye x e y e λλλ=+=+=+u u u r,所以()λλ=+=+y x y x '' 所以''OQx y k OP+==u u u r u u u r .【例1】在ABC △中,已知3BC BD =u u u r u u u r ,则AD =u u u r( )A .1(2)3AC AB +u u u r u u u r B .1(2)3AB AC +u u ur u u u rC .1(3)4AC AB u u ur u u u r +D .1(2)4AC AB +u u ur u u u r【解析】可以知道3BC BD u u u r u u u r =,13λ=,故AD =u u u r 1233AC AB +u u u r u u u r ,故选A .【练习1】已知O A B ,,是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=u u u r u u u r r ,则OC =u u u r.【解析】以全长CB 为单位,故12CA CB u u u r u u u r =,12=λ,OA =u u u r 1122OB OC +u u u r u u u r,故OC u u u r =2OB OA u u u r u u u r -+.DC 和OA 相交于点E .若OE→=λOA →,则λ=( )A .34B .35 C .45 D .12答案 C解析 解法一:设OA →=a ,OB →=b ,由题意得DC →=O C →-O D →=OA→+AC →-23OB →=OA →+BA →-23OB →=OA →+OA →-OB →-23OB →=2OA →-53OB →=2a -53b .因为OE →=λOA →=λa ,设DE →=μDC →=2μ a -53μb ,又OE →=O D →+DE→,所以λa =23b +2μ a -53μb =2μ a +⎝ ⎛⎭⎪⎫23-53μb , 所以⎩⎪⎨⎪⎧λ=2μ,23-53μ=0,所以λ=45.解法二:由题意知,AB =AC ,OD =2DB ,过点A 作AF ∥OB 交CD 于点F (图略), 则AF BD =AC BC =12,即AF =12BD =14OD ,故AE =14OE ,则OE =45OA ,又O E →=λOA→,故λ=45. 【例2】在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上,若AP mAB nAD =+u u u r u u u r u u u r,则n m +的最大值为( )A .3B .22C .5D .2【解析】如图,作BD 的平行线,根据相似三角形对应高的比,发现当平行线过圆心C 的时候,2=+n m ,当BD 的平行线PN 与圆C 相切时,即点P 位于1P 点时,此时AN AD取得最大值,可以得到ADAN 取得最大比值为3,即n m +的最大值为3.故选A .角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ. 又AB ―→=(1,0),AD ―→=(0,2),AP ―→=m AB ―→+n AD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=m ,2+255sin θ=2n ,m +n =2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,m +n 取得最大值3.【例2】在扇形OAB 中,60AOB ∠=︒,C 为弧AB 上的一个动点.若OC xOA yOB =+u u u r u u u r u u u r,则3x y +的取值范围是 .【解析】如图 ,取点D 使得13OD OA =u u u r u u u r,3OC xOA yOB xOD yOB =+=+u u u r u u u r u u u r u u u r u u u r ,作一系列与BD 平行的直线与圆弧相交,构造等高线模型,易知:当点C 与点A 重合时,3x y +取最大值3,点C 位于直线BD 上时(即点C 与点B 重合时),3x y +取得最小值1;故3x y +的取值范围是[]13,.【练习1】给定两个长度为1的平面向量OA 和OB ,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧»AB 上变动.若OB y OA x OC +=,其中R y x ∈,,则x +y 的最大值是 .法三:[解析]设AOC α∠= ,,OC OA xOA OA yOB OA OC OB xOA OB yOB OB ⎧•=•+•⎪⎨•=•+•⎪⎩u u u r u u u r u u u r u u u r u u u r u u u v u u u r u u u r u u u r u u u r u u u r u u u v,即01cos 21cos(120)2x y x y αα⎧=-⎪⎪⎨⎪-=-+⎪⎩ ∴02[cos cos(120)]cos 3sin 2sin()26x y πααααα+=+-=+=+≤解法四:等和线法【练习2】平行四边形ABCD 中,AB=3,AD=2,ο120=∠BAD ,P 是平行四边形ABCD 内一点,且AP=1,若AD y AB x AP +=,则3x +2y 的最大值为 .【练习3】[2017•江苏卷,12]如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R),则m +n =________.答案 3解析 解法一:因为tan α=7,所以cos α=210,sin α=7210.过点C 作CD ∥OB 交OA 的延长线于点D ,则OC →=OD →+DC →,∠OCD =45°. 又因为OC→=mOA →+nOB →, 所以OD→=mOA →,DC →=nOB →,所以|OD →|=m ,|DC →|=n . 在△COD 中,由正弦定理得|DC →|sin α=|OD →|sin ∠OCD =|OC→|sin ∠ODC ,因为sin ∠ODC =sin(180°-α-∠OCD )=sin(α+∠OCD )=45, 即n 7210=m 22=245,所以n =74,m =54,所以m +n =3. 解法二:由tan α=7可得cos α=152,sin α=752,则152=OA→·OC →|OA →||OC →|=m +nOA →·OB →2,由cos ∠BOC =22可得22=OB →·OC →|OB →||OC →|=mOA →·OB →+n2,cos ∠AOB =cos(α+45°)=cos αcos45°-sin αsin45°=152×22-752×22=-35, 则OA→·OB →=-35,则m -35n =15,-35m +n =1,则25m +25n =65,则m +n =3.【练习4】(2020届七中模拟)在ABC ∆中,2=AB ,3=AC ,︒=∠60A ,O 为ABC ∆的外心, 若AC y AB x AO +=,R y x ∈,,则=+y x 32( B )A .2B .35C .34D .23二、平面向量的数量积【例1】(2019·全国卷Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( )A .π6 B .π3 C .2π3 D .5π6答案 B解析 设a 与b 的夹角为θ,∵(a -b )⊥b ,∴(a -b )·b =0,即a ·b -|b |2=0.又a ·b =|a ||b |cos θ,|a |=2|b |,∴2|b |2cos θ-|b |2=0,∴cos θ=12.又0≤θ≤π,∴θ=π3,【例2】如图,在正三角形ABC 中,D 是边BC 上的点,若3AB =,1BD =,则AB AD ⋅u u u r u u u r= .【解析】令AB a =u u u r r ,AC b =u u u r r ,3a =r ,3b =r ,9cos602a b a b ⋅=︒=u u r r r r ;2133AD a b =+u u u r r r ,2212121915933333322AB AD a a b a ab ⎛⎫⋅=+=+=⨯+⨯= ⎪⎝⎭u u u r u u u r r r r r r r .【例3】(2019•天津)在四边形ABCD 中,//AD BC ,23AB =,5AD =,30A ∠=︒,点E 在线段CB的延长线上,且AE BE =,则BD AE ⋅=u u u r u u u r.【解析】AE BE =Q ,//AD BC ,30A ∠=︒,∴在等腰三角形ABE 中,120BEA ∠=︒,又23AB =,2AE ∴=,∴25BE AD =-u u u ru u ur ,Q AE AB BE =+u u u r u u u r u u u r ,∴25AE AB AD=-u u u r u u u r u u u r ,又BD BA AD AB AD =+=-+u u u r u u u r u u u r u u u r u u u r ,()BD AE AB AD =-+⋅u u u r u u u r u u u r u u u r g 2()5AB AD -u u u r u u u r 227255AB AB AD AD =-+⋅-u u u r u u u r u u u r u u u r 2272||||cos 55AB AB AD A AD =-+⋅-u u u r u u u u u r u u u u u r u u ur 7321252325525=-+⨯⨯⨯-⨯1=-,故答案为1-.【练习1】如图,在等腰梯形ABCD 中,已知DC AB //,2=AB ,1=BC ,︒=∠60ABC ,点E 和F 分别在线段BC 和DC 上,且23BE BC u u u r u u u r =,16DF DC =u u u r u u u r,则AF AE ⋅的值为 .【解析】如图,令AB a =u u u r r ,BC b =u u u r r ,2a =r ,1b =r ,cos1201a b a b ⋅=︒=-u u r r r r ,23AE AB BE a b =+=+u u u r u u u r u u u r r r,5176212AF AB BC CF a b a a b ⎛⎫=++=++-=+ ⎪⎝⎭u u u r u u u r u u u r u u u r r r r r r ,2227725272522931212183318318AE AF a b a b a ab b ⎛⎫⎛⎫⋅=++=++=-+= ⎪⎪⎝⎭⎝⎭u u u r u u u r r r r r r r r r .【练习2】如图,在四边形ABCD 中,AB =6,AD =2,DC ―→=13AB ―→,AC 与BD 相交于点O ,E 是BD 的中点,若AO ―→·AE ―→=8,则AC ―→·BD ―→=( )A .-9B .-293 C .-10D .