Chen4定性
- 格式:pdf
- 大小:243.38 KB
- 文档页数:8
拼音汉字对照亻dan1亻ren2仃ding1 仉zhang3 仂le4 仨sa1 仡yi4 仫mu4 仞ren4 伛yu3 仳pi3 伢ya2 佤wa3 仵wu3 伥chang1 伧chen5 伉kang4 伫zhu4 佞ning4 佧ka3 攸you1 佚yi4 佝gou1 佟tong2 佗tuo2 伲ni4 伽jia1 佶ji2 佴er4 侑you4 侉kua3 侃kan3 侏zhu1 佾yi4 佻tiao1 侪chai2 佼jiao3 侬nong2 侔mou2 俦chou2 俨yan3 俪li4 俅qiu2 俚li3 俣yu3 俜ping1 俑yong3 俟si4 俸feng4 倩qian4 偌ruo4 俳pai2 倬zhuo1倜ti4 倌guan1 倥kong3 倨ju4 偾fen4 偃yan3 偕xie2 偈ji4 偎wei1 偬zong3 偻lv3 傥tang3 傧bin1 傩nuo2 傺chi4 僖xi1 儆jing3 僭jian4 僬jiao1 僦jiu4 僮zhuang4僮tong2儇xuan1 儋dan1 仝tong2 氽tun3 佘she2 佥qian1 俎zu3 龠yue4 汆cuan1 籴di2 兮xi1 巽xun4 黉hong2 馘guo2 冁chan3 夔kui2 勹bao1 匍pu2 訇hong1 匐fu2 凫fu2 夙su4 兕si4 亠wen2兖yan3 亳bo2 衮gun3 袤mao4嬴ying2 蠃luo3 羸lei2 冫liang3冫shui3冫bing1冱hu4 冽lie4 冼xian3 凇song1 冖mi4 冢zhong3 冥ming2 讠yan2 讦jie2 讧hong4 讪shan4 讴ou1 讵ju4 讷ne4 诂gu3 诃he1 诋di3 诏zhao4 诎qu1 诒yi2 诓kuang1 诔lei3 诖gua4 诘jie2 诙hui1 诜shen1 诟gou4 诠quan2 诤zheng4 诨hun4 诩xu3 诮qiao4 诰gao4 诳kuang2 诶eh1诶ei1诶eh2诶ei2诶eh3诶ei3诶eh4诶ei4诹zou1 诼zhuo2谇sui4 谌chen2 谏jian4 谑xue4 谒ye4 谔e4谕yu4 谖xuan1 谙an1 谛di4 谘zi1 谝pian3 谟mo2 谠dang3 谡su4 谥shi4 谧mi4 谪zhe2 谫jian3 谮zen4 谯qiao2 谲jue2 谳yan4 谵zhan1 谶chen4 卩dan1卩er3卺jin3 阝shuang1阝er3阢wu4 阡qian1 阱jing3 阪ban3 阽yan2 阼zuo4 陂po1 陉xing2 陔gai1 陟zhi4 陧nie4 陬zou1 陲chui2 陴pi2 隈wei1 隍huang2 隗wei3 隰xi2 邗han2 邛qiong2邴bing3 邳pi1 邶bei4 邺ye4 邸di3 邰tai2 郏jia2 郅zhi4 邾zhu1 郐kuai4 郄qie4 郇xun2 郓yun4 郦li4 郢ying3 郜gao4 郗xi1 郛fu2 郫pi2 郯tan2 郾yan3 鄄juan4 鄢yan1 鄞yin2 鄣zhang1 鄱po2 鄯shan4 鄹zou1 酃ling2 酆feng1 刍chu2 奂huan4 劢mai4 劬qu2 劭shao4 劾he2 哿ge3 勐meng3 勖xu4 勰xie2 叟sou3 燮xie4 矍jue2 廴jian4 凵xiong1 凼dang4 鬯chang4 厶si1 弁bian4 畚ben3垩e4垡fa2 塾shu2 墼ji1 壅yong1 壑he4 圩xu1 圬wu1 圪ge1 圳zhen4 圹kuang4 圮pi3 圯yi2 坜li4 圻yin2 坂ban3 坩gan1 垅long2 坫dian4 垆lu2 坼che4 坻di3 坨tuo1 坭ni2 坶mu3 坳ao4 垭ya1 垤die2 垌tong2 垲kai3 埏shan1 垧shang3 垴nao3 垓gai1 垠yin2 埕cheng2 埘shi2 埚guo1 埙xun1 埒lie4 垸yuan2 埴zhi2 埯an3 埸yi4 埤bei1 埝nian4 堋peng2 堍tu4 埽sao4 埭dai4 堀ku1 堞die2塬yuan2 墁man4 墉yong1 墚liang2 墀chi2 馨xin1 鼙pi2 懿yi4 艹cao3艽jiao1 艿nai3 芏du4 芊qian1 芨ji1 芄wan2 芎xiong1 芑qi3 芗xiang1 芙fu2 芫yuan2 芸yun2 芾fu2 芰ji4 苈li4 苊e4苣ju4 芘bi3 芷zhi3 芮rui4 苋xian4 苌chang2 苁cong1 芩qin2 芴wu4 芡qian4 芪qi2 芟shan1 苄bian4 苎zhu4 芤kou1 苡yi3 茉mo4 苷gan1 苤pie3 茏long2 茇ba2 苜mu4 苴ju1 苒ran3 苘qing3茚yin4 茆mao2 茔ying2 茕qiong2 苠min2 苕tiao2 茜xi1 荑yi2 荛rao2 荜bi4 茈zi3 莒ju3 茼tong2 茴hui2 茱zhu1 莛ting2 荞qiao2 茯fu2 荏ren3 荇xing4 荃quan2 荟hui4 荀xun2 茗ming2 荠qi2 茭jiao1 茺chong1 茳jiang1 荦luo4 荥ying2 荨xun2 茛gen4 荩jin4 荬mai3 荪sun1 荭hong2 荮zhou4 莰kan3 荸bi2 莳shi2 莴wo1 莠you3 莪e2莓mei2 莜you2 莅li4 荼tu2 莶xian1 莩fu2 荽sui1莨liang2 莺ying1 莼chun2 菁jing1 萁qi2 菥xi1 菘song1 堇jin3 萘nai4 萋qi1 菝ba2 菽shu1 菖chang1 萜tie1 萸yu2 萑huan2 萆bi4 菔fu2 菟tu4 萏dan4 萃cui4 菸yan1 菹zu1 菪dang4 菅jian1 菀yu4 萦ying2 菰gu1 菡han4 葜qia1 葑feng1 葚shen4 葙xiang1 葳wei1 蒇chan3 蒈kai3 葺qi4 蒉kui4 葸xi3 萼e4 葆bao3 葩pa1 葶ting2 蒌lou2 蒎pai4 萱xuan1 葭jia1 蓁zhen1 蓍shi1 蓐ru4蒿hao1 蒺ji2 蓠li2 蒡bang4 蒹jian1 蒴shuo4 蒗lang4 蓥ying2 蓣yu4 蔌su4 甍meng2 蔸dou1 蓰xi3 蔹lian3 蔟cu4 蔺lin4 蕖qu2 蔻kou4 蓿xu5 蓼lu4 蕙hui4 蕈xun4 蕨jue2 蕤rui2 蕞zui4 蕺ji2 瞢meng2 蕃fan1 蕲qi2 蕻hong2 薤xie4 薨hong1 薇wei1 薏yi4 蕹weng4 薮sou3 薜bi4 薅hao1 薹tai2 薷ru2 薰xun1 藓xian3 藁gao3 藜li2 藿huo4 蘧qu2 蘅heng2 蘩fan2 蘖nie4 蘼mi2耷da1 奕yi4 奚xi1 奘zang4 匏pao2 尢you2 尥liao4 尬ga4 尴gan1 扌ti2扌shou3扪men2 抟tuan2 抻chen1 拊fu3 拚pin1 拗niu4 拮jie2 挢jiao3 拶za1 挹yi4 捋luo1 捃4-Jun 掭tian4 揶ye2 捱ai2 捺na4 掎ji3 掴guai1 捭bai3 掬ju1 掊pou2 捩lie4 掮qian2 掼guan4 揲die2 揸zha1 揠ya4 揿qin4 揄yu2 揞an3 揎xuan1 摒bing3 揆kui2 掾yuan2 摅shu1 摁en4 搋chuai1 搛jian1 搠shuo4撄ying1 摭zhi2 撖han4 摺zhe2 撷xie2 撸lu1 撙zun3 撺cuan1 擀gan3 擐huan4 擗pi3 擤xing3 擢zhuo2 攉huo1 攥zuan4 攮nang3 弋yi4 忒tui1 甙dai4 弑shi4 卟bu4 叱chi4 叽ji1 叩kou4 叨dao1 叻le4 吒zha1 吖a1吖a5吆yao1 呋fu1 呒m2呓yi4 呔dai1 呖li4 呃e4呃e5吡pi3 呗bei5 呙guo1 吣qin4 吲yin3 咂za1 咔ka3 呷xia1 呱gua1 呤ling4 咚dong1 咛ning2 咄duo1咭ji1 哂shen3 咴hui1 哒da1 咧lie3 咦yi2 哓xiao1 哔bi4 呲zi1 咣guang1 哕hui4 咻xiu1 咿yi1 哌pai4 哙kuai4 哚duo3 哜ji4 咩mie1 咪mi1 咤zha4 哝nong2 哏gen2 哞mou1 唛ma1 哧chi1 唠lao2 哽geng3 唔wu2 哳zha1 唢suo3 唣zao4 唏xi1 唑zuo4 唧ji1 唪feng3 啧ze2 喏nuo4 喵miao1 啉lin2 啭zhuan4 啁zhou1 啕tao2 唿hu1 啐cui4 唼sha4 唷yo1啖dan4 啵bo5 啶ding4 啷lang1嗒da1 喃nan2 喱li2 喹kui2 喈jie1 喁yong2 喟kui4 啾jiu1 嗖sou1 喑yin1 啻chi4 嗟jie1 喽lou2 喾ku4 喔wo1 喙hui4 嗪qin2 嗷ao2 嗉su4 嘟du1 嗑ke1 嗫nie4 嗬he1 嗔chen1 嗦suo1 嗝ge2 嗄sha4 嗯n2嗯ng2嗯n3嗯n4嗯ng3嗯ng4嗥hao2 嗲dia3嗳ai4 嗌yi4 嗍suo1 嗨hai1 嗵tong1 嗤chi1 辔pei4 嘞lei5 嘈cao2 嘌piao4 嘁qi1 嘤ying1 嘣beng1 嗾sou3 嘀di1 噗pu1 嘬zuo1 噍jiao4 噢o1噙qin2 噜lu1 噌ceng1 噔deng1 嚆hao1 噤jin4 噱xue2 噫yi1 噻sai1 噼pi1 嚅ru2 嚓cha1 嚯huo4 囔nang1 囗wei2 囝jian3 囡nan1 囵lun1 囫hu2 囹ling2 囿you4 圄yu3 圊qing1 圉yu3 圜yuan2 帏wei2 帙zhi4 帔pei4 帑tang3 帱chou2 帻ze2 帼guo2 帷wei2 幄wo4 幔man4 幛zhang4 幞fu2 幡fan1 岌ji2 屺qi3 岍qian1 岐qi2 岖qu1 岈ya2 岘xian4 岙ao4岢ke3 岽dong1 岬jia3 岫xiu4 岱dai4 岣gou3 峁mao3 岷min2 峄yi4 峒tong2 峤qiao2 峋xun2 峥zheng1 崂lao2 崃lai2 崧song1 崦yan1 崮gu4 崤xiao2 崞guo1 崆kong1 崛jue2 嵘rong2 崾yao3 崴wei1 崽zai3 嵬wei2 嵛yu2 嵯cuo2 嵝lou3 嵫zi1 嵋mei2 嵊sheng4 嵩song1 嵴ji2 嶂zhang4 嶙lin2 嶝deng4 豳bin1 嶷yi2 巅dian1 彳chi4彳shuang1彳ren2彷pang2 徂cu2 徇xun4 徉yang2 後hou4 徕lai2徵zhi3 徼jiao3 衢qu2 彡san1彡pie3犭fan3犭quan3犰qiu2 犴an4 犷guang3 犸ma3 狃niu3 狁yun3 狎xia2 狍pao2 狒fei4 狨rong2 狯kuai4 狩shou4 狲sun1 狴bi4 狷juan4 猁li4 狳yu2 猃xian3 狺yin2 狻suan1 猗yi1 猓guo3 猡luo2 猊ni2 猞she1 猝cu4 猕mi2 猢hu2 猹cha2 猥wei3 猬wei4 猸mei2 猱nao2 獐zhang1 獍jing4 獗jue2 獠liao2 獬xie4 獯xun1 獾huan1 舛chuan3 夥huo3 飧sun1饣shi2饧xing2 饨tun2 饩xi4 饪ren4 饫yu4 饬chi4 饴yi2 饷xiang3 饽bo1 馀yu2 馄hun2 馇cha1 馊sou1 馍mo2 馐xiu1 馑jin3 馓san3 馔zhuan4 馕nang3 庀pi3 庑wu3 庋gui3 庖pao2 庥xiu1 庠xiang2 庹tuo3 庵an1 庾yu3 庳bi4 赓geng1 廒ao2 廑jin3 廛chan2 廨xie4 廪lin3 膺ying1 忄shu4忄xin1忉dao1 忖cun3 忏chan4 怃wu3 忮zhi4 怄ou4 忡chong1 忤wu3 忾kai4 怅chang4 怆chuang4忪zhong1 忭bian4 怛da2 怏yang4 怍zuo4 怩ni2 怫fu2 怊chao1 怿yi4 怡yi2 恸tong4 恹yan1 恻ce4 恺kai3 恂xun2 恪ke4 恽yun4 悖bei4 悚song3 悭qian1 悝li3 悃kun3 悒yi4 悌ti4 悛quan1 惬qie4 悻xing4 悱fei3 惝chang3 惘wang3 惆chou2 惚hu1 悴cui4 愠yun4 愦kui4 愕e4愣leng4 惴zhui4 愀qiao3 愎bi4 愫su4 慊qie4 慵yong1 憬jing3 憔qiao2 憧chong1 憷chu4 懔lin3 懵meng3 忝tian3 隳hui1 闩shuan1。