-323解析:选D 由DC ―→=13AB ―→,可得DC ∥AB ,且DC =2,则△AOB ∽△COD ,AO ―→=34AC ―→=34⎝ ⎛⎭⎪⎫AD ―→+13AB ―→ =34AD ―→+14AB ―→,又E 是BD 的中点,所以AE ―→=12AD ―→+12AB ―→,则AO ―→·AE ―→=⎝ ⎛⎭⎪⎫34AD ―→+14AB ―→ ·⎝ ⎛⎭⎪⎫12AD ―→+12AB ―→ =38AD 2―→+18AB 2―→+12AD ―→·AB ―→=32+92+12AD ―→·AB ―→=8,则AD ―→·AB ―→=4,则AC ―→·BD ―→=⎝ ⎛⎭⎪⎫AD ―→+13AB ―→ ·()AD ―→-AB ―→=AD 2―→-13AB 2―→-23AD ―→·AB ―→=4-13×36-23×4=-323.三、坐标法解决平面向量问题常见的坐标系建立边长为a 的等边三角形 知道夹角的任意三角形 正方形 矩形平行四边形 直角梯形 等腰梯形 圆 建系必备:(1)三角函数知识cos ,sin x r y r q q ==(2)向量三点共线知识()1OC OB OA u u u r u u u r u u u rl l =+-【例1】(2013•新课标Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=u u u r u u u r.【解析】如图,以A 为原点建立坐标系,则点()2,0B 、()2,2C 、()0,2D 、()1,2E ,()12222AE BD ⋅=⨯-+⨯=u u u r u u u r.化斜为直的技巧处理:遇到没有给定夹角和模长的向量,就把两个向量基底转化为平面直角坐标系的单位向量,解出坐标来表示;在遇到一些斜坐标系的题型,可以直接转化为直角坐标系,从而利用象限的点坐标达到简化的效果.【例2】(2015•北京)在ABC △中,点M ,N 满足2AM MC =u u u u r u u u u r ,BN NC =u u u r u u u r ,若MN xAB y AC =+u u u u r u u u r u u u r,则x =,y = .【解析】如图,此类型题可以化斜为值,令()1,0B ,()0,1C ,则20,3M ⎛⎫ ⎪⎝⎭,11,22N ⎛⎫⎪⎝⎭,11,26MN ⎛⎫=- ⎪⎝⎭u u u u r ,12x ∴=,16y =-. ABC △D E AB BC 连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅u u u r u u u r的值为( )A .85- B .14C .18D .118【解析】如图,以A为原点建立坐标系,则()1,0B 和13,22C ⎛⎫⎪ ⎪⎝⎭,由于点D 、E 分别是边AB 、BC 的中点,则点1,02D ⎛⎫ ⎪⎝⎭,13101122,2222AE AC AB ⎛⎫++ ⎪ ⎪=+=⇒ ⎪ ⎪⎝⎭u u u r u u u r u u u r 33,44E ⎛⎫ ⎪ ⎪⎝⎭,21315332,332288DE EF AE AF AD AF AE AD ⎛⎫=⇒=+⇒=-= ⎪ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 又由于13,22BC ⎛⎫=- ⎪ ⎪⎝⎭u u u r,故51333182828AF BC ⎛⎫⋅=⨯-+⨯= ⎪⎝⎭u u u r u u u r ,选C. 【例4】(2017•北京)已知点P 在圆221x y +=上,点A 的坐标为(2,0)-,O 为原点,则AO AP ⋅u u u r u u u r 的最大值为 .【解析】如图所示,()2,0AO u u u r =,()cos 2,sin AP u u u r a a =+,()2cos 2AO AP α⋅=+u u u r u u u r,[]cos 1,1α∈-Q ,[]2,6AO AP ∴⋅∈u u u r u u u r,故最大值为6.【练习1】(2009•安徽)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC AE AF λμ=+u u u r u u u r u u u r,其中λ、R μ∈,则λμ+= .【解析】如图,化斜为值,令()0,0A ,()1,0B ,()1,1C ,()0,1D ,由于E 和F 分别是边CD 和BC的中点,则1,12E ⎛⎫ ⎪⎝⎭,11,2F ⎛⎫ ⎪⎝⎭,()111,1,22AC AE AF λμλμλμ⎛⎫=+⇒=++ ⎪⎝⎭u u u r u u u r u u u r ,则4.3l m += 【练习2】(2017•天津)在ABC ∆中,60A ∠=︒,3AB =,2AC =.若2BD DC =u u u r u u u r ,()AE AC AB R λλ=-∈u u u r u u u r u u u r,且4AD AE ⋅=-u u u r u u u r,则λ的值为.【解析】如图,以A 为原点建立坐标系,根据题意可知点()3,0B 和()1,3C ,125232,3333BD DC AD AB AC ⎛⎫=⇒=+= ⎪ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r ,()3,3AE AC AB AE λλλ=-⇒=-u u u r u u u r u u u r u u u r ,()52333343311AD AE λλλ⋅=-+⨯=-⇒=u u u r u u u r .ABCD AB BC ⊥AD CD ⊥120BAD ∠=︒1AB AD ==.若点E 为边CD 上的动点,则AE BE ⋅u u u r u u u r的最小值为( )A .2116B .32C .2516D .3【解析】如图,由于AD CD ⊥,故以D 为坐标原点建系,故()1,0A ,设点()0,E y ,由于1AB =,120BAD ∠=︒,故()331cos 60,sin 60,22B ⎛⎫+︒︒= ⎪ ⎪⎝⎭,()2233333211,,2222416AE BE y y y y y ⎛⎫⎛⎫⋅=-⋅--=-+=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r , 根据二次函数知识可得,当34y =时取的最小值,此时2116AE BE ⋅=u u u r u u u r ,故选A . ABC ∆P ABC ()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .2-B .32-C .43- D .1-解析 解法一:(解析法)【解析】建立如图所示的坐标系,以BC 中点为坐标原点,则(0,3)A ,(1,0)B -,(1,0)C ,设(,)P x y ,则(,3)PA x y =--u u u r,(1,)PB x y =---u u u r ,(1,)PC x y =--u u u r ,则22()2232PA PB PC x y y ⋅+=-+u u u r u u u r u u u r22332[()]24x y =+--∴当0x =,32y =时,取得最小值332()42⨯-=-,故选B . (几何法)如图2所示,PB→+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD→. 要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min=-2|P A →||PD →|,问题转化为求|P A →||PD →|的最大值.又|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤⎝⎛⎭⎪⎫|P A →|+|PD →|22=⎝ ⎛⎭⎪⎫322=34, 当且仅当|P A →|=|P D →|=32时,等号成立,∴[P A →·(PB →+PC →)]min =(2P A →·PD →)min=-2×34=-32.故选B . 【练习5】已知定点A ,B 满足|AB ―→|=2,动点P 与动点M 满足|PB ―→|=4,AM ―→=λAB ―→+(1-λ)AP ―→(λ∈R),且|MA ―→|=|MP ―→|,则AP ―→·AM ―→的取值范围是______;若动点C 也满足|CB ―→|=4,则AC ―→·AM ―→的取值范围是______.解析:因为AM ―→=λAB ―→+(1-λ)AP ―→(λ∈R),λ+1-λ=1,所以根据三点共线知,点M 在直线PB 上,又|MA ―→|=|MP ―→|,记P A 的中点为D ,连接MD ,如图,则MD ⊥AP ,AP ―→·AM ―→=AP ―→·(AD ―→+DM ―→)=AP ―→·AD ―→+0=12AP ―→2,因为|PB ―→|=4,所以点P 在以B 为圆心,4为半径的圆上,则|AP ―→|∈[2,6],则AP ―→·AM ―→=12AP ―→2∈[2,18]. 由于|MA |+|MB |=|MP |+|MB |=4,所以点M 在以A ,B 为焦点,长轴的长为4的椭圆上,以直线AB 为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,则椭圆方程为x 24+y 23=1,点C 在圆(x -1)2+y 2=16上,A (-1,0),设M (2cos α,3sin α),C (4cos β+1,4sin β),则AC ―→=(4cos β+2,4sin β),AM ―→=(2cos α+1,3sin α),AC ―→·AM ―→=(8cos α+4)cos β+43sin αsin β+4cos α+2=8cos α+42+43sin α2sin(β+φ)+4cos α+2=(4cos α+8)sin(β+φ)+4cos α+2,最大值是(4cos α+8)+4cos α+2=8cos α+10≤18,最小值是-(4cos α+8)+4cos α+2=-6,所以AC ―→·AM ―→∈[-6,18]. 答案:[2,18] [-6,18]四、平面向量与三角形四心【定理3】[平面向量奔驰定理]已知O 是ABC ∆内的一点,AOB AOC BOC ∆∆∆,,的面积分别为A S ,B S ,C S ,则:0=++•••OC S OB S OA S C B A .【例1】已知O 为正ΔABC 内一点,且满足0)1(=+++OC OB OA λλ,若ΔOAB 的面积与ΔOAC 的面积的比值为3,则λ的值为( ) A. 3 B.21C.1D.2 【例2】在四边形ABCD 中,AB DC ==(1,0),BA BC BDBA BC BDu u u r u u u r u u u ru u u u r u u u u r u u u u r +=,则四边形ABCD 的面积是( ) A .3B 3C .3D .32OAB C【解析】||||||BA BC BDBDBA BC BD+=⇒u u u r u u u r u u u ru u u r u u u r u u u r为ABC∠的角平分线,且||||1BD BA==u u u r u u u r,又因为()1,0AB DC==u u u r u u u r,故ABCD是一个菱形,且120ABC∠=︒,故面积为131322S=⨯⨯=,故选A.【例3】已知G为ABC△的重心,令AB a=u u u r r,AC b=u u u r r,过点G的直线分别交AB、AC于P、Q两点,且AP ma=u u u r r,AQ nb=u u u r r,则:(1)11m n+=.(2)nm+2的最小值为.(3)设直线分ABC∆所得的上下两部分面积之比为λ,则λ的取值范围是.【解析】1133AG a bu u u r r r=+,APAP ma am=⇒=u u u ru u u r r r,AQAQ nb bn=⇒=u u u ru u u r r r;11;3333AP AQAG a bm nu u u r u u u ru u u r r r=+=+令PG PQu u u r u u u rl=,即()1AG AP AQu u u r u u u r u u u rl l=-+,()1AG AP AQu u u r u u u r u u u rl l=-+,故.【练习1】已知点O为ABC∆内一点,且230OA OB OC++=u u u r u u u r u u u r r,则AOB∆、AOC∆、BOC∆的面积之比等于()A.9∶4∶1 B.1∶4∶9 C.3∶2∶1 D.1∶2∶3【解析】如图,令1123OB OB OC OC=+=u u u r u u u u r u u u r u u u u r,即满足1110OA OB OC++=u u u r u u u r u u u r112AOBAOBSS=△△,113AOCAOCSS=△△,1111=236BOCB OCSS=⨯△△,故111::::3:2:1.236AOB AOC BOCS S S==△△△故选C.【练习2】已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P 满)(ACABOAOP++=λ,则P的轨迹一定通过△ABC的( C )A.外心 B.内心 C .重心 D .垂心【练习3】已知O 是平面上的一定点,A B C ,,是平面上不共线的三个点,动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的( ) A .外心 B .内心 C .重心 D .垂心【解析】A 由于2OB OC +u u u r u u u r 过BC 的中点,当(0)λ∈+∞,时,cos cos AB AC AB B AC C λ⎛⎫ ⎪+ ⎪⎝⎭u u u r u u u r u u u r u u u r表示垂直于BC uuu r 的向量(注意:理由见二、4条解释。
高中数学平面向量专题经典练习题(附答案)一.单选题(共10小题,每题5分,共50分)1.设,是两个非零向量,下列说法正确的是()A.若,则B.若,则C.若,则存在实数,使得D.若存在实数,使得,则2.如图,在平行四边形中,分别是的中点,则图中所示的向量中与平行的有()A.个B.个C.个D.个3.下列说法中正确的是()A.两个有共同起点的单位向量,其终点必相同B.向量与向量的长度相等C.向量就是有向线段D.零向量是没有方向的4.数轴上点分别对应则向量的长度是()A. B. C. D.5.已知向量与的方向相反,且,若点的坐标为,则点的坐标为()A. B. C., D.6.已知为两个单位向量,则下列叙述正确的是()A.B.若,则C.或D.若,,则7.已知点,,,,则与向量同向的单位向量为()A. B. C. D.8.已知抛物线的焦点为,准线为是上一点是直线与抛物线的一个交点,若,则()A. B. C. D.9.下列结论中正确的是()若且,则;若,则且;若与方向相同且,则;若,则与方向相反且.A. B. C. D.10.已知直线经过点和点,则直线的单位方向向量为()A.,B.C.D.二.填空题(共10小题,每题5分,共50分)11.已知向量,,若与方向相反,则等于.12.若向量满足,则.13.等腰直角中,点是斜边边上一点,若,则的面积为.14.在中,,是的中点,,则,.15.在中,内角所对的边分别为则.16.在中,内角的对边分别是若则.17.在中,,是中点,,试用表示为,若,则的最大值为.18.如图,已知在矩形中设则.19.已知向量满足则.20.已知向量与的夹角为则.三.解答题(共5小题,每题10分,共50分)21.已知与的夹角为.(1)若求;(2)若与垂直,求.22.在平面直角坐标系中,以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系是曲线:上任一点,点满足.设点的轨迹为曲线.(1)求曲线的直角坐标方程;(2)已知曲线向上平移个单位后得到曲线设曲线与直线:为参数)相交于两点,求的值.23.已知向量向量函数.(1)当时,求函数的最小正周期和单调递减区间;(2)若函数在区间的最大值为,求函数在的最小值.24.已知的内角满足.(1)求角;(2)若的外接圆半径为求的面积的最大值.25.在中,内角的对边分别为且.(1)求角的大小;(2)若且外接圆的半参考答案一、选择题第1题第2题故选C第3题单位向量的方向是任意的,所以当两个单位向量的起点相同时,其终点在以起点为圆心的单位圆上,终点不一定相同,所以选项A不正确;向量与向量方向相反,长度相等,所以选项B正确;向量是既有大小,又有方向的量,可以用有向线段表示,但不能说向量就是有向线段,所以选项C不正确;规定零向量的方向任意,而不是没有方向,所以选项D不正确.故选B.第4题第5题故选A 第6题故选D第7题故选A第8题故选B第9题选B第10题二、填空题第11题第12题第13题第14题第15题第16题第18题第20题三、解答题第21题第23题第24题第25题。
平面向量专题复习一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如:2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 。
如例1:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5)若,a b b c ==,则a c =。
(6)若//,//ab bc ,则//a c 。
其中正确的是_______二、向量的表示1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
高中数学必修二第六章平面向量及其应用专项训练题单选题1、定义空间两个向量的一种运算a⃑⊗b⃑⃑=|a⃑|⋅|b⃑⃑|sin⟨a⃑,b⃑⃑⟩,则关于空间向量上述运算的以下结论中恒成立的有()A.λ(a⃑⊗b⃑⃑)=(λa⃑)⊗b⃑⃑B.(a⃑⊗b⃑⃑)⊗c⃑=a⃑⊗(b⃑⃑⊗c⃑)C.(a⃑+b⃑⃑)⊗c⃑=(a⃑⊗c⃑)+(b⃑⃑⊗c⃑)D.若a⃑=(x1,y1),b⃑⃑=(x2,y2),则a⃑⊗b⃑⃑=|x1y2−x2y1|答案:D分析:A.按λ的正负分类讨论可得,B.由新定义的意义判断,C.可举反例说明进行判断,D.与平面向量的数量积进行联系,用数量积求出两向量夹角的余弦值,转化为正弦值,代入计算可判断.A.(λa⃑)⊗b⃑⃑=|λa⃑||b⃑⃑|sin<λa⃑,b⃑⃑>,λ>0时,<λa⃑,b⃑⃑>=<a⃑,b⃑⃑>,(λa⃑)⊗b⃑⃑=λ|a⃑||b⃑⃑|sin<a⃑,b⃑⃑>=λ(a⃑⊗b⃑⃑),λ=0时,λ(a⃑⊗b⃑⃑)=0,(λa⃑)⊗b⃑⃑=0,成立,λ<0时,<λa⃑,b⃑⃑>=π−<a⃑,b⃑⃑>,sin<λa⃑,b⃑⃑>=sin(π−<a⃑,b⃑⃑>)=sin<a⃑,b⃑⃑>(λa⃑)⊗b⃑⃑=−λ|a⃑||b⃑⃑|sin< a⃑,b⃑⃑>=−λ(a⃑⊗b⃑⃑),综上,A不恒成立;B.a⃑⊗b⃑⃑是一个实数,(a⃑⊗b⃑⃑)⊗c⃑无意义,B不成立;C.若a⃑=(0,1),b⃑⃑=(1,0),c⃑=(1,1),则a⃑+b⃑⃑=(1,1),<a⃑+b⃑⃑,c⃑>=0,(a⃑+b⃑⃑)⊗c⃑=|a⃑+b⃑⃑||c⃑|sin0=√2×√2×0=0,<a⃑,c⃑>=π4,<b⃑⃑,c⃑>=π4,(a⃑⊗c⃑)+(b⃑⃑⊗c⃑)=1×√2×sinπ4+1×√2×sinπ4=2,(a⃑+b⃑⃑)⊗c⃑≠(a⃑⊗c⃑)+(b⃑⃑⊗c⃑),C错误;D.若a⃑=(x1,y1),b⃑⃑=(x2,y2),则|a⃑|=√x12+y12,|b⃑⃑|=√x22+y22,cos <a ⃑,b ⃑⃑>=1212√x 12+y 12×√x 22+y 22,sin <a ⃑,b ⃑⃑>=√1−cos 2<a ⃑,b ⃑⃑>=√1−(x 1x 2+y 1y 2)2(x 12+y 12)(x 22+y 22)=1221√(x 1+y 1)(x 2+y 2), 所以a ⃑⊗b ⃑⃑=|a ⃑||b ⃑⃑|sin <a ⃑,b⃑⃑>=|x 1y 2−x 2y 1|,成立. 故选:D .小提示:本题考查向量的新定义运算,解题关键是理解新定义,并能运用新定义求解.解题方法一种方法是直接利用新定义的意义判断求解,另一种方法是把新定义与向量的数量积进行联系,把新定义中的sin <a ⃑,b ⃑⃑>用cos <a ⃑,b⃑⃑>,而余弦可由数量积进行计算. 2、若|AB⃑⃑⃑⃑⃑⃑|=5,|AC ⃑⃑⃑⃑⃑⃑|=8,则|BC ⃑⃑⃑⃑⃑⃑|的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13)答案:C分析:利用向量模的三角不等式可求得|BC⃑⃑⃑⃑⃑⃑|的取值范围. 因为|BC⃑⃑⃑⃑⃑⃑|=|AC ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑|,所以,||AC ⃑⃑⃑⃑⃑⃑|−|AB ⃑⃑⃑⃑⃑⃑||≤|BC ⃑⃑⃑⃑⃑⃑|≤|AC ⃑⃑⃑⃑⃑⃑|+|AB ⃑⃑⃑⃑⃑⃑|,即3≤|BC ⃑⃑⃑⃑⃑⃑|≤13. 故选:C.3、已知非零平面向量a ⃗,b ⃑⃗,c ⃗,下列结论中正确的是( )(1)若a ⃗⋅c ⃗=b ⃑⃗⋅c ⃗,则a ⃗=b ⃑⃗;(2)若|a ⃗+b ⃑⃗|=|a ⃗|+|b ⃑⃗|,则a ⃗//b⃑⃗ (3)若|a ⃗+b ⃑⃗|=|a ⃗−b ⃑⃗|,则a ⃗⊥b ⃑⃗(4)若(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,则a ⃗=b ⃑⃗或a ⃗=−b⃑⃗ A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4)答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果.