液相色谱-四极杆飞行时间质谱法对保健食品中30种降糖类非法添加化合物的快速定性检测王琤帅,舒 展,郑蓝君,应斌斌,金 芩(浙江省金华市食品药品检验检测研究院,浙江金华 321000)摘 要:目的:建立液相色谱-四极杆飞行时间质谱法对保健食品中30种降糖类非法添加化合物的快速定性检测方法。
方法:样品经甲醇超声提取后,采用Agilent Poroshell 120 EC-C18(150 mm×3.0 mm,2.7 µm)色谱柱,10 mmol·L-1甲酸铵的0.1%(v/v)甲酸溶液-乙腈为流动相进行梯度洗脱。
30种化合物采用电喷雾离子化正离子检测模式进行分析,建立30种化合物的分子式、一级精确质量、二级碎片离子以及保留时间在内的质谱数据库;在全离子扫描模式下,通过化合物的色谱保留时间、精确质量数、同位素分布和丰度比等信息进行定性匹配;在Target MS/MS模式下,通过二级碎片离子匹配进一步确证,同时以分子离子峰的峰面积定量,实现保健食品中多目标化合物的快速定性定量筛查。
结果:该方法能同时实现30种降糖类化学物的快速定性筛查确证,30种化合物在各自的浓度范围内线性良好(r2>0.99),检出限为5~20 ng·mL-1。
在50 ng·mL-1、100 ng·mL-1和200 ng·mL-1的加标水平下,30种化合物在2种基质中的平均回收率在68.7%~110.5%,平均RSD均小于13%。
实际样品中筛查出2批添加盐酸二甲双胍。
结论:该方法快速、高效、准确、扩展性强,适用于保健食品中降糖类非法添加化合物的高通量快速定性筛查。
关键词:液相色谱-四极杆飞行时间质谱法;降糖;非法添加;保健食品Rapid Qualitative Detection of 30 Anti-diabetic Compouds in Health Foods by Liquid Chromatography-Quadrupole/Time-of-Flight Mass SpectrometryWANG Chengshuai, SHU Zhan, ZHENG Lanjun, YING Binbin, JIN Qin(Jinhua Institute for Durg & Food Control, Jinhua 321000, China)Abstract: Objective: To establish a rapid qualitative detection method for 30 illegally added hypoglycemic compounds in health food using liquid chromatography-quadrupole time-of-flight mass spectrometry. Method: After ultrasonic extraction with methanol, the sample was extracted using Agilent Poroshell 120 EC-C18 (150 mm×3.0 mm, 2.7 µm) chromatographic column was used, with a 0.1% (v/v) formic acid solution of 10 mmol·L-1 ammonium formate and acetonitrile as the mobile phase for gradient elution. 30 compounds were analyzed by electrospray ionization positive ion detection mode, and a mass spectrometry database including the molecular formula, primary accurate mass, secondary fragment ions and retention time of 30 compounds was established; in the full ion scanning mode, qualitative matching is performed through information such as the chromatographic retention time, accurate mass number, isotope distribution, and abundance ratio of the compound; in Target MS/MS mode, further confirmation is achieved through secondary fragment ion matching, while quantifying the peak area of molecular ion peaks to achieve rapid qualitative and quantitative screening of multi-objective compounds in health food. Result: This method can simultaneously achieve rapid qualitative screening and confirmation of 30 hypoglycemic chemicals, and the 30 compounds have good linearity within their respective concentration ranges (r2>0.99), with a detection limit of 5~20 ng·mL-1. At spiked levels of 50 ng·mL-1, 100 ng·mL-1, and 200 ng·mL-1, the average recoveries of 30 compounds基金项目:浙江省公益技术研究计划(LGC21H300002)。
带声调的汉语拼音表大全注意:拼音后面的1、2、3、4分别表示一声、二声、三声四声;0表示轻声a1吖阿啊锕a2嗄ai1哎哀唉埃锿锿gai2挨捱皑b皑癌ai3l矮蔼t蔼c霭霭ai4嗳嗳艾爱砹v隘a嫒爱碍暧瑷v嫒b暧瑷}lpan1安^桉氨庵谙sw鹌y鞍qkvan2an3埯俺埯铵@揞o铵an4c犴岸按i案胺t暗b黯ang1肮肮ang2昂nang4盎lao1凹nao2敖j嗷廒e獒遨煮ht翱聱螯ko鳌鏖鳌鳌ao3b袄媪o袄ao4坳eqj岙uc傲s奥r骜奥岙澳懊鏊ba1八巴叭摸[xb岜芭疤^捌笆粑jm^rba2iz忽茇j_菝跋r魃ba3把靶ba4坝y爸罢鲅f霸坝灞ba0吧bai1掰bai2白bai3百佰柏捭qChalanconbai4大败拜败稗bban1扳班般颁斑搬瘢癍nban3阪坂l板版钣{舨钣z板ban4办半伴e煮歪t歪[办瓣ban0扮bang1邦帮忙梆浜帮忙dbang3被绑被绑榜bang4rg蚌傍棒谤ym磅镑谤bao1勹包孢苞胞煲龅}褒龅剥fbao2雹薄bao3宝饱保鸨堡~葆饱褓hr鸨宝d宀bao4a报抱著豹鲍sb暴鲍自爆td瀑bei1o卑杯杯g悲背碑鹎鹎wbei3北mbei4贝狈贝邶备kp背钡p倍悖狈被fdf备f惫焙ik辈碚f蓓rc辈钡惫l鞴鐾孛bei0呗呗褙ben1奔贲锛锛ben3本苯m畚ben4y`g坌l屎beng1哀帝坐立a嘣beng2甭beng3eebeng4坐立坐立泵周身l甏g滚agbi1逼迫ss[bi2荸鼻bi3匕比a吡妣ah彼秕俾笔舭笔鄙bi4贲币必毕闭f庇p畀n哔毖r荜陛毙狴毕铋婢庳敝a萆][闭合弼愎z筚vcp哔滗痹b蓖荜裨跸s币弊碧箅a倚eMontignyxk壁嬖y篦筚o薜v躲避i斩濞臂跸髀`璧{v襞g@{klxfezgbian1边砭笾编煸蝙q鳊鞭b鳊笾xbian3pq编贬扁窆匾碥h褊duxbian4卞弁忭\m汴苄便变小co不下rgl辨辩辫辫变fbian0边biao1彪标飑髟yw骠膘瘭镖飙飚[dga镖镳飙kln镳biao2biao3表婊裱f表中~biao4标l鳔鳔bie1发抖鳖鳖鳖bie2别arxh蹩bie3瘪瘪bie4别bie0别bin1宾彬傧斌滨缤槟宾f镔濒滨m豳濒e缤镔bin4傧摈殡膑摈殡膑髌鬓髌鬓bing1l 冰兵槟bing3@s丙邴vtm秉u\m柄炳s禀vbing4并并并v病p}摒@mh疒bing0饼饼bo1鲅趵h挥波玻cj钵钵菠\`播出@qbo2y`b脖伯驳帛泊n勃`r亳z钹铂k舶博渤鹁搏钹铂ak箔膊c驳踣cdnr~no鹁q 礴}bo3跛bo4簸x擘\lybo0饽啵饽卜bu1m逋钸晡钸c~bu2kbu3卜卟迁调哺捕glqbu4j醭不布布步怖hi钚部埠瓿ey^x簿pbu0补ca1擦ca3礤gca4ncai1猜猜cai2才材财财裁cai3改采u彩采睬p彩摔cai4采菜蔡ncan1参{骖餐骖|can2残蚕惭残惭]l蚕tcan3惨惨黪黪pcan4灿粲l灿璨cang1仓沧苍舱沧苍p舱@[cang2藏cang4cao1壮亚菊cao2曹嘈漕槽g艚螬[cao3艹艹草xcao4h_ce4册侧厕恻测ry恻测策mzxcen1cen2岑q涔ceng1噌ceng2层层}曾ceng4蹭cha1嚓叉o杈pa挂c锸锸cha2密茬茶涂抹猹x槎察碴檫cha3衩镲镲cha4g汊岔诧姹差pchai1k拆钗钗chai2侪柴}豺侪chai4虿瘥虿chan1觇{掺搀ichan2{婵谗孱禅馋婵蝉sa廛潺cve蟾fs躔kb谗嚼澶chan3产cp谄产b铲阐蒇铲i蒇谄o冁a铲阐冁骣chan4gi}纯阳颤忏羼]chan0缠缠chang1伥昌娼c猖菖阊dm_鲳鲳chang2短肠苌尝偿常徜d苌^肠闻嫦q偿尝^llchang3厂场昶惝场敞y厂氅chang4怅畅倡鬯唱怅畅kochao1抄怊钞焯超绰chao2晁巢z朝}r嘲潮jvcchao3吵炒|lchao4耖eche1车砗qp砗che3拽che4屮彻坼es掣j彻撤澈uchen1抻郴琛嗔ochen2尘臣忱沉辰陈宸k晨h谌zc尘i谌lmchen3p碜}{chen4衬m龀趁榇y龀谶谶chen0伧伧碜衬cheng1表示p柽蛏bwrl撑撑b瞠xd柽蛏dpcheng2伥丞成呈承枨诚j城kw^乘埕a铖惩枨程f塍s酲铖澄橙rj惩rcheng3裎逞骋骋cheng4称v秤cheng0诚chi1喝w哧蚩鸱e眵笞嗤媸恨l螭鸱a恨魑c~j[chi2弛池驰迟i茌持hmpwg驰墀踟篪schi3尺l侈q齿n耻耻n豉nlr褫齿。