已知非零平面向量a ⃗,b ⃑⃗,c ⃗,(1)若a ⃗⋅c ⃗=b ⃑⃗⋅c ⃗,则(a ⃗−b ⃑⃗)⋅c ⃗=0,所以a ⃗=b ⃑⃗或(a ⃗−b ⃑⃗)⊥c ⃗,即(1)错;(2)若|a ⃗+b ⃑⃗|=|a ⃗|+|b ⃑⃗|,则a ⃗与b ⃑⃗同向,所以a ⃗//b⃑⃗,即(2)正确;(3)若|a ⃗+b ⃑⃗|=|a ⃗−b ⃑⃗|,则|a ⃗|2+|b ⃑⃗|2+2a ⃗⋅b ⃑⃗=|a ⃗|2+|b ⃑⃗|2−2a ⃗⋅b ⃑⃗,所以2a ⃗⋅b ⃑⃗=0,则a ⃗⊥b⃑⃗;即(3)正确;(4)若(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,则|a ⃗|2−|b ⃑⃗|2=0,所以|a ⃗|=|b⃑⃗|,不能得出向量共线,故(4)错; 故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.4、已知向量a ⃑,b ⃑⃑满足|a ⃑|=√3,|b ⃑⃑|=2,且a ⃑⊥(a ⃑−b ⃑⃑),则a ⃑与b⃑⃑的夹角为( ) A .30°B .60°C .120°D .150°答案:A分析:利用数量积的定义,即可求解.解:a ⃑⊥(a ⃑−b ⃑⃑),所以a ⃑⋅(a ⃑−b ⃑⃑)=0,即|a →|2−|a →||b →|cos <a →,b →>=0,解得cos <a →,b →>=√32,又因为向量夹角的范围为[0°,180°],则a ⃑与b ⃑⃑的夹角为30°,故选:A. 5、在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且(a +b )2−c 2=4,C =120°,则△ABC 的面积为( )A .√33B .2√33C .√3D .2√3 答案:C解析:利用余弦定理可求ab 的值,从而可求三角形的面积.因为C =120°,故c 2=a 2+b 2−2abcos120°=a 2+b 2+ab ,而(a +b )2−c 2=4,故c 2=a 2+b 2+2ab −4=a 2+b 2+ab ,故ab =4,故三角形的面积为12×ab ×sin120°=√34×4=√3,故选:C.6、△ABC 内角A,B,C 的对边分别为a,b,c ,已知b 2+c 2−a 2=bc ,则A =( )A .π6B .5π6C .π3D .2π3答案:C分析:利用余弦定理求出cosA ,再求出A 即可.∵b 2+c 2−a 2=bc ,∴cosA =b 2+c 2−a 22bc =bc 2bc =12,∵0<A <π,∴A =π3. 故选:C7、已知向量a ⃑=(−1,m ),b ⃑⃑=(m +1,2),且a ⃑⊥b⃑⃑,则m =( ) A .2B .−2C .1D .−1答案:C分析:由向量垂直的坐标表示计算.由题意得a ⃑⋅b⃑⃑=−m −1+2m =0,解得m =1 故选:C .8、已知直角三角形ABC 中,∠A =90°,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB⃑⃑⃑⃑⃑⃑⋅PC ⃑⃑⃑⃑⃑⃑的最大值为( )A .16+16√55B .16+8√55C .165D .565答案:D分析:建立如图所示的坐标系,根据PB ⃑⃑⃑⃑⃑⃑·PC⃑⃑⃑⃑⃑⃑=|PD ⃑⃑⃑⃑⃑⃑|2−5可求其最大值. 以A 为原点建系,B (0,2),C (4,0),BC:x 4+y 2=1,即x +2y −4=0,故圆的半径为r =√5 ∴圆A:x 2+y 2=165,设BC 中点为D (2,1),PB ⃑⃑⃑⃑⃑⃑·PC ⃑⃑⃑⃑⃑⃑=PD ⃑⃑⃑⃑⃑⃑2−14BC ⃑⃑⃑⃑⃑⃑2=|PD ⃑⃑⃑⃑⃑⃑|2−14×20=|PD ⃑⃑⃑⃑⃑⃑|2−5, |PD |max =|AD |+r =√5+√5=√5,∴(PB ⃑⃑⃑⃑⃑⃑·PC ⃑⃑⃑⃑⃑⃑)max =815−5=565, 故选:D.多选题9、下列说法正确的有( )A .若a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,则a ⃑//c ⃑B .若a ⃑=b ⃑⃑,b ⃑⃑=c ⃑,则a ⃑=c ⃑C .若a ⃑//b ⃑⃑,则a ⃑与b⃑⃑的方向相同或相反D .若AB ⃑⃑⃑⃑⃑⃑、BC ⃑⃑⃑⃑⃑⃑共线,则A 、B 、C 三点共线 答案:BD分析:取b⃑⃑=0⃑⃑可判断AC 选项的正误;利用向量相等的定义可判断B 选项的正误;利用共线向量的定义可判断D 选项的正误.对于A 选项,若b ⃑⃑=0⃑⃑,a ⃑、c ⃑均为非零向量,则a ⃑//b ⃑⃑,b ⃑⃑//c ⃑成立,但a ⃑//c ⃑不一定成立,A 错;对于B 选项,若a ⃑=b ⃑⃑,b ⃑⃑=c ⃑,则a ⃑=c ⃑,B 对;对于C 选项,若b ⃑⃑=0⃑⃑,a ⃑≠0⃑⃑,则b⃑⃑的方向任意,C 错; 对于D 选项,若AB ⃑⃑⃑⃑⃑⃑、BC ⃑⃑⃑⃑⃑⃑共线且AB 、BC 共点B ,则A 、B 、C 三点共线,D 对.故选:BD.10、下列说法正确的是( )A .向量不能比较大小,但向量的模能比较大小B .|a ⃑|与|b ⃑⃑|是否相等与a ⃑与b⃑⃑的方向无关 C .若a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,则a ⃑//c ⃑D .若向量AB ⃑⃑⃑⃑⃑⃑与向量CD⃑⃑⃑⃑⃑⃑是共线向量,则A ,B ,C ,D 四点在一条直线上 答案:AB分析:根据向量的定义以及向量模的定义可判断A ,B ;举反例b⃑⃑=0⃑⃑时可判断C ;由共线向量的定义可判断D ,进而可得正确选项.对于A :向量即有大小又有方向不能比较大小,向量的模可以比较大小,故选项A 正确;对于B :|a ⃑|与|b ⃑⃑|分别表示向量a ⃑与b ⃑⃑的大小,与a ⃑,b⃑⃑的方向无关,故选项B 正确; 对于C :当b ⃑⃑=0⃑⃑时,向量a ⃑与c ⃑可以是任意向量都满足a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,故选项C 不正确;对于D :若向量AB⃑⃑⃑⃑⃑⃑与向量CD ⃑⃑⃑⃑⃑⃑是共线向量,表示AB ⃑⃑⃑⃑⃑⃑与CD ⃑⃑⃑⃑⃑⃑方向相同或相反,得不出A ,B ,C ,D 四点在一条直线上,故选项D 不正确;故选:AB.11、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2cosAsinB =b 2sinAcosB ,则△ABC 的形状为( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形答案:AC分析:根据正弦定理和二倍角公式进行求解.∵a 2cosAsinB =b 2sinAcosB∴由正弦定理得sin 2AcosAsinB =sin 2BsinAcosB ,∵sinAcosA ≠0∴sinAcosA =sinBcosB ,即sin2A =sin2B∴2A =2B 或2A +2B =π,即该三角形为等腰三角形或直角三角形.故选:AC.填空题12、已知a ⃗,b ⃑⃑是空间两个向量,若|a ⃗|=2,|b ⃑⃗|=2,|a ⃗−b ⃑⃗|=√7,则cos 〈a ⃗,b⃑⃑〉=________. 答案:18 分析:根据向量几何法的模长公式,可得向量数量积的值,根据向量夹角余弦值的公式,可得答案.由|a ⃑−b ⃑⃑|=√7,可知(a ⃑−b ⃑⃑)2=7,则|a ⃑|2−2a ⃑⋅b⃑⃑+|b ⃑⃑|2=7, ∵|a ⃑|=2,|b ⃑⃑|=2,∴a ⃑⋅b ⃑⃑=12,则cos⟨a ⃑⋅b ⃑⃑⟩=a ⃑⃑⋅b ⃑⃑|a ⃑⃑|⋅|b ⃑⃑|=18. 所以答案是:18. 13、如图,在矩形ABCD 中,AB =3,AD =2,DE =2EC ,M 为BC 的中点,若点P 在线段BD 上运动,则PE⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗的最小值为______.答案:2352 分析:构建直角坐标系,令AP⃑⃑⃑⃑⃑⃗=λAB ⃑⃑⃑⃑⃑⃗+(1−λ)AD ⃑⃑⃑⃑⃑⃗求P 的坐标,进而可得PE ⃑⃑⃑⃑⃑⃗,PM ⃑⃑⃑⃑⃑⃑⃗,由向量数量积的坐标表示及二次函数的性质求最值即可.以A 为坐标原点,AB ,AD 分别为x ,y 建系,则E(2,2),M(3,1),又AB ⃑⃑⃑⃑⃑⃗=(3,0),AD ⃑⃑⃑⃑⃑⃗=(0,2),令AP⃑⃑⃑⃑⃑⃗=λAB ⃑⃑⃑⃑⃑⃗+(1−λ)AD ⃑⃑⃑⃑⃑⃗=(3λ,2−2λ),0≤λ≤1, 故P(3λ,2−2λ),则PE⃑⃑⃑⃑⃑⃗=(2−3λ,2λ),PM ⃑⃑⃑⃑⃑⃑⃗=(3−3λ,2λ−1), PE⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗=(2−3λ)(3−3λ)+2λ(2λ−1) =13λ2−17λ+6, 所以λ=1726时,PE ⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗取最小值2352. 所以答案是:2352.14、海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =45m ,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则AB 两点的距离为______m .答案:45√5分析:先将实际问题转化为解三角形的问题,再利用正、余弦定理求解。
高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。
向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。
向量的大小即向量的模(长度),记作|AB|或|a|。
向量不能比较大小,但向量的模可以比较大小。
②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。
③单位向量:模为1个单位长度的向量。
向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上。
方向相同或相反的向量,称为平行向量,记作a∥b。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
⑤相等向量:长度相等且方向相同的向量。
相等向量经过平移后总可以重合,记为a b。
大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。
设AB a,BC b,则a+b=AB BC=AC。
1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。
3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。
零向量的相反向量仍是零向量。
关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。
平面向量 (学生专用 )专题六平面向量一. 基本知识【1】向量的基本看法与基本运算(1)向量的基本看法:①向量:既有大小又有方向的量向量不能够比较大小,但向量的模能够比较大小.②零向量:长度为0 的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为 1 个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量uuur r uuur r r uuur uuur uuur(2)向量的加法:设AB a, BC b ,则a+ b = AB BC = AC① 0 a a 0 a ;②向量加法满足交换律与结合律;uuur uuur uuur uuur uuur uuurAB BC CD L PQ QR AR ,但这时必定“首尾相连”.(3)向量的减法:①相反向量:与 a 长度相等、方向相反的向量,叫做 a 的相反向量②向量减法:向量 a 加上b的相反向量叫做 a 与b的差,③作图法: a b 能够表示为从 b 的终点指向a的终点的向量( a 、b有共同起点)(4)实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定以下:(Ⅰ)a a ;(Ⅱ)当0 时,λ a 的方向与 a 的方向相同;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是任意的(5)两个向量共线定理:向量b与非零向量 a 共线有且只有一个实数,使得b= a (6)平面向量的基本定理:若是e1, e2是一个平面内的两个不共线向量,那么对这一平面内的任向来量 a ,有且只有一对实数 1 ,2使:a1e12e2,其中不共线的向量e1 , e2叫做表示这一平面内所有向量的一组基底【2】平面向量的坐标表示第1页(1) 平面向量的坐标表示 :平面内的任向来量rr r rr 。
a 可表示成 axi yj ,记作 a =(x,y) (2)平面向量的坐标运算:rrr rx 1 x 2 , y 1 y 2①若 ax 1 , y 1 , bx 2 , y 2 ,则 a buuur②若 A x 1 , y 1 , B x 2 , y 2 ,则 AB x 2 x 1 , y 2 y 1r =(x,y) ,则 r x, y)③若 a a =(r r r r x 1 y 2 x 2 y 1 0④若 ax 1 , y 1 , b x 2 , y 2 ,则 a // b r r r r y 1 y 2⑤若 a x 1 , y 1 , b x 2 , y 2 ,则 a b x 1 x 2r r y 1 y 2⑥若 a b ,则 x 1 x 2【3】平面向量的数量积(1)两个向量的数量积:已知两个非零向量r rr r r rr ra 与b ,它们的夹角为 ,则 a · b =︱ a ︱·︱ b ︱ cos 叫做 a 与 b 的数量积(或内积)r r规定 0 arr rrr= a b(2)向量的投影: ︱ b ︱ cosr ∈ R ,称为向量 b 在 a 方向上的投影 投影的绝对值称| a |为射影(3)数量积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积(4)向量的模与平方的关系:r r r 2 r 2 a a a | a |(5)乘法公式成立:r r rrr 2 r 2 r 2 r 2 r r 2 r 2r r r 2r 2 r r r 2a b a ba b ab ; a ba 2ab ba2a b b(6)平面向量数量积的运算律:①交换律成立:rrr r a bb a②对实数的结合律成立: r r r r r r Ra ba b a b③分配律成立:r r r r r r r r r r a b c a cb c c a b第 2页特别注意:( 1)结合律不成立:r r r r r r ab c a b c ;r rrrr r ( 2)消去律不成立 a ba c 不能够获取b c(rr=0r r r r3) a b 不能够获取 a =0 或 b=0(7)两个向量的数量积的坐标运算:rrrry 1 y 2已知两个向量 a ( x 1, y 1), b ( x 2 , y 2 ) ,则 a · b= x 1 x 2r r uuur r uuur r ( 8 ) 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB= (0 0180 0 ) 叫做 向量r 与 r 的夹角abr r r rx 1 x 2 y 1 y 2a ? bcos= cosa ,br r = 2222a ? bx 1y 1x 2y 2当且仅当两个非零向量rrr rra 与b 同方向时, θ =0 ,当且仅当 a 与 b 反方向时θ=180 ,同时 0 与其他任何非零向量之间不谈夹角这一问题r r 0则称 r r r r (9)垂直 :若是 a 与 b 的夹角为 90 a 与 b 垂直,记作 a ⊥ b( 10)两个非零向量垂直的充要条件: a ⊥ ba ·b = Ox xy y20 平面向量1 21数量积的性质二. 例题解析【模块一】向量的基本运算【例 1】给出以下六个命题:①两个向量相等,则它们的起点相同,终点相同;rr r r ②若 a b ,则 ab ③在平行四边形 ABCD 中必然有uuur uuurAB DC ;ur r r ur ur ur r r r r r r④若 m n, n p ,则 m p ; ⑤若 a // b , b // c , 则 a // cr r r r r r r⑥任向来量与它的相反以下不相等. ⑦已知向量 a 0 ,且 a b 0 ,则 b 0r r r r r r r r r r r r⑧ a b 的充要条件是 a b 且 a // b ;⑨若 a 与 b 方向相同,且 a b ,则 ab ;⑩由于零向量的方向不确定,故零向量不与任意向量平行; 其中正确的命题的序号是第 3页r rr r ruur【例 2】已知向量 a, b 夹角为 45 ,且 a 1, 2a b10 ;求 b 的值 .uur uur r rr r【变式 1】若 a 2 , b 3 , a b3 求 a b 的值 .【变式 2】设向量 a , b 满足 | a|=|b |=1 及 | 3a-2 b|=3 ,求 | 3a+b| 的值r r r rrr r r【例 3】已知向量 a 、 b 的夹角为 60o , |a| 3, | b |2 ,若 (3a 5b) (ma b) ,求 m 的值.rrr r r r【例 4】若向量 a1,2 , b1, 1 求 2a b 与 a b 的夹角 .【 变 式】 设 x, y R, 向 量 a x,1 ,b 1, y , c2, 4 , 且 a c,b // c, 则 a b_______()A . 5B . 10C . 2 5D . 10【例 5】已知两个非零向量r rr r rra,b 满足 a ba b ,则以下结论必然正确的选项是( )r r r rr r DA a // bB a b Ca br r r r a b a b【变式 1】设 a , b 是两个非零向量 . ()A .若 | a +b |=| a |-| b |, 则 a ⊥ bB .若 a ⊥b , 则| a +b |=| a |-| b |C .若 | a +b |=| a |-| b |, 则存在实数 λ, 使得 a =λbD .若存在实数 λ, 使得 a =λb , 则| a +b |=| a |-| b |第 4页r r r r r r【变式 2】若平面向量a, b满足 : 2a b 3 ;则 agb 的最小值是_____【例 6】设0,rcosr13 2, a,sin ,b,22r r r r (1)证明 a b a b ;(2)r r r r的值 .当 2a b a2b时求角r rr ra b)【例 7】设a、b都是非零向量 , 以下四个条件中 , 使r r成立的充足条件是(| a ||b |r r r r r r r rr r A.a b B.a // b C.a 2b D.a // b且| a | | b |【模块二】向量与平面几何【例 1】在△ ABC中, A 90o AB 1, ACuuur uuur 2 ,设P、Q满足 AP AB ,uuur1uuurRuuur uuur2 ,则AQ AC ,BQ CP=()A 1B2C4D2 333第5页AB2uuur uuur uuur uuur 【变式 1】已知△ ABC为等边三角形,设 P、Q满足AP AB AQ 1AC,,uuur uuur 3,则R BQ CP=()2A 1B12C 1 10D 3 2 2222uuur uuur【例 2】在△ ABC中 ,AB=2,AC=3,ABgBC = 1则 BC ___ .()A.3B.7C.2 2D.23uuur uuur uuur【变式 1】若向量BA2,3 , CA4,7 ,则 BC()A.2, 4B.2,4C.6,10D.6, 10【例 3 】若等边ABC 的边长为2 3 ,平面内一点M 满足CM 1CB2CA ,则63MA? MB________.第6页平面向量 (学生专用 )uuur r uuur r r r r r2 ,则【例 4】ABC 中, AB 边上的高为 CD ,若CB a,CA b, a b0,| a |1,|b | uuurAD()A.1r1rB.2r2rC.3r3rD.4r4r a b a b a b5a b 3333555uuur3【例5】在平面直角坐标系中,O (0,0), P(6,8) ,将向量 OP按逆时针旋转后 , 得向量4 uuurOQ ,则点 Q 的坐标是()A.( 7 2,2) B. (72,2)C.( 4 6, 2)D.( 46, 2)uuur uuur【例 6】在ABC中, M是 BC的中点, AM=3, BC=10,则AB AC =______________.【例 7】在平行四边形中, ∠A= 3, 边、的长分别为2、1.若、分别是边、ABCD AB AD M N BC CD上的点,且满足| BM|| CN | ,则AM AN 的取值范围是_________ .| BC || CD |,【例 8】如图 ,在矩形 ABCD 中, AB 2 ,BC2,点E为 BC 的中点,点F在边 CD uuur uuur uuur uuur上, 若AB g AF 2 ,则 AE g BF 的值是____.第7页平面向量 (学生专用 )9 】已知正方形ABCD 的边长为1, 点 E 是 AB 边上的动点uuur uuur【例, 则DE CB的值为uuur uuur________; DE DC 的最大值为________.【例 10】已知直角梯形ABCD 中,AD// BC ,ADC 900, AD2, BC 1 , P 是腰uuur uuurDC 上的动点,则PA3PB 的最小值为___________uuur uuur uuur【例 11】如图,在VABC中,AD AB , BC 3 BD ,AD 1 ,uuur uuur3.则 AC gAD【例 12】 (15)uuur uuur1uuur1uuur3uuur 在四边形 ABCD中,AB = DC =( 1,1),uuur BA uuur BC uuur BD ,BA BC BD则四边形ABCD的面积是第8页平面向量 (学生专用 ) uuur uuur【例 13】在VABC中,若AB2,3 , AC 6, 4 ,则 VABC 面积为【例 14】( 2012 年河北二模)在VABC中,AB 边上的中线CD=6 ,点 P 为 CD 上(与 C,D )uuur uuur uuur不重合的一个动点,则PA PB .PC的最小值是A 2B 0C -9D -18第9页。