《定性比较分析与国际关系研究》篇一一、引言国际关系研究是探索国际体系中各种国家行为体之间的相互影响、相互作用及其影响的规律和模式的科学。
近年来,定性比较分析(QCA)作为一种研究方法在国际关系研究中逐渐崭露头角。
它不同于传统的定量分析方法,更多地关注个案之间的比较和深度的理解。
本文旨在探讨定性比较分析在国际关系研究中的应用及其优势。
二、定性比较分析概述定性比较分析是一种在社会科学领域广泛应用的定性研究方法。
它通过对案例的深度描述和比较,识别案例间的共性和差异,并探讨其中的因果关系和解释逻辑。
在定性比较分析中,案例选择的重要性、研究者的主观性和对证据的多元性是其关键特征。
这种方法为国际关系研究提供了新的视角和方法论工具。
三、定性比较分析在国际关系研究中的应用(一)国际政治经济在探讨国家经济政策和经济关系对国际关系的影响时,定性比较分析有助于研究者从深层次揭示其影响机制和内在逻辑。
例如,可以通过对比不同国家在经济危机应对措施上的差异,分析其政策选择背后的政治、经济和文化因素,以及这些因素如何影响国家的外交政策和国际地位。
(二)国际安全与冲突研究在冲突和安全领域,定性比较分析可以用于研究不同国家在处理国际冲突时的策略和行动逻辑。
通过深入分析和比较案例,可以发现国家之间在处理冲突时的不同态度和行为模式,从而更好地理解国际冲突的起因和解决机制。
(三)国际合作与区域一体化在国际合作和区域一体化方面,定性比较分析可以用于探究不同地区和不同国家间合作模式的特点和影响因素。
通过对比不同地区的合作案例,可以揭示出合作成功的关键因素和合作过程中可能面临的挑战。
四、定性比较分析的优势与传统的定量分析方法相比,定性比较分析在国际关系研究中的优势主要体现在以下几个方面:(一)关注个案的深度理解定性比较分析注重对个案的深度理解和描述,能够揭示出个案之间的共性和差异,以及其中的因果关系和解释逻辑。
这使得研究者能够更全面地了解国际关系的复杂性和多样性。
2024年定性调研方案模板调研方案模板:2024年定性调研1. 研究目的:本次调研旨在了解2024年社会、经济和政治领域的变化情况,并探究其背后的原因和影响因素,以为决策者提供参考和决策依据。
2. 研究内容:(1)社会领域:关注社会变革、人口变动以及社会发展方向等。
(2)经济领域:研究经济发展趋势、行业调整和市场竞争情况等。
(3)政治领域:了解政治形势、国际关系发展和政策调整等。
3. 调研方法:(1)文献调研:通过收集、整理和分析相关的书籍、期刊、报纸等文献资料,深入研究和理解相关主题。
(2)专家访谈:与相关领域的专家进行面对面或远程访谈,获取专业意见和观点,增加研究深度。
(3)问卷调查:设计和发放针对不同群体的问卷调查,收集大量数据和观点,进行统计分析。
(4)实地调研:组织实地考察,观察相关领域的现状和趋势,获取第一手资料。
4. 调研步骤:(1)制定调研计划:明确研究内容和目标,并细化调研方法和步骤。
(2)文献调研:收集相关文献资料,分析和整理研究对象的历史和现状。
(3)专家访谈:联系相关专家,进行面对面或远程访谈,获取专业意见和观点。
(4)问卷调查:设计合适的问卷,通过线上或线下方式发放,并进行数据收集和分析。
(5)实地调研:组织实地考察,观察相关领域的现状和趋势,获取第一手资料。
(6)数据分析:对文献资料、专家访谈和问卷调查的数据进行统计分析和综合评估。
(7)撰写研究报告:根据调研结果,撰写详细的研究报告,包括调研目的、方法、结果和结论等。
5. 预期成果:(1)研究报告:撰写一份详实、准确的研究报告,包括调研结果和分析,为决策者提供参考和决策依据。
(2)数据分析:对调研数据进行统计和分析,揭示2024年社会、经济和政治领域的变化趋势和原因。
(3)政策建议:根据研究结果,提出相应的政策建议,为未来的决策制定提供参考。
6. 调研时间安排:(1)文献调研:____年11月-2024年1月(2)专家访谈:2024年2月-2024年3月(3)问卷调查:2024年4月-2024年5月(4)实地调研:2024年6月-2024年8月(5)数据分析和报告撰写:2024年9月-2024年11月7. 预期预算:本次调研预计需要资金约XXX万元,包括文献购买、专家费用、问卷调查和实地调研等。
〔2〕杨自然,牛雅祺,王坤 中药调剂管理中药配方颗粒与中药饮片应用对比分析〔J〕 新中医,2020,52(06):203 205〔3〕王金,廖元冠,许江华 传统中药饮片调剂方式与中药配方颗粒调剂方式的临床应用价值比较〔J〕 中国现代药物应用,2020,14(09):202 204〔4〕张霓,钟耀翠,江茜 中药传统汤剂与配方颗粒治疗糖尿病肾病的效果及安全性比较〔J〕 中国现代药物应用,2020,14(09):187 189〔5〕朱艳 中药配方颗粒与传统中药饮片调剂方式的应用效果比较〔J〕 临床合理用药杂志,2020,13(05):106 107〔6〕樊俐慧,韦宇,朱向东,等 浙贝母的临床应用及其用量〔J〕 长春中医药大学学报,2020,36(01):23 25〔7〕王翰华,陈雁虹,姜雨辰 浙贝母 知母药对的止咳、化痰及平喘作用研究〔J〕 中华中医药杂志,2019,34(06):2474 2476 〔8〕张晓芹,吕虹艳,蓝艳,等 基于HPLC ELSD对浙贝母功效成分地理变异的研究〔J〕 中国医药导报,2020,17(03):110 114 〔9〕肖宏华,马长华,赫军,等 HPLC法测定平肺口服液中5个成分的含量〔J〕 药物分析杂志,2019,39(03):531 538〔10〕龚盼竹,谢慧敏,谢慧淦,等 暗紫贝母与卷叶贝母的栽培品HPLC ELSD指纹图谱及对比分析研究〔J〕 华西药学杂志,2019,34(05):485 489小儿柴桂退热颗粒定性定量方法的研究喻亮宇,黄海萍,蒋国梅,陈佳琪(湖南省医疗器械检验检测所,湖南长沙410001)摘要:目的 研究小儿柴桂退热颗粒的质量控制标准。
方法 采用薄层色谱法对小儿柴桂退热颗粒中柴胡、桂枝进行定性鉴别,并采用高效液相色谱法对葛根素进行含量测定。
结果 薄层色谱分离清晰,阴性无干扰。
葛根素在0 00842~4 21μg范围内线性良好,R=1 0000,平均回收率为99 30%,RSD=0 54%(n=9)。
薄层色谱法用于补中益气丸中柴胡定性鉴别的研究【摘要】目的:建立补中益气丸中柴胡的薄层色谱鉴别方法。
方法:采用薄层层析法对处方中柴胡进行定性鉴别。
结果:所建立的方法可鉴别出处方中柴胡的特征斑点,阴性无干扰。
结论:该方法操作简单,重现性好,专属性强,可作为补中益气丸中柴胡的定性鉴别方法。
【关键词】补中益气丸;薄层色谱法;柴胡;定性鉴别;质量控制补中益气丸(水丸)由炙黄芪、党参、炙甘草、炒白术、当归、升麻、柴胡、陈皮等8味中药组方,具有补中益气、升阳举陷的功效,临床上主要用于治疗脾气虚弱、中气下陷所致的泄泻、脱肛、阴挺,症见体卷乏力、食少腹胀、便溏久泻、肛门下坠或脱肛、子宫脱垂。
[1]《中华人民共和国药典》2010版一部收载的补中益气丸(水丸)中有甘草、当归及陈皮的薄层色谱鉴别,无柴胡的薄层色谱鉴别,对此,我们采用薄层色谱法对补中益气丸中的柴胡进行定性鉴别实验,探索补中益气丸中是否可以将柴胡作为定性鉴别。
1 材料1.1 仪器与试药ZF-90型多功能暗箱式紫外透射仪;硅胶G薄层板为自制,试剂均为分析纯。
1.2 对照品与样品1.2.1 对照品柴胡对照药材,批号为120992-200906,由中国药品生物制品检验所提供。
1.2.2 样品2 方法与结果2.1 溶液的制备2.1.1 样品溶液的制备取样品补中益气丸各5g,研碎,加40ml甲醇加热回流1个小时,滤过,滤液蒸干,加水20ml使溶解,用水饱和的正丁醇振摇提取2次,每次20ml,合并提取液,用氨试液洗涤2次,每次20ml,弃去洗涤液,正丁醇液蒸干,残渣加甲醇1ml使溶解,作为供试品溶液。
2.1.2 对照药材溶液的制备2.1.3 阴性对照溶液的制备按处方配比模拟标准工艺制成缺柴胡的阴性对照样品,按①项下的方法操作,作为阴性对照溶液。
2.2 薄层色谱鉴别按照薄层色谱法(《中国药典》2010版一部附录VI B)试验,吸取上述三种溶液各10μl,分别点于同一硅胶薄层板上,以乙酸乙酯-乙醇-水(8:2:1)为展开剂,展开,取出,晾干,喷以2%对二甲氨基苯甲醛的10%硫酸乙醇溶液,在105℃加热至斑点显色清晰,置紫外光灯(365nm)下检视,供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色的荧光斑点,而阴性对照品液在相应的位置上无上述主斑点。
a1 吖阿啊锕a2 嗄ai1 哎哀唉埃溾锿鎄銰ai2 挨啀捱皑凒溰嘊皚癌ai3 毐昹矮蔼躷藹譪霭靄ai4 嗳噯艾伌爱砹硋隘塧嫒愛碍暧瑷僾壒嬡懓薆曖璦鴱皧瞹馤鑀an1 安峖桉氨庵谙萻腤鹌蓭誝鞌鞍盦馣盫韽an2 啽雸an3 侒垵俺唵埯铵隌揞罯銨an4 闇鮟晻犴岸按荌案胺豻堓暗貋儑錌黯ang1 肮骯ang2 岇昂昻枊ang4 盎醠ao1 凹爊ao2 敖厫隞嗷嗸廒滶獒獓遨熬璈蔜翱聱螯翶翺鳌鏖鰲鼇ao3 芺袄媪镺襖ao4 坳垇柪軪嶅謷鷔抝岙扷岰傲奡奥嫯慠骜奧嶴澳懊擙謸鏊ba1 八仈巴叭扒朳玐夿岜芭疤哵捌笆粑紦羓蚆釟豝釛丷ba2 叐犮抜坺拔茇炦癹胈菝跋軷魃ba3 把靶ba4 鲃坝弝爸罢鲅覇矲霸壩灞欛ba0 吧bai1 挀掰bai2 白bai3 百佰柏栢捭竡粨摆擺bai4 拝败拜敗稗粺薭贁ban1 扳攽班般颁斑搬斒瘢癍辬ban3 阪坂岅昄板版瓪钣粄舨鈑蝂魬闆ban4 办半伴姅怑拌绊秚絆鉡靽辦瓣ban0 扮bang1 邦垹帮捠梆浜邫幇幚幫鞤bang3 绑綁榜bang4 縍玤蚌傍棒谤塝稖蜯磅镑艕謗bao1 勹包佨孢苞胞笣煲龅蕔褒闁齙剥裦bao2 窇雹薄bao3 宝饱保鸨珤堡堢媬葆寚飹飽褓駂鳵緥鴇賲藵寳寶靌宀bao4 怉勽报抱豹菢鲍靤骲暴髱虣鮑儤曓爆忁鑤蚫瀑bei1 襬卑杯盃桮悲揹碑鹎藣鵯柸 ?bei3 北鉳bei4 垻贝狈貝邶备昁牬苝背钡俻倍悖狽被偝偹梖珼鄁備僃惫焙琲軰辈愂碚禙蓓蛽犕誖骳輩鋇憊糒鞴鐾孛bei0 呗唄褙ben1 奔贲犇锛錛ben3 本苯奙畚楍翉ben4 泍倴渀逩坌捹桳笨撪輽beng1 伻崩绷閍嵭嘣傰beng2 甭beng3 埲菶琫鞛beng4 綳繃泵迸塴甏镚蹦鏰揼bi1 屄毴逼鲾鵖鰏楅榌bi2 荸鼻bi3 匕比夶朼佊吡妣沘疕彼柀秕俾笔舭筆鄙聛貏bi4 鞁賁粊币必毕闭佖坒庇诐妼怭畀畁哔毖珌疪荜陛毙狴畢袐铋婢庳敝梐萆萞閇閉堛弻弼愊愎湢皕禆筚詖貱赑嗶彃滗滭煏痹腷蓖蓽蜌裨跸閟飶幣弊熚獙碧箅綼蔽鄪馝幤潷獘罼襅駜髲壁嬖廦篦篳縪薜觱避鮅斃濞臂蹕髀奰璧鄨饆繴襞襣鏎韠躃躄魓贔鐴驆鷝鷩鼊鸊bian1 边砭笾编煸箯蝙獱邉鍽鳊鞭鯾鯿籩辺bian3 豍萹編贬扁窆匾惼碥稨褊糄鴘藊bian4 邲卞弁忭抃汳汴苄釆便变変昪覍徧揙遍閞辡艑辧辨辩辫辮變玣bian0 邊biao1 彪标飑髟猋墂幖滮骠熛膘瘭镖飙飚儦颷瀌爂臕贆鏢镳飆飇飈飊鑣磦biao2 嫑biao3 表婊裱諘褾錶檦biao4 脿標俵摽鳔鰾bie1 憋鳖鱉鼈虌龞bie2 柲苾别咇莂蛂徶襒蟞蹩bie3 瘪癟bie4 別bie0 彆bin1 邠宾彬傧斌椕滨缤槟瑸賓賔镔濒濱濵虨豳瀕霦繽鑌顮bin4 儐摈殡膑髩擯鬂殯臏髌鬓髕鬢bing1 絣仌氷冰兵栟掤梹檳仒bing3 鞞鞸丙邴陃怲抦秉苪昞昺柄炳窉蛃棅禀鈵餠bing4 并並併幷庰倂栤病竝偋傡寎摒誁鮩靐疒bing0 饼餅bo1 妭鮁趵癶拨波玻盋砵钵紴缽菠鉢僠嶓播蹳驋鱍溊bo2 詙萡袯脖仢伯驳帛泊狛瓝侼勃柭胉郣亳挬浡秡钹铂桲舶博渤葧鹁愽搏鈸鉑馎鲌僰煿牔箔膊艊馛駁踣鋍镈駮鮊懪礡簙鎛餺鵓犦欂襮礴鑮bo3 