第一部分:平面向量的概念及线性运算一.基础知识自主学习1.向量的有关概念名称定义备注向量既有又有的量;向量的大小叫做向量的(或称)平面向量是自由向量零向量长度为的向量;其方向是任意的记作0单位向量长度等于的向量非零向量a的单位向量为±a|a|平行向量方向或的非零向量0与任一向量或共线共线向量的非零向量又叫做共线向量相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量0的相反向量为0 2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c).减法求a与b的相反向量-b的和的运算叫做a与b的差法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|.(2)当λ>0时,λa的方向与a的方向;当λ<0时,λa的方向与a的方向;当λ=0时,λa=0.λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb.3.共线向量定理向量a(a≠0)与b共线的条件是存在唯一一个实数λ,使得b=λa.二.难点正本疑点清源1.向量的两要素向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小.2.向量平行与直线平行的区别向量平行包括向量共线(或重合)的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.三.基础自测1.化简OP →-QP →+MS →-MQ →的结果等于________.2.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量; ④相等向量一定共线.其中不正确命题的序号是_______.3.在△ABC 中,AB →=c ,AC →=b .若点D 满足BD →=2DC →,则AD →=________(用b 、c 表示).4.如图,向量a -b 等于( ) A .-4e 1-2e 2 B .-2e 1-4e 2 C .e 1-3e 2 D .3e 1-e 25.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是 ( ) A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D四.题型分类 深度剖析题型一 平面向量的有关概念 例1 给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c .其中正确的序号是________.变式训练1 判断下列命题是否正确,不正确的请说明理由.(1)若向量a 与b 同向,且|a |=|b |,则a>b ;(2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)若|a |=|b |,且a 与b 方向相同,则a =b ;(4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反;(6)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等题型二 平面向量的线性运算例2 如图,以向量OA →=a ,OB →=b 为边作▱OADB ,BM →=13BC →,CN →=13CD →,用a 、b 表示OM →、ON →、MN →.变式训练2 △ABC 中,AD →=23AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N .设AB →=a ,AC →=b ,用a 、b表示向量AE →、BC →、DE →、DN →、AM →、AN →.题型三 平面向量的共线问题例3 设e 1,e 2是两个不共线向量,已知AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2.(1)求证:A 、B 、D 三点共线;(2)若BF →=3e 1-ke 2,且B 、D 、F 三点共线,求k 的值.变式训练3 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.五.思想与方法5.用方程思想解决平面向量的线性运算问题试题:如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b表示向量OM →.六.思想方法 感悟提高方法与技巧1.将向量用其它向量(特别是基向量)线性表示,是十分重要的技能,也是向量坐标形式的基础.2.可以运用向量共线证明线段平行或三点共线问题.如AB →∥CD →且AB 与CD 不共线,则AB ∥CD ;若AB →∥BC →,则A 、B 、C 三点共线. 失误与防范1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.七.课后练习1.给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③λa =0 (λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为( ) A .1 B .2 C .3 D .42.若A 、B 、C 、D 是平面内任意四点,给出下列式子:AB +CD →=BC +DA →;②AC +BD →=AD BC +;③AC -BD →=DC →+AB .其中正确的有( ) A .0个 B .1个 C .2个 D .3个 3. 已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满足CB AC +2=0,则OC 等于( )A.OA 2-OB →B.OA -+2OB →C.OA 32-13OB →D.OA 31-+23OB →4.如图所示,在△ABC 中,BD =12DC →,AE →=3ED →,若AB =a ,AC =b ,则BE →等于( )A.13a +13b B .-12a +14b C.12a +14b D .-13a +13b 5. 在四边形ABCD 中,AB =a +2b,BC =-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是( )A .矩形B .平行四边形C .梯形D .以上都不对 6. AB =8,AC =5,则BC 的取值范围是__________. 7.给出下列命题:①向量AB 的长度与向量BA →的长度与向量BA →的长度相等; ②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个有公共终点的向量,一定是共线向量;⑤向量AB 与向量CD →与向量CD →是共线向量,则点A 、B 、C 、D 必在同一条直线上. 其中不正确的个数为____________. 8.如图,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N.若AB =mAM →,AC =nAN →,则m +n 的值为________.9.设a 与b 是两个不共线向量,且向量a +λb 与-(b -2a)共线,则λ=________.10.在正六边形ABCDEF 中,AB =a ,AF →=b ,求AD AC ,,AE →.11.如图所示,△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM的值.12.已知点G 是△ABO 的重心,M 是AB 边的中点.(1)求GA +GB →+GO →;(2)若PQ 过△ABO 的重心G,且AO =a, OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1n=3.第二部分:平面向量的基本定理及坐标表示一.基础知识 自主学习1.两个向量的夹角定义范围已知两个 向量a ,b ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图)向量夹角θ的范围是 ,当θ= 时,两向量共线,当θ= 时,两向量垂直,记作a ⊥b .2.平面向量基本定理及坐标表示(1)平面向量基本定理如果e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的任意向量a , 一对实数λ1,λ2,使a = .其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组 . (2)平面向量的正交分解及坐标表示把一个向量分解为两个 的向量,叫做把向量正交分解. (3)平面向量的坐标表示①在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使a =xi +yj ,这样,平面内的任一向量a 都可由x ,y 唯一确定,把有序数对 叫做向量a 的坐标,记作a = ,其中 叫做a 在x 轴上的坐标, 叫做a 在y 轴上的坐标.②设OA →=xi +yj ,则向量OA →的坐标(x ,y )就是 的坐标,即若OA →=(x ,y ),则A 点坐标为 ,反之亦成立.(O 是坐标原点) 3.平面向量坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b = ,a -b = , λa = ,|a |= . (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →= ,|AB →|= . 4.平面向量共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔ .二.难点正本 疑点清源1.基底的不唯一性只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量a 都可被这个平面的一组基底e 1,e 2线性表示,且在基底确定后,这样的表示是唯一的. 2.向量坐标与点的坐标的区别在平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被向量a 唯一确定,此时点A 的坐标与a 的坐标统一为(x ,y ),但应注意其表示形式的区别,如点A (x ,y ),向量a =OA →=(x ,y ).当平面向量OA →平行移动到O 1A 1→时,向量不变即O 1A 1→=OA →=(x ,y ),但O 1A 1→的起点O 1和终点A 1的坐标都发生了变化.三.基础自测1.