跛箥bo4 簸孹擘糪譒蘗bo0 饽啵餑蔔bu1 峬庯逋钸晡鈽誧巭bu2 轐bu3 卜卟补哺捕鳪鵏鸔bu4 餔醭不布佈步咘怖歨歩钚勏埗悑部埠瓿廍蔀踄篰餢簿抪bu0 補ca1 擦ca3 礤礸ca4 遪cai1 猜cai2 才材财財裁cai3 采倸婇寀彩採睬跴綵踩毝啋cai4 埰菜棌蔡縩can1 参飡骖湌嬠餐驂爘can2 残蚕惭殘慚蝅慙蠶蠺can3 惨慘憯黪黲 ?can4 灿粲儏澯薒燦璨cang1 仓沧苍舱凔嵢滄獊蒼濸艙螥篬cang2 藏鑶cang4 賶cao1 撡操糙cao2 曺曹嘈嶆漕蓸槽褿艚螬鏪cao3 艹艸草愺騲cao4 肏襙ce4 册侧厕恻测荝敇萗惻測策萴筞蓛墄箣憡cen1 嵾cen2 岑梣涔ceng1 噌ceng2 层層竲驓曾ceng4 蹭cha1 嚓叉芆杈肞臿挿偛嗏插揷銟锸艖鍤cha2 垞查査茬茶嵖搽猹靫槎察碴檫cha3 衩镲鑔cha4 奼汊岔侘诧姹差紁chai1 扠疀拆钗釵chai2 犲侪柴祡豺喍儕chai4 訍虿袃瘥蠆囆chan1 觇梴掺搀鋓chan2 辿婵谗孱棎湹禅馋嬋煘獑蝉誗鋋廛潹潺緾磛毚鄽瀍劖蟾酁嚵壥巉瀺纒躔镵艬讒鑱饞澶chan3 产旵丳浐谄產産铲阐蒇剷嵼滻蕆諂閳簅冁繟鏟闡囅灛讇骣chan4 裧幨儳刬剗幝忏硟摲懴颤懺羼韂chan0 缠纏chang1 伥昌娼淐猖菖阊晿琩裮锠錩鲳鯧鼚chang2 长兏肠苌尝偿常徜瓺萇甞腸嘗嫦瑺膓鋿償嚐蟐鲿鏛鱨仩chang3 厂场昶惝場敞僘厰廠氅鋹chang4 怅畅倡鬯唱悵暢畼誯韔chao1 抄弨怊欩钞焯超绰chao2 牊晁巢巣朝鄛漅嘲樔潮窲罺轈chao3 吵炒眧煼麨巐chao4 仦耖觘che1 车砗唓莗硨蛼che3 扯偖撦伬che4 屮彻坼迠烢聅掣硩頙徹撤澈勶瞮爡chen1 抻郴棽琛嗔諃賝chen2 尘臣忱沉辰陈茞宸莐敐晨訦谌揨煁蔯塵樄瘎霃螴諶薼麎曟鷐chen3 醦趻硶碜墋夦踸贂chen4 衬疢龀趁榇齓齔嚫谶讖chen0 伧傖磣襯cheng1 罉称阷泟柽棦浾偁蛏琤赪憆摚靗撐撑緽橕瞠赬頳檉穪蟶鏳鏿饓鐣cheng2 倀丞成呈承枨诚郕城宬峸洆荿乘埕挰珹掁窚脭铖堘惩棖椉程筬絾塍塖溗碀畻酲鋮澄橙檙鯎瀓懲騬cheng3 裎悜逞骋庱睈騁cheng4 稱爯牚竀秤cheng0 誠chi1 吃妛侙哧彨蚩鸱瓻眵笞嗤媸摛痴瞝螭鴟鵄癡魑齝攡麶彲黐殦chi2 弛池驰迟岻茌持竾蚳筂貾遅遟馳墀踟篪謘chi3 尺叺呎肔侈卶齿垑胣恥耻蚇豉歯裭鉹褫齒誀chi4 杘訵彳叱斥灻赤饬抶勅恜炽翄翅敕烾痓啻湁傺痸腟鉓雴憏翤遫慗瘛翨熾懘趩饎鶒鷘chong1 充冲忡茺浺珫翀舂嘃摏憃憧罿艟蹖chong2 虫崇崈隀褈chong3 宠chong4 沖衝铳銃chou1 抽紬瘳篘犨犫 ?chou2 仇俦栦惆绸菗畴絒愁皗稠筹酧酬踌雔嬦懤燽雠疇躊讎讐鮘chou3 丑丒吜杽侴瞅醜矁魗chou4 臭遚殠chu1 出岀初摴樗貙齣chu2 刍除厨滁蒢豠锄耡蒭蜍趎雏犓廚篨橱幮櫉躇櫥蹰鶵躕媰chu3 杵础椘储楮楚褚濋儲檚璴礎齭齼chu4 亍処处竌怵拀绌豖竐珿絀傗琡鄐搐触踀閦儊憷斶歜臅黜觸矗觕畜chu0 處chua1 欻chuai1 搋揣chuai2 膗chuai4 欼踹膪 ? ?chuan1 巛川氚穿剶chuan2 瑏传舡船遄椽暷輲chuan3 歂舛荈喘chuan4 猭汌串玔钏釧賗chuang1 刅疮窓窗牎摐牕瘡窻囪蔥chuang2 床牀噇chuang3 闯傸磢闖chuang4 仺倉创怆刱剏剙創愴chui1 吹炊龡chui2 圌垂埀桘陲捶菙棰槌锤錘顀chun1 旾杶春萅堾媋暙椿槆瑃箺蝽橁櫄鰆鶞 ?chun2 纯陙唇浱莼淳脣犉滣蒓鹑漘醇醕鯙chun3 僢偆萶惷睶賰踳蠢chuo1 踔戳逴chuo4 繛啜娕娖惙涰辍酫趠輟龊擉磭歠嚽齪鑡chuo0 綽ci1 呲疵趀偨ci2 词珁垐柌祠茨瓷詞辝慈甆辞磁雌鹚糍辤飺餈嬨濨鴜礠辭鶿鷀ci3 玼此佌皉跐ci4 廁朿次佽刺刾庛茦栨莿絘蛓赐螆賜cong1 囱匆苁忩枞茐怱悤焧葱漗聡骢暰樬瑽璁聦聪瞛篵聰蟌繱鏦騘驄謥cong2 从從丛従婃孮徖悰淙琮慒誴賨賩樷藂叢灇欉爜cou4 凑湊楱腠辏輳cu1 粗麁麄麤cu2 徂殂cu4 促猝媨瘄蔟誎趗憱醋瘯簇縬蹙鼀蹴蹵顣cuan1 汆撺镩蹿攛躥cuan2 攅櫕巑cuan4 鑹窜熶篡殩簒竄爨cui1 崔催凗墔慛摧榱獕磪鏙cui3 漼璀皠cui4 忰疩紣翆脃脆啐啛悴淬萃毳焠瘁粹翠膵膬竁臎粋cun1 膥邨村皴竴cun2 澊存cun3 刌忖cun4 寸籿cuo1 襊搓瑳遳磋撮蹉髊cuo2 虘嵯嵳痤矬蒫蔖鹾鹺齹cuo3 醝脞cuo4 縒剉剒厝夎挫莝莡措逪棤锉蓌错銼錯da1 咑哒耷畣搭嗒褡噠垯da2 墶达妲怛炟羍荙匒笪答詚瘩靼薘鞑繨蟽鐽龖龘迚da3 打da4 大亣眔da0 跶躂dai1 呆獃懛嘚dai3 歹傣逮dai4 代汏轪侢垈岱帒甙绐迨带待怠柋殆玳贷帯軑埭帶紿袋軩瑇叇曃緿鴏戴艜黛簤瀻霴襶黱靆dan1 覘襜愖丹妉单担単眈砃耼耽郸聃躭媅殚匰箪褝儋勯殫襌簞聸卩亻dan3 燀刐玬瓭胆衴疸紞掸澸黕膽dan4 譂瘅癉狚亶馾旦但帎沊泹诞柦疍啖啗弹惮淡萏蛋啿氮腅蜑觛窞誕僤噉髧憚憺澹禫駳鴠甔癚嚪贉霮饏蓞弾dan0 擔dang1 铛当珰裆筜澢璫襠簹艡蟷dang3 挡党谠灙dang4 儅噹擋譡讜氹凼圵宕砀垱荡档菪瓽雼碭瞊趤壋檔璗盪礑dang0 當dao1 裯刀叨忉氘舠釖鱽魛dao3 捯导岛陦倒島捣祷禂隝嶋嶌導隯壔嶹擣蹈禱dao4 帱儔幬到悼盗菿盜道稲噵稻衜檤衟翿軇瓙纛艔dao0 搗de2 恴得淂悳惪锝徳德鍀de0 的den4 扥扽deng1 灯登豋噔嬁燈璒竳簦艠覴蹬deng3 等戥朩deng4 澂邓凳鄧隥墱嶝瞪磴镫櫈鐙di1 仾低彽袛啲埞羝隄堤趆嘀滴磾鍉鞮di2 踧镝鏑廸狄肑籴苖迪唙敌涤荻梑笛觌靮滌嫡蔋蔐頔敵嚁藡豴糴鸐馰樀di3 坘氐厎诋邸阺呧坻底弤抵柢牴砥菧軧聜骶di4 赿掋地弟旳玓怟俤帝埊娣递逓偙梊焍眱祶第菂谛釱棣睇缔蒂僀禘腣鉪墑墬碲蔕慸甋締嶳踶螮dia3 嗲dian1 敁掂傎厧嵮滇槙瘨颠蹎巅癫巓巔攧癲齻dian3 典奌点婰敟椣碘蒧蕇踮嚸丶dian4 頕电佃甸坫店垫扂玷钿婝惦淀奠琔殿蜔電壂橂澱靛磹癜簟驔diao1 刁叼汈刟虭凋奝弴彫蛁琱貂碉雕鮉鲷鼦鯛鵰diao3 扚屌diao4 魡弔伄吊钓窎訋调掉釣铞鈟竨銱雿瘹窵鋽藋鑃铫罀die1 蹛爹跌die2 跮褺苵迭垤峌恎绖胅瓞眣耊戜谍喋堞畳絰耋詄叠殜牃牒镻嵽碟蜨褋艓蝶蹀鲽曡疉疊氎ding1 虰丁仃叮帄玎疔盯耵靪亇町ding3 酊奵顶頂鼎嵿薡鐤ding4 蝊钉订饤矴定訂飣啶萣椗腚碇锭碠錠磸顁铤ding0 釘diu1 丟丢铥颩銩dong1 东冬咚岽東苳昸氡鸫埬崬涷笗菄氭蝀鮗鼕鯟鶇徚dong3 揰董嬞懂箽蕫諌dong4 倲娻动冻侗垌姛峒挏栋洞胨迵凍戙胴動崠硐棟湩腖働駧霘dou1 瞗剅唗都兜兠蔸橷篼dou2 唞dou3 阧抖钭陡蚪dou4 斗豆郖浢荳逗饾鬥梪脰酘痘閗窦鬦餖斣闘鬪鬬鬭du1 嘟督醏du2 竇毒涜读渎椟牍犊裻読蝳獨錖凟匵嬻瀆櫝殰牘犢瓄皾騳黩讀豄贕韣髑鑟韇韥黷讟独du3 厾笃堵帾琽赌睹覩賭篤du4 詫芏妒杜肚妬度荰秺渡靯镀螙殬鍍蠧蠹duan1 篅偳媏端鍴duan3 短duan4 段断塅缎葮椴煅瑖腶碫锻緞毈簖鍛斷躖籪縀dui1 搥鎚垖堆塠嵟痽磓鴭dui3 頧dui4 錞队对兊兑対祋怼陮碓綐憝濧薱懟瀩譈譵dui0 兌對dun1 鐜镦鐓吨惇敦墩墪壿撴獤噸撉犜礅蹲蹾驐dun3 盹趸躉dun4 伅囤沌炖盾砘逇钝顿遁鈍頓碷遯憞潡燉踲duo1 鄲多夛咄哆剟毲裰嚉掇敪duo2 夺铎剫敓敚痥鈬奪凙踱鮵鐸duo3 奲崜朵朶哚垛埵缍椯趓躱躲綞亸鬌嚲duo4 吋杕枤挅挆刴剁陊饳垜尮桗堕舵惰跢跥跺飿嶞憜墯鵽e1 妿屙婀e2 讹囮迗俄娥峨峩涐莪珴訛皒睋鈋锇鹅蛾磀頟额額鵝鵞譌隲e3 妸娿誐砈騀e4 娾枙厄歺戹阨扼苊阸呝砐轭咢咹垩峉匎恶砨蚅饿偔卾悪硆谔軛鄂堮崿愕湂萼豟軶遌遏廅搹琧腭僫蝁锷鹗蕚遻頞颚餓噩擜覨諤餩鍔鳄歞顎櫮鰐鶚讍鑩齶鱷鈪垭e0 呃ei1 欸en1 奀恩蒽en2 唔en3 峎en4 摁嗯eng1 鞥er2 儿而侕陑峏洏荋栭胹袻鸸輀鲕隭髵鮞鴯轜er3 尔耳迩洱饵栮毦珥铒餌駬薾邇趰衈er4 鉺二弍弐刵咡贰貮貳fa1 发沷発彂fa2 貶撥乏伐姂垡疺罚阀栰傠筏瞂罰閥罸藅笩fa3 佱法砝鍅灋fa4 髪珐琺fa0 發髮fan1 帆番勫噃墦嬏幡憣旙旛翻藩轓颿籓飜鱕蕃fan2 舩凡凢凣匥杋柉矾籵钒舤烦舧笲棥緐樊橎燔璠薠繁襎繙羳蹯瀿礬蘩鐇蠜鷭fan3 釩反仮払返攵犭fan4 忛氾犯奿汎泛饭范贩畈訉軓梵盕笵販軬飯飰滼嬎範嬔瀪fan0 煩fang1 祊匚方邡坊芳枋牥钫淓蚄鈁fang2 堏防妨房肪埅鲂魴fang3 眪鴋仿访纺昉昘瓬眆倣旊紡舫訪髣鶭fang4 放fei1 飞妃非飛啡婓婔渄绯菲扉猆靟裶緋霏鲱餥馡騑騛飝暃fei2 肥淝腓蟦fei3 胇蜚匪诽奜悱斐棐榧翡蕜誹篚陫fei4 墢鼥襏橃鯡蜰吠废杮沸狒肺昲费俷剕厞疿屝萉廃痱镄廢蕟曊癈鼣濷櫠鐨靅芾fen1 分吩帉纷芬昐氛玢竕紛翂棻訜酚鈖雰朆餴饙妢兝fen2 朌頒獖坟岎汾枌炃肦梤羒蚠蚡棼焚蒶馚隫蕡鳻燌豮鼢羵鼖豶轒鐼馩黂fen3 粉瞓黺fen4 墳幩魵橨燓份坋弅奋忿秎偾愤粪僨憤奮膹糞鲼瀵鱝feng1 丰风仹凨凬妦沣沨凮枫封疯盽砜峯峰偑烽琒崶猦锋楓犎蜂瘋碸僼鄷鋒檒豐鎽鏠酆寷灃靊麷蠭feng2 埄渢溄篈冯捀逢堸艂feng3 風飌讽覂唪諷feng4 桻葑綘凤奉甮俸湗焨煈赗鳯鳳鴌賵feng0 缝縫fiao4 覅fo2 仏佛坲fou2 紑fou3 缶否缹缻雬鴀fu1 夫邞呋玞肤怤砆荂衭娐尃荴旉趺麸稃跗筟綒孵敷麩糐麬麱懯抙fu2 颰韛袚費伕姇枎乀弗伏凫甶冹刜孚扶芙芣咈岪帗彿怫拂服泭绂绋苻茀俘垘枹柫氟炥玸畉畐祓罘茯郛韨鳬哹栿浮畗砩莩蚨匐桴涪烰琈符笰紱紼翇艴菔虙幅絥罦葍福粰綍艀蜉辐鉘鉜颫鳧稪箙韍幞澓蝠髴鴔諨踾輻鮄癁鮲黻鵩鶝fu3 柎胕酜鈇抚甫府弣拊斧俌郙俯釜釡辅椨焤盙腑滏腐輔簠黼乶fu4 報偪紨豧洑榑複捬父讣付妇负附咐坿竎阜驸复祔訃負赴蚥袝偩冨副婏蚹傅媍富復秿萯蛗覄詂赋椱缚腹鲋禣褔赙緮蕧蝜蝮賦駙縛輹鮒賻鍑鍢鳆覆馥鰒fu0 袱婦ga1 旮伽嘎呷ga2 嘠钆尜噶錷ga3 尕玍ga4 尬魀gai1 该陔垓姟峐荄晐赅畡祴隑該豥賅賌gai3 忋改絠鎅gai4 丐乢匃匄钙盖溉葢鈣戤概槩槪漑瓂gan1 玵甘迀玕肝坩泔苷柑竿疳酐粓亁凲尲尴筸漧尶尷魐矸gan3 芉杆皯秆衦赶敢笴稈感澉趕橄擀鳡鱤gan4 干簳旰盰绀倝凎淦紺詌骭幹檊赣灨gang1 冈冮刚纲肛岡牨疘缸钢剛罡堈釭棡犅堽綱罁 ? ?gang3 岗港gang4 掆鋼鎠崗杠焵筻槓焹gao1 皋羔高皐髙臯槔睾膏槹橰篙糕餻櫜韟鷎鼛鷱gao3 夰杲菒稁搞缟槁獔稿縞藁檺gao4 藳吿告勂诰郜峼祮祰锆筶禞誥鋯ge1 戈圪戓疙牱哥胳袼鸽割搁歌滒戨鴚謌鴿鎶饹餎咯ge2 杚呄佮匌阁革格鬲愅臵隔嗝塥滆觡搿槅膈閣镉韐骼諽鮯櫊韚轕鞷騔鰪ge3 蓋葛哿舸嗰ge4 个各虼硌铬箇獦ge0 擱個gei3 给gen1 根跟gen2 哏gen4 亘艮茛揯搄geng1 刯庚畊浭耕菮椩焿赓鹒羮賡羹鶊geng3 郠哽埂峺挭绠耿莄梗綆鲠骾鯁郉geng4 更絚緪縆亙堩gong1 工弓公功攻杛糼肱宫宮恭蚣躬龚匑塨幊觥躳匔碽篢髸觵龔兣gong3 廾巩汞拱拲栱珙輁鞏gong4 贛供共贡貢慐熕贑gou1 勾佝沟钩缑鈎溝緱褠篝簼鞲韝gou3 岣狗苟玽耇耉笱耈豿芶gou4 袧鉤坸构诟购垢姤茩冓够夠訽媾彀搆遘雊煹觏撀覯購gu1 估咕姑孤沽泒柧轱唂罛鸪笟菇菰蓇觚軱軲辜酤毂箍箛嫴篐橭鮕鴣gu3 唃蛄轂鹘古汩诂谷股牯骨罟羖钴傦啒脵蛊蛌尳愲詁馉榾鼓鼔榖皷糓薣濲臌餶瀔瞽皼gu4 鈷盬固故凅顾堌崓崮梏牿棝祻雇痼稒锢頋僱錮鲴鯝顧gua1 瓜刮苽胍鸹歄焻煱劀緺銽鴰騧呱gua3 冎叧剐剮寡gua4 啩卦坬诖挂掛罣褂詿guai1 乖guai3 罫拐枴柺箉guai4 怪恠噲guan1 关观官倌棺蒄窤瘝癏鳏鱞guan3 萖馆痯筦管輨舘錧館鳤莞guan4 冠覌観鰥觀躀毌贯泴悺惯掼涫悹祼慣摜遦樌盥罆鏆灌爟瓘礶鹳罐鑵鱹guang1 光灮侊炗炚炛咣垙姯茪烡珖胱僙輄銧黆guang3 广広犷guang4 桄廣俇逛撗gui1 鳺归圭妫龟规邽皈闺帰珪亀硅袿椝瑰郌摫閨鲑嬀槻槼璝瞡鬶瓌櫷竃gui3 宄轨庋佹匦诡陒垝癸軌鬼庪祪匭晷湀蛫觤詭厬簋蟡gui4 猤茥規媯刽刿攰柜攱贵桂椢筀貴蓕跪劊劌撌槶禬櫃鳜鱥桧gun3 衮惃绲袞辊滚蓘滾蔉磙輥鲧鮌鯀gun4 琯棍睴璭謴guo1 呙埚郭啯崞聒鈛锅墎瘑嘓蝈guo2 敋簂囯囶囻国圀國帼掴幗慖摑漍聝蔮虢馘guo3 鍋果惈淉猓菓馃椁褁槨綶蜾裹餜鐹guo4 过guo0 過ha1 铪哈ha2 蛤hai1 咳hai2 郂孩骸还hai3 海胲烸酼醢hai4 侅絯亥骇害氦嗐餀駭駴嚡饚婲han1 佄顸哻蚶酣頇谽憨馠鼾han2 汵榦魽邗含邯函凾虷唅圅娢崡晗梒涵焓寒嵅韩甝筨蜬澏鋡韓han3 厈罕浫喊蔊豃鬫 ? ?han4 忓攼鳱仠桿肣浛汉屽扞汗闬旱垾悍捍晘涆猂莟焊琀菡釬閈皔睅傼蛿颔馯撖蜭暵銲鋎憾撼翰螒頷顄駻雗瀚鶾hang1 夯hang2 魧苀斻杭绗航蚢颃貥筕絎頏行hang4 笐沆hao1 蒿嚆薅hao2 竓蚝毫椃嗥獆噑豪嘷獋儫嚎壕濠籇蠔譹毜hao3 好郝hao4 镐鎬暠曍号昊昦哠恏浩耗晧淏傐皓聕暤暭澔皜皞皡薃皥颢灏顥鰝灝鄗hao0 號he1 诃呵喝訶嗬蠚he2 餲犵纥紇閤挌禾合何劾和姀河峆曷柇盇籺阂哬核盉盍荷啝涸渮盒秴菏萂龁惒颌楁詥鉌阖鲄熆閡澕頜篕翮魺闔齕覈皬鑉龢he4 抲咊訸鹖麧鶡佫垎贺寉賀煂碋褐赫鹤翯壑癋爀鶴齃靎鸖靏hei1 嗨黒黑嘿潶hen2 拫痕鞎hen3 很狠詪hen4 恨heng1 亨哼涥脝heng2 佷姮恆恒桁烆珩胻鸻横衡鴴蘅鑅heng4 悙橫啈堼hong1 灴轰訇烘軣焢薨輷嚝鍧轟hong2 浲厷羾叿硡仜弘妅红吰宏汯玒纮闳宖泓玜苰垬娂洪竑紅荭虹浤紘翃耾硔紭谹鸿渱竤粠葒葓鈜閎綋翝谼潂鉷鞃魟篊鋐彋蕻霐黉霟黌呍hong3 愩唝哄晎嗊hong4 鴻讧訌撔澋澒銾hou2 腄侯矦喉帿猴葔瘊睺篌糇翭骺鍭餱鯸hou3 吼吽犼hou4 詬后郈厚垕後洉逅候鄇堠豞鲎鲘鮜鱟hu1 淲乊乎匢呼垀忽昒曶苸烀轷匫唿惚淴軤寣滹雐歑hu2 鶻鹄縎鵠虖囫抇弧狐瓳胡壶壷斛焀喖壺媩湖猢絗葫楜煳瑚嘝蔛鹕槲箶糊蝴衚縠螜醐頶觳鍸餬瀫鬍鰗鶘鶦鶮hu3 俿虍泘乕虎浒唬萀琥虝箎錿hu4 豰淈怘雽嘑魱互弖户戸冱冴帍护沍沪岵怙戽昈枑祜笏婟扈瓠綔鄠嫭嫮摢滬蔰槴熩鳸簄鍙鹱護鳠韄頀鱯鸌嗀嗀hu0 戶hua1 吪花芲錵蘤hua2 华哗骅铧滑猾嘩撶蕐螖鏵驊鷨划hua4 魤粿輠華化杹画话崋桦婳畫嬅畵摦槬樺嫿澅諙諣黊繣夻hua0 話劃huai2 怀徊淮槐褢踝懐褱懷櫰耲蘹huai4 坏壊蘾huan1 豩犿鸛欢歓鴅懽獾貛驩huan2 雚睔环峘洹荁桓萈萑寏絙雈羦貆锾阛寰缳豲鍰鹮糫繯闤鬟圜huan3 睆缓緩攌huan4 潅嚾讙綄環轘幻奂肒奐宦唤换浣涣烉患梙焕逭喚嵈愌渙痪煥瑍豢漶瘓槵鲩擐澣藧鯇鯶鰀huan0 歡換huang1 巟肓荒衁塃慌huang2 皇偟凰隍黃黄喤堭媓崲徨惶湟葟遑楻煌瑝墴潢獚锽璜篁艎蝗癀磺穔諻簧蟥鍠餭鳇趪鐄騜鰉鱑鷬huang3 汻熿怳恍炾宺晃晄奛谎幌詤謊櫎兤huang4 洸愰皩滉榥曂皝鎤hui1 墮蘳灰灳诙咴恢拻挥洃晖烣珲豗婎媈翚辉隓暉楎禈詼幑睳噅噕翬輝麾徽隳瀈鰴hui2 煇囘回囬佪廻廽恛洄茴迴逥痐蛔蜖鮰硘hui3 虺烠蛕悔螝毇檓燬譭毁hui4 屶襘鞼嬒壞卉屷汇会讳泋浍绘芔荟诲恚恵烩贿彗晦秽喙惠絵缋翙阓匯彙彚毀滙詯賄僡嘒蔧誨圚寭慧憓暳槥潓蕙徻橞獩璤薈薉諱檅檜燴篲藱餯嚖瞺穢繢蟪櫘繪翽譓譮闠鐬靧譿顪颒 ? hun1 昏昬荤婚惛阍惽棔睧睯閽蔒hun2 堚揮琿忶浑馄魂繉鼲混hun4 緄涽渾诨俒倱圂掍焝溷慁觨諢huo1 吙耠锪劐鍃豁騞剨huo2 趏姡佸活秮huo3 灬火伙邩钬鈥夥huo4 楇腘膕焃攉沎或货咟俰捇眓获祸貨惑旤湱禍奯擭濩獲霍檴謋穫镬嚯瀖耯藿蠖嚿曤臛癨矐鑊ji1 丌讥击刉叽饥乩刏圾机玑肌芨矶鸡枅咭剞唧姬屐积笄飢基喞嵆嵇犄筓缉赍嗘畸跻鳮僟箕銈撃槣樭畿稽賫躸齑墼機激璣積錤隮擊磯簊羁賷耭雞譏韲鶏譤饑癪躋鞿鷄齎羇虀鑇覉鑙齏羈鸄覊ji2 皀簎諔堲蠀覿岋亼及伋吉岌彶忣汲级即极亟佶郆卽叝姞急皍笈級揤疾觙偮卙庴脨谻戢棘極殛湒集塉嫉愱楫蒺辑槉膌銡嶯潗瘠箿蕀蕺鹡橶檝螏輯襋蹐鍓艥籍轚鏶霵鶺鷑雦雧嵴亽ji3 給颳几己丮妀犱泲虮挤脊掎鱾幾戟麂魢撠擠蟣ji4 畟硛茤迹绩勣毄禨績櫅穖彐彑旡计记伎纪坖妓忌技芰际剂季垍峜既洎济茍剤继觊偈寂寄徛悸旣梞済祭惎臮葪兾痵継蓟裚跡際暨漃漈禝稩穊誋跽霁鲚暩稷諅鲫冀劑曁穄薊襀髻檕濟罽覬鮆檵蹟鯽鵋齌廭懻癠糭蘎骥鯚瀱繼蘮鱀蘻霽鰶鰿鱭驥帺ji0 嘰紀計記jia1 筴鴐鉿加抸佳泇迦枷毠浃珈家痂梜笳耞袈猳葭跏犌腵鉫嘉镓糘豭貑鎵麚乫挟jia2 饸夹夾裌圿扴郏荚郟恝莢戛铗戞蛱颊蛺餄鋏頬頰鴶鵊jia3 嘏岬甲玾胛斚贾钾婽斝椵賈鉀榎槚瘕檟假jia4 价驾架嫁幏榢稼駕jian1 戋奸尖幵坚歼间冿戔肩艰姦姧兼监堅惤猏笺菅菺豜湔牋犍缄葌葏搛椷椾煎瑊睷缣蒹豣箋樫熞緘蕑蕳鲣鹣熸縑艱馢麉瀐鞯殱礛覸鵳瀸鰔殲韀鰹囏虃韉銒jian3 篯籛囝拣枧俭柬茧倹挸捡笕减剪梘检湕趼揀揃検減睑硷裥詃弿瑐筧简絸谫彅戩戬碱儉翦撿檢藆襇襉謇蹇瞼礆簡繭謭鬋鰎鹸瀽蠒鐗鹻譾襺鹼襔鎆jian4 間監鋻鞬譼锏鐧见件侟建饯剑洊牮荐贱俴健剣涧珔舰剱徤渐谏釼寋旔楗毽溅腱臶践賎鉴键僭漸劍劎墹澗箭糋諓賤趝踺劒劔橺薦諫鍵餞磵礀螹鍳擶濺繝覵艦轞鑑鑒鑬鑳jian0 踐jiang1 江姜将茳浆畕豇葁翞僵螀壃缰薑橿殭螿鳉疅礓疆繮韁鱂畺jiang3 讲奖桨傋蒋奨奬蔣槳獎耩膙講顜jiang4 漿匞匠夅弜杢降洚绛弶袶絳酱摾滰嵹犟糡醤糨醬櫤謽丬jiao1 艽芁交郊姣娇峧浇茭骄胶椒焦蛟跤僬虠鲛嬌嶕嶣憍澆膠蕉膲礁穚鮫鹪簥蟭鐎驕鷦鷮 ?jiao2 櫵嚼jiao3 憿臫角佼挢狡绞饺晈皎矫脚铰搅筊絞剿勦敫煍賋摷暞踋鉸餃儌劋撟撹敽敿缴曒璬矯皦鵤繳譑孂纐攪灚鱎纟糹jiao4 悎嘄笅徼叫呌挍訆珓轿较敎教窖滘較嘂嘦斠漖酵噍潐嬓獥藠趭轎醮譥皭釂燞觉jie1 裓喼哜嚌阶疖皆接掲痎階喈嗟堦媘揭脻街煯鞂蝔擑癤jie2 掶構兯狤蝍趌鞊紒跲椄卪孑尐节讦刦刧劫岊昅刼劼杰衱诘拮洁结迼桀桝莭訐偼婕崨捷袺傑媫颉嵥楶滐睫蜐詰鉣魝截榤碣竭蓵鲒潔羯誱踕幯嶻擮礍鍻鮚巀櫭蠞蠘蠽jie3 姐毑媎解飷檞jie4 妎耤鶛觧丯介吤岕庎忦戒芥屆届斺玠界畍疥砎衸诫借蚧徣堺楐琾蛶骱犗誡褯魪藉jie0 傢秸稭結節jin1 巾今斤钅兓金釒津矜砛衿觔珒惍琎堻琻筋璡鹶黅襟jin3 仅卺巹紧堇菫僅谨锦廑漌緊蓳馑槿瑾錦謹饉儘鏱jin4 笒榗紟嫤盡尽劲妗近进侭枃浕荩晉晋浸烬赆祲進煡缙寖搢溍禁靳瑨僸凚殣觐噤縉賮嚍壗嬧濜藎燼璶覲贐齽jing1 坕京泾经茎亰秔荆荊涇莖婛惊旌旍猄経菁晶稉腈睛粳兢精聙橸鲸鵛鯨鶁麖鼱驚麠 ?jing3 獷井丼阱刭坓宑汫汬肼剄穽颈景儆幜憬璄暻燝璟璥頸蟼警jing4 劤勁憼妌净弪径迳浄胫凈弳徑痉竞逕婙婧桱梷淨竟竫脛敬痙傹靖境獍誩踁静頚曔镜瀞鏡競竸陉jing0 經靜jiong1 扃埛駉駫jiong3 臩臦昋炅冋絅蘏冏囧迥侰炯逈浻烱煚窘颎綗僒煛熲澃燛褧蘔jiu1 丩勼纠朻究鸠糾赳阄萛啾揪揫鳩摎鬏鬮jiu3 糺九久乆乣奺汣灸玖舏韭紤酒镹韮jiu4 湬匛旧臼咎畂疚柩柾倃桕厩救就廄匓舅僦廏廐慦殧舊鹫鯦麔匶齨鷲欍ju1 伡車俥凥抅匊居拘泃狙苴驹挶疽痀罝陱娵婅婮崌掬梮涺椐琚腒锔裾雎艍蜛諊踘鴡鞠鞫鶋ju2 雛啹鋦局泦侷狊桔毩淗焗菊郹椈毱湨犑輂粷跼趜躹閰橘檋駶鵙蹫鵴巈蘜鶪驧 ?ju3 鋤枸咀沮举矩莒挙椇筥榉榘蒟龃聥踽擧櫸齟欅襷ju4 烥倶駒句巨讵姖岠怇拒洰苣邭具拠昛歫炬秬钜俱倨冣剧粔耟蚷袓埧埾惧据詎距焣犋鉅飓虡豦锯愳聚駏劇勮屦踞鮔壉懅據澽遽鋸屨颶簴躆醵懼爠ju0 舉juan1 鵍姢娟捐涓裐鹃勬鋑镌鎸鵑鐫蠲juan3 卷呟埍捲菤锩臇錈巻juan4 帣奆劵倦勌桊狷绢淃瓹眷鄄睊絭罥睠絹慻餋羂讂jue1 噘撅撧屩屫jue2 髉夬叏鱖腳亅孒孓决刔氒诀抉決芵玦玨挗珏砄绝虳欮崛掘斍桷殌焆覐觖訣赽趹厥絕絶覚趉鈌劂瑴谲嶡嶥憰熦爴獗瘚蕝蕨鴂鴃憠橛橜镼爵臄镢蟨蟩爑譎蹶蹷矍覺鐝灍爝觼彏戄攫玃鷢欔矡龣貜钁 ?jue4 倔jun1 军君均汮袀軍钧莙蚐桾皲菌鈞碅筠皸皹覠銁銞鲪麇鍕鮶抣jun4 棞隽雋蔨呁俊郡陖埈峻捃晙浚馂骏珺畯竣箟蜠儁寯懏餕燇駿鵔鵕鵘攈攟ka1 咔咖喀ka3 卡佧胩鉲kai1 开奒揩衉锎開鐦kai3 嵦凯剀垲恺闿铠凱剴慨蒈塏愷楷暟锴鍇鎧闓颽kai4 濭喫噄輆忾炌欬烗勓嘅鎎kan1 刊栞勘龛堪戡龕kan3 槛檻冚坎侃砍莰偘埳惂堿欿塪輡轗kan4 竷看衎崁墈阚瞰磡闞矙kang1 粇康嫝嵻慷漮槺穅糠躿鏮鱇闶kang2 扛摃kang4 忼砊亢伉匟邟囥抗犺炕钪鈧閌kao1 尻髛kao3 薧攷考拷栲烤kao4 槀稾洘铐犒銬鲓靠鮳鯌ke1 錒蚵匼苛柯牁珂科胢轲疴趷钶嵙棵痾萪颏搕犐稞窠鈳榼薖颗樖瞌磕蝌醘顆髁礚嗑ke2 頦壳翗嶱ke3 毼磆坷軻可岢炣渇嵑敤渴ke4 兡兞袔悈歁克刻剋勀勊客峇恪娔尅课堁氪骒缂愙溘锞碦緙課錁礊騍兛兙ken3 肎肯肻垦恳啃墾錹懇ken4 掯裉褃keng1 奟阬妔劥吭坑硁牼硜铿硻誙銵鍞鏗kong1 空埪崆悾硿箜躻錓鵼kong3 倥孔恐kong4 矼控鞚kou1 抠芤眍剾彄摳瞘kou3 口劶。
Nondestructive Identification of Tea(Camellia sinensis L.) Varieties using FT-NIR Spectroscopyand Pattern RecognitionQuansheng CheN 1, Jiewen Zhao 1, Muhua Liu 2 and Jianrong Cai 11School of Food & Biological engineering, Jiangsu university, Zhenjiang, P. R. China; 2engineering College, Jiangxi agricultural university, Nanchang, P. R. ChinaAbstractChen Q., Zhao J., Liu M., Cai J. (2008): Nondestructive identification of tea (Camellia sinensis L.) varieties using FT-NIR spectroscopy and pattern recognition . Czech J. Food Sci., 26: 360–367.Due to more and more tea varieties in the current tea market, rapid and accurate identification of tea (Camellia sinen-sis L.) varieties is crucial to the tea quality control. Fourier Transform Near-Infrared (FT-NIR) spectroscopy coupled with the pattern recognition was used to identify individual tea varieties as a rapid and non-invasive analytical tool in this work. Seven varieties of Chinese tea were studied in the experiment. Linear Discriminant Analysis (LDA) and Artificial Neural Network (ANN) were compared to construct the identification models based on Principal Component Analysis (PCA). The number of principal components factors (PCs) was optimised in the constructing model. The experimental results showed that the performance of ANN model was better than LDA models. The optimal