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.2.已知向量a =(1,2),b =(-3,2),若ka +b 与b 平行,则k =________.3.设向量a =(1,-3),b =(-2,4),c =(-1,-2).若表示向量4a 、4b -2c 、2(a -c )、d 的有向线段首尾相接能构成四边形,则向量d =____________.4.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为 ( )A.⎝⎛⎭⎫2,72B.⎝⎛⎭⎫2,-12 C .(3,2) D .(1,3)5.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( )A .平行于y 轴B .平行于第一、三象限的角平分线C .平行于x 轴D .平行于第二、四象限的角平分线四.题型分类 深度剖析题型一 平面向量基本定理的应用例1 如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.变式训练1 如图,P 是△ABC 内一点,且满足条件AP →+2BP →+3CP →=0,设Q 为CP 的延长线与AB 的交点,令CP →=p ,试用p 表示CQ →.题型二 向量坐标的基本运算例2 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b ,(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ;(3)求M 、N 的坐标及向量MN →的坐标.变式训练2 (1)已知点A 、B 、C 的坐标分别为A (2,-4)、B (0,6)、C (-8,10),求向量AB →+2BC →-12AC →的坐标;(2)已知a =(2,1),b =(-3,4),求:①3a +4b ;②a -3b ;③12a -14b .题型三 平行向量的坐标运算例3 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题:(1)求满足a =mb +nc 的实数m ,n ;(2)若(a +kc )∥(2b -a ),求实数k ; (3)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d .变式训练3 已知a =(1,0),b =(2,1).(1)求|a +3b |;(2)当k 为何实数时,ka -b 与a +3b 平行,平行时它们是同向还是反向?五.易错警示8.忽视平行四边形的多样性致误试题:已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.六.思想方法 感悟提高方法与技巧1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解.2.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键,通过坐标运算可将一些几何问题转化为代数问题处理,从而向量可以解决平面解析几何中的许多相关问题. 3.在向量的运算中要注意待定系数法、方程思想和数形结合思想的运用. 失误与防范1.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.同时,a ∥b 的充要条件也不能错记为x 1x 2-y 1y 2=0,x 1y 1-x 2y 2=0等.七.课后练习1.已知向量a =(1,-2),b =(1+m,1-m ),若a ∥b ,则实数m 的值为( ) A .3 B .-3 C .2 D .-22.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)3.设向量a =(3,3),b 为单位向量,且a ∥b ,则b 等于( )A.⎝⎛⎭⎫32,-12或⎝⎛⎭⎫-32,12B.⎝⎛⎭⎫32,12C.⎝⎛⎭⎫-32,-12D.⎝⎛⎭⎫32,12或⎝⎛⎭⎫-32,-124.已知向量a =(1,-m ),b =(m 2,m ),则向量a +b 所在的直线可能为( ) A .x 轴 B .第一、三象限的角平分线 C .y 轴 D .第二、四象限的角平分线 5.已知A(7,1)、B(1,4),直线ax y 21=与线段AB 交于C ,且=2CB →,则实数a 等于( ) A .2B .1C.45D.536.若三点A (2,2),B (a,0),C (0,b ) (ab ≠0)共线,则1a +1b的值等于________.7.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.8.若向量a )43,3(2--+=x x x 与相等,其中A (1,2),B (3,2),则x =________.9.若平面向量a ,b 满足|a +b|=1,a +b 平行于y 轴,a =(2,-1),则b =______________. 10. a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行?平行时它们是同向还是反向?11.三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量m =(3c -b ,a -b ),n =(3a +3b ,c ),m ∥n.(1)求cos A 的值;(2)求sin(A +30°)的值.12.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知向量m =(a ,b ),向量n =(cos A ,cos B ),向量p =⎝⎛⎭⎫22sin B +C2,2sin A ,若m ∥n ,p 2=9,求证:△ABC 为等边三角形.第三部分:平面向量的数量积一.基础知识自主学习1.平面向量的数量积已知两个非零向量a和b,它们的夹角为θ,则数量_______叫做a和b的数量积(或内积),记作________________.规定:零向量与任一向量的数量积为____.两个非零向量a与b垂直的充要条件是,两个非零向量a与b平行的充要条件是. 2.平面向量数量积的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影_________的乘积.3.平面向量数量积的重要性质(1)e·a=a·e=;(2)非零向量a,b,a⊥b⇔;(3)当a与b同向时,a·b=;当a与b反向时,a·b=,a·a=a2,|a|=a·a;(4)cos θ=a·b|a||b|;(5)|a·b|____|a||b|.4.平面向量数量积满足的运算律(1)a·b=(交换律);(2)(λa)·b==(λ为实数);(3)(a+b)·c=.5.平面向量数量积有关性质的坐标表示设向量a=(x1,y1),b=(x2,y2),则a·b=,由此得到(1)若a=(x,y),则|a|2=或|a|=.(2)设A(x1,y1),B(x2,y2),则A、B两点间的距离|AB|=AB=.(3)设两个非零向量a,b,a=(x1,y1),b=(x2,y2),则a⊥b⇔.二.难点正本疑点清源1.向量的数量积是一个实数两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角的余弦值有关,在运用向量的数量积解题时,一定要注意两向量夹角的范围.2.数量积的运算只适合交换律、加乘分配律及数乘结合律,但不满足向量间的结合律,即(a·b)c不一定等于a(b·c).这是由于(a·b)c表示一个与c共线的向量,而a(b·c)表示一个与a共线的向量,而c与a不一定共线.三.基础自测1.已知向量a和向量b的夹角为30°,|a|=2,|b|=3,则向量a和向量b的数量积a·b=________.2.在△ABC中,AB=3,AC=2,BC则·=______.3.已知a=(2,3),b=(-4,7),则a在b方向上的投影为______.4.已知|a|=6,|b|=3,a·b =-12,则向量a 在向量b 方向上的投影是 ( ) A .-4 B .4 C .-2 D .25.已知向量a =(1,-1),b =(1,2),向量c 满足(c +b)⊥a ,(c -a)∥b ,则c 等于 ( ) A .(2,1) B .(1,0) C.⎝⎛⎭⎫32,12 D .(0,-1)四.题型分类 深度剖析题型一 求两向量的数量积例1 (1)在Rt △ABC 中,∠C =90°,AB =5,AC =4,求BC AB ·; (2)若a =(3,-4),b =(2,1),试求(a -2b)·(2a +3b).变式训练1 (1)若向量a 的方向是正南方向,向量b 的方向是正东方向,且|a|=|b|=1,则(-3a)·(a +b)=______.(2)如图,在△ABC 中,AD ⊥AB ,BC = 3 BD →,|AD |=1,则·等于( ) A .2 3 B.32 C.33D.3题型二 求向量的模例2 已知向量a 与b 的夹角为120°,且|a|=4,|b|=2,求:(1)|a +b|;(2)|3a -4b|;(3)(a -2b)·(a +b).变式训练2 设向量a ,b 满足|a -b |=2,|a|=2,且a -b 与a 的夹角为π3,则|b|=________.题型三 利用向量的数量积解决夹角问题例3 已知a 与b 是两个非零向量,且|a|=|b|=|a -b|,求a 与a +b 的夹角.变式训练3 设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.题型四 平面向量的垂直问题例4 已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π).(1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)变式训练4 已知平面内A 、B 、C 三点在同一条直线上,OA =(-2,m ),OB →=(n,1),OC =(5,-1),且OA →⊥OB →,求实数m ,n 的值.五.答题规范5.思维要严谨,解答要规范试题:设两向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.六.思想方法 感悟提高方法与技巧1. 向量的数量积的运算法则不具备结合律,但运算律和实数运算律类似.如(a +b)2=a 2+2a·b +b 2;(λa +μb)·(s a +t b)=λs a 2+(λt +μs )a·b +μt b 2(λ,μ,s ,t ∈R).2.求向量模的常用方法:利用公式|a|2=a 2,将模的运算转化为向量的数量积的运算. 3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法技巧. 失误与防范1.(1)0与实数0的区别:0a =0≠0,a +(-a)=0≠0,a·0=0≠0;(2)0的方向是任意的,并非没有方向,0与任何向量平行,我们只定义了非零向量的垂直关系. 