ANN model was achieved when four PCs were used, identification rates being all 100% in the training and prediction sets. The overall results demonstrated that FT-NIR spectroscopy technology with ANN pattern recognition method can be successfully applied as a rapid method to identify tea varieties.Keywords : green tea; variety; identification; FT-NIR spectroscopy; pattern recognitionSupported by the National Natur and Science Foundation of China for Youth Program (Grant No. 30800666), the Natu-ral Science Foundation for Colleges and Universities in Jiangsu Province (Grant No. 08KJB550003), and the Advanced Talents Science Foundation of Jiangsu University (Grant No. 08JDG007).Nowadays, most commercial tea-leaves (Camellia sinensis L .) have many varieties in the market, and tea varieties differ not only from botanical stand-points but also in terms of quality attributes. The differences between the tea varieties are recognised commercially and appreciated by the consumers, therefore, the identification of tea varieties is still focused on at present. Usually, the conventional identification of a tea variety is performed by sensory evaluation. Tea sensory evaluation is still dependent on inspection of its sensory appearance, smell, flavour, and taste using oral examination to determine its quality and variety. Sensory evalu-ation of tea is one of the most difficult tasks in the overall tea attributes assessment. It relies on information provided by selected and trained tast-ing panels, whose members may be influenced by physiological, psychological, and environmental factors (Yan 2005). Therefore, the identification of tea varieties by sensory evaluation producesinevitably subjective and inconsistent results. Nowadays, the identification of a tea variety is also performed according to various wet chemical methods such as high-performance liquid chro-matography (HPLC) (Valera et al. 1996; Zuo et al. 2002), gas chromatography (GC) (Togari et al. 1995), capillary electrophoresis (Hideki et al. 1997), and plasma atomic emission spectrom-etry (Herrador & Gonzalez 2001). Compared with the sensory evaluation method, all these wet chemical methods mentioned above are precise, but they are all time-consuming in the identifica-tion of tea varieties.FT-NIR spectroscopy has proved to be a powerful analytical tool for analysing a wide variety of samples used in the agricultural, nutritional, petrochemical, textile, and pharmaceutical industries, especially its use in the qualitative analysis of agricultural products and pharmaceutical samples has signifi-cantly increased during the last decade (McGlone et al. 2002; Esteban-Diez et al. 2004; Clark et al. 2005; Huck et al. 2005; Woo et al. 2005). The FT-NIR spectroscopy technique is a non-destruc-tive analytical technique with the advantages of rapid sample analysis, simple operation, and small samples, and particularly the use of solid samples. Compared to conventional analytical methods, FT-NIR spectroscopy is a fast, accurate, and non-destructive technique that can be used as a replace-ment of conventional sensory evaluation methods and time-consuming chemical methods.The different tea varieties have chemical char-acters which are due to different tea processes and different original tea-leaves. Therefore, the spectral features of each tea variety are reasonably differentiated in the NIR region, the spectral dif-ferences providing sufficient qualitative spectral information for the identification. Since 1990s, attempts have been made to predict simultane-ously alkaloids and phenolic substances in green tea leaves using near infrared spectroscopy (Hall et al. 1988; Schulz et al. 1999). Some studies on the quantitative analysis of total antioxidant capacity in green tea by NIR have been also re-ported by Luypaert et al. (2003) and Zhang et al. (2004). Recently, some researchers applied near infrared spectroscopy to analyse simultaneously the contents of free amino acids, caffeine, total polyphenols, and amylose in green tea (Sun et al. 2004; Luo et al. 2005; Chen et al. 2006a, b).In the works mentioned above, near infrared spectroscopy techniques have often been used to analyse quantitatively the valid tea composition using some chemometrics methods, for example, Partial Least Squares (PLS) regression and Arti-ficial Neural Net (ANN). In this work, FT-NIR spectroscopy was used to identify seven varie-ties of tea coupled with the pattern recognition method. Linear Discriminant Analysis (LDA) and Artificial Neural Network (ANN) will be used comparatively to construct the identification model based on Principal Component Analysis (PCA), and the number of principal components will be optimised in the constructing models.MATERIAL AND METHODS Sample preparation. All tea samples of seven varieties came from five different provinces in China. All tea materials were purchased at the local super-market from April to June in 2006, and they were all stored in air-tight containers for 4 months. About 10 ± 0.1 g air-dried tea-leaves were weighed randomly as one sample. The tea varieties, origins, numbers, and categories are shown in Table 1.Table 1. Varieties, categories, and origins of tea samples Tea varieties Sample No.Tea origin Tea category Maofeng30Anhui green tea Biluochun27Jiangsu green tea Tieguanyin33Fujiang oolong tea Maojian30Henan green tea Cuilan21Anhui green tea Longjing21Zhenjiang green tea Queshe27Jiangsu green tea Spectra collection. The NIR spectra were col-lected in the reflectance mode using the Antaris TM near-infrared spectrophotometer (Thermo Elec-tron Co., USA) with an integrating sphere. Each spectrum was the average spectrum of 32 scans. The spectra ranged from 10 000 cm–1 to 4000 cm–1, and the data were measured in 3.856 cm–1 intervals, which resulted in 1557 variables.The standard sample accessory holder was used for performing the tea spectra collection. The sample accessory holder is a sample cup specifi-cally designed by Thermo Electron Co. For each tea sample, 10 ± 0.1 g of dry tea-leaves were filled into the sample cup by the standard proceduredepending upon the bulk density of the mate-rial. The corresponding amount of dry tea-leaves was densely packed into the sample cup and then compressed by closing it. Each tea sample was col-lected three times. The average of the three spectra which were collected from the same tea sample was used in the next analysis. The temperature was kept around 25°C and the humidity was kept at a steady level in the laboratory. Software. All algorithms were implemented in Matlab V7.0 (Mathworks, USA) under Windows XP in data processing. Result Software (Thermo Electron Co., USA) was used in NIR spectral data acquisition.RESULTS AND DISCUSSIONDesign of the experiments Rough spectral data are needed to conduct spec-tral preprocessing because of the light scatter in tea-leaves. In this work, three spectral pre-processing methods (Standard Normal Variate Transformation (SNV), Mean Centering (MC), and Multiplicative Scatter Correction (MSC)) were applied comparatively. SNV is a mathematical transformation method of the log (1/R) spectra used to remove the slope variation and to cor-rect scatter effects. Each spectrum is corrected individually by first centering the spectral values, and then the centered spectrum is scaled by the standard deviation calculated from the individual spectral values. MC is to calculate the average spectrum of the data set and subtract the average from each spectrum. MSC is another important procedure for the correction of the scatter light performed, on the basis of different particle sizes. This technique is also used to correct the additive and multiplicative effects in the spectra.The comparison of the results obtained by the three preprocessing methods revealed that SNV preprocessing method is as good as MSC, and much better than MC. This is because dry tea-leaves are solid particles which scatter light easily; while SNV and MSC spectral preprocessing methods can remove the slope variation and correct the light scatter due to different particle sizes. Therefore, SNV spectral preprocessing method was applied in this work.In raw NIR spectra of tea-leaves, water absorption bands occur around 5155 cm–1 and 7000 cm–1 cor-responding to O-H stretching + O-H deformation. These were excluded during the analyses along with some regions exhibiting a high noise level (e.g. 10 000–9000 cm–1and 5000–4000 cm–1). The most intensive band in the spectrum belonged to the vibration of the 2nd overtone of the carbonyl group (5352 cm–1), followed by the C-H stretch and C-H deformation vibration (about 7212 cm–1), the -CH2 (about 5742 cm–1), and the -CH3 overtone (about 5808 cm–1). The vibration of the carbonyl group and the -C-H and -CH2vibrations are caused by some ingredients such as polyphenols, alkaloids, protein, and volatile or non-volatile acid. In general, the water content in the dry tea leaves amounts to 4–6% (w/w), therefore, the effect of water must be considered. To keep away from the water absorption band, the spectral regions between 5300 cm–1 and 6500 cm–1 were selected, because there is a great deal of information from organic substances in this NIR spectroscopy region according to the spectral investigation.All NIR spectra of seven tea varieties were used for the PCA. The behaviour of PCA can indicateFigure 1. Score cluster plot of the top three principal com-ponents (PCs) for all samples from seven tea varietiesthe data trend in visualising the dimension spaces. For visualising the data trends coming from NIR spectra of the seven tea varieties, a scatter plot of samples using the top three principal compo-nents (PCs) issued from PCA of the data matrix (also called scores plot) was obtained as shown in Figure 1.Figure 1 shows that there is a neat separation of the seven tea varieties in the 3-dimensional space represented by PC1, PC2, and PC3 scores vectors. Such a good classification in this 3-dimensional space can be