2.a·b =0不能推出a =0或b =0,因为a·b =0时,有可能a ⊥b. 3.一般地,(a·b)c≠(b·c)a 即乘法的结合律不成立.因a·b 是一个数量,所以(a·b)c 表示一个与c 共线的向量,同理右边(b·c)a 表示一个与a 共线的向量,而a 与c 不一定共线,故一般情况下(a·b)c≠(b·c)a. 4.a·b =a·c(a≠0)不能推出b =c .即消去律不成立. 5.向量夹角的概念要领会,比如正三角形ABC 中,〈,AB BC 〉应为120°,而不是60°.七.课后练习1.设向量a =(1,0),b =(12,12),则下列结论中正确的是( )A .|a |=|b |B .a·b =22C .a ∥bD .a -b 与b 垂直2.若向量a =(1,1),b =(2,5),c =(3,x ),满足条件(8a -b)·c =30,则x 等于( ) A .6 B .5 C .4 D .33.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与a +2b 的夹角等于( ) A .150° B .90° C .60° D .30°4.平行四边形ABCD 中,AC 为一条对角线,若AB =(2,4),=(1,3),则⋅AD BD 等于( ) A .6 B .8 C .-8 D .-65.若e 1、e 2是夹角为π3的单位向量,且向量a =2e 1+e 2,向量b =-3e 1+2e 2,则a·b 等于( )A .1B .-4C .-72 D.726.若向量a ,b 满足|a |=1,|b |=2且a 与b 的夹角为π3,则|a +b |=________.7.已知向量a ,b 满足|a |=3,|b |=2,a 与b 的夹角为60°,则a·b =________,若(a -mb )⊥a ,则实数m =________. 8.设a 、b 、c 是单位向量,且a +b =c ,则a·c 的值为________. 9.(O 是平面α上一点,A 、B 、C 是平面α上不共线的三点.平面α内的动点P 满足),(AC AB OA OP ++=λ若λ=12时,()⋅+PA PB PC 的值为______.10.不共线向量a ,b 的夹角为小于120°的角,且|a |=1,|b |=2,已知向量c =a +2b ,求|c |的取值范围.11.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R.(1)若a ⊥b ,求x 的值;(2)若a ∥b ,求|a -b |.12.向量a =(cos 23°,cos 67°),向量b =(cos 68°,cos 22°).(1)求a·b ;(2)若向量b 与向量m 共线,u =a +m ,求u 的模的最小值.第四部分:平面向量应用举例一.基础知识 自主学习1.向量在平面几何中的应用平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a ∥b ⇔ ⇔ . (2)证明垂直问题,常用数量积的运算性质a ⊥b ⇔ ⇔ . (3)求夹角问题,利用夹角公式cos θ=a ·b |a ||b|=x 1x 2+y 1y 2x 21+y 21x 22+y 22 (θ为a 与b 的夹角).2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是 ,它们的分解与合成与向量的 相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,这是力F 与位移s 的数量积.即W =F ·s =|F ||s|cos θ (θ为F 与s 的夹角). 3.平面向量与其他数学知识的交汇平面向量作为一种运算工具,经常与函数、不等式、三角函数、数列、解析几何等知识结合,当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.在此基础上,可以求解有关函数、不等式、三角函数、数列的综合问题.此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面向量平行或垂直的充要条件;二是利用向量数量积的公式和性质.二.难点正本 疑点清源1.向量兼具代数的抽象与严谨和几何的直观,向量本身是一个数形结合的产物.在利用向量解决问题时,要注意数与形的结合、代数与几何的结合、形象思维与逻辑思维的结合.2.要注意变换思维方式,能从不同角度看问题,要善于应用向量的有关性质解题.三.基础自测1.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知A (-2,0),B (6,8),C (8,6).则D 点的坐标为________.2.已知平面向量α、β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.3.平面上有三个点A (-2,y ),B ⎝⎛⎭⎫0,y2,C (x ,y ),若AB ⊥BC ,则动点C 的轨迹方程为_______________.4.已知A 、B 是以C 为圆心,半径为5的圆上两点,且|AB |=5,·等于 ( ) A .-52 B.52 C .0 D.5325.某人先位移向量a :“向东走3 km”,接着再位移向量b :“向北走3 km”,则a +b 表示 ( )A .向东南走3 2 kmB .向东北走3 2 kmC .向东南走3 3 kmD .向东北走3 3 km四.题型分类 深度剖析题型一 向量在平面几何中的应用例1 如图,在等腰直角三角形ABC 中,∠ACB =90°,CA =CB ,D 为BC 的中点,E 是AB 上的一点,且AE =2EB .求证:AD ⊥CE .变式训练1 在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线 的长;(2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.题型二 平面向量在解析几何中的应用例2 已知点P (0,-3),点A 在x 轴上,点M 满足⋅PA AM =0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M的轨迹方程.变式训练2 已知圆C :(x -3)2+(y -3)2=4及点A (1,1),M 是圆上的任意一点,点N 在线段MA 的延长线上,且MA =2AN →,求点N 的轨迹方程.题型三 平面向量与三角函数例3 已知向量a =(sin x ,cos x ),b =(sin x ,sin x ),c =(-1,0).(1)若x =π3,求向量a 与c 的夹角;(2)若x ∈⎣⎡⎦⎤-3π8,π4,求函数f (x )=a·b 的最值; (3)函数f (x )的图象可以由函数y =22sin 2x (x ∈R)的图象经过怎样的变换得到?变式训练3 已知A (3,0),B (0,3),C (cos α,sin α).(1)若AC ·BC =-1,求sin ⎝⎛⎭⎫α+π4的值;(2) 若|OA +OC |=13,且α∈(0,π),求OB →与OC 的夹角.五.易错警示9.忽视对直角位置的讨论致误试题:已知平面上三点A 、B 、C ,向量BC =(2-k,3),AC =(2,4).(1) 若三点A 、B 、C 不能构成三角形,求实数k 应满足的条件;(2)若△ABC 为直角三角形,求k 的值.六.思想方法 感悟提高方法与技巧1. 向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.2. 以向量为载体,求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.3. 有关线段的长度或相等,可以用向量的线性运算与向量的模.4.用向量方法解决平面几何问题的步骤(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系; (3)把运算结果“翻译”成几何关系.5.向量的坐标表示,使向量成为解决解析几何问题的有力工具,在证明垂直、求夹角、写直线方程时显示出了它的优越性,在处理解析几何问题时,需要将向量用点的坐标表示,利用向量的有关法则、性质列出方程,从而使问题解决.失误与防范1.向量关系与几何关系并不完全相同,要注意区别.例如:向量AB ∥CD →并不能说明AB ∥CD . 2.加强平面向量的应用意识,自觉地用向量的思想和方法去思考问题.七.课后练习1.已知△ABC AC AB =,则一定有( )A .⊥B .=C .(+)⊥(-)D .+=-2.点P 在平面上做匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位).设开始时点P 的坐标为(-10,10),则5秒后质点P 的坐标为( ) A .(-2,4) B .(-30,25) C .(10,-5) D .(5,-10)3.平面上有四个互异点A 、B 、C 、D ,已知(2)()0+-⋅-=DB DC DA AB AC ,则△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 4.如图,△ABC 的外接圆的圆心为O ,AB =2,AC =3,BC =7,则⋅AO BC 等于( )A.32B.52 C .2 D .3 5.平面上O 、A 、B 三点不共线,设b a ==,,则△OAB 的面积等于( )A.|a |2|b |2-(a ·b )2B.|a |2|b |2+(a ·b )2C.12|a |2|b |2-(a ·b )2D.12|a |2|b |2+(a ·b )2 6.已知|a|=3,|b|=2,〈a ,b 〉=60°,则|2a +b|=________.7.河水的流速为2 m/s ,一艘小船想以垂直于河岸方向10 m/s 的速度驶向对岸,则小船的静水速度大小为________.8.已知△ABO 三顶点的坐标为A (1,0),B (0,2),O (0,0),P (x,y )是坐标平面内一点,且满足·OA →≤0,BP →·OB →≥0,则OP →·的最小值为________.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若·=1⋅=BA BC ,那么c =________. 10.如右图,在Rt △ABC 中,已知BC =a,若长为2a 的线段PQ 以点A 为中心,问与BC →的夹角θ取何值时BP →·的值最大?并求出这个最大值.11.已知向量a =(sin θ,cos θ-2sin θ),b =(1,2).(1)若a ∥b ,求tan θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.12.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若··==k (k ∈R). (1)判断△ABC 的形状;(2)若c =2,求k 的值.。