explained by the chemical background of tea and PCA methods. The different tea varie-ties can exhibit considerable differences in their botanical, genetic, and agronomic characteristics, combined also with different tea processes and different origins. The differences detected in the chemical composition of different tea varieties can be reasonably differentiated in the NIR spectros-copy region. Therefore, in the NIR spectroscopy region, the spectral differences provided enough spectral information for further qualitative analy-sis. In addition, through PCA, the total variance contribution rate was over 97% for the top three PCs, so PC1, PC2, and PC3scores vectors can almost explain fully the chemical composition information in the NIR spectroscopy region. Thus, the 3-dimensional space represented by PC1, PC2, and PC3 scores vectors from all samples can fully express the information that all samples are dis-tributed in ultra-dimensional space. Geometrical exploration based on PCA score plots only gives the cluster trends in visualising the dimension spaces, therefore, in this study, the ulti-mate aim was to search an appropriate supervised pattern recognition to identify tea varieties after PCA. The supervised pattern recognition refers to such techniques in which the a priori knowledge about the category membership of samples is used for the classification. The classification model is developed on a training set of samples with categories. The model performance is evaluated by the use of a prediction set by comparing the predictive classification with the true categories (Roggo et al. 2003). Therefore, before building the identification model, all 189 samples were separated into two groups. One is called the train-ing set and includes 126 samples (i.e. 20 Maofeng samples, 18 Biluochun samples, 22 Tieguanyin samples, 20 Maojian samples, 14 Cuilan samples, 14 Longjing samples, and 18 Queshe samples). The other is called the prediction set and includes the remaining 63 samples, and is used to evaluate the performance of the identification model.The supervised pattern recognition methods are numerous, and the main problem is to choose the most accurate method. In this study, the linear (i.e. LDA) and the non-linear (i.e. ANN) supervised pattern recognition methods were compared. The identification rates in the training and prediction sets were used to evaluate the performance of LDA and ANN models as the important criteria. The top principal components were extracted as the input of the pattern recognition by PCA. It goes without saying that the number of principal compo-nent factors (PCs) is crucial to the performance of the identification model. Therefore, PCs should be optimised in building the identification models.Figure 2. Identification rates of LDA model with different PCs in the trai-ning and prediction setsIdentification results of LDA model Linear Discriminant Analysis (LDA) is a linear and parametric method with a discriminating char-acter. LDA is focused on finding optimal bounda-ries between classes. Here, a brief introduction of LDA is presented in this paper, and readers can refer to other literature (Yang et al . 2005; Chen et al . 2008). The number of principal component factors (PCs) is crucial for the performance of the LDA identification model, and identification rates in training and prediction sets were used as criteria to optimise the number of PCs. Figure 2 shows the identification results of LDA model under 1~12 PCs for the training and prediction sets. As can be seen in Figure 2, the optimal LDA model is achieved when 9 PCs are included.The identification results in the training and prediction sets are shown in Table 2. In the training set, all samples were identified correctly, and the total identification rate was 100%. In the predic-tion set, two Biluochun samples were identified wrongly as Maofeng group and Maojian group, respectively, one Maofeng sample was identified wrongly as Biluochun group, one Maojian sample was identified wrongly as Biluochun group, and allthe remaining samples were identified correctly. The total identification rate was 93.65% in the prediction set.Identification results of ANN model Artificial neural network (ANN) is a non-linear pattern recognition method. Many parameters exert to some extent certain influence on the perform-ance of ANN models. These parameters include the number of neurons in the middle layer, scale functions, learning rate factor, momentum factors, and initial weights (Blanco et al . 1999; Mouwen et al . 2006). In this work, the most classical Back Propagation Artificial Neural Network (BP-ANN) with 3 layers construction was used to construct the identification model. These parameters of the BP-ANN model were optimised by cross validation as follows: the number of neurons in the hidden layer was set to 8, the learning rate factor and momentum factor were set to 0.1 each, the initial weight was set to 0.3, and the scale function was set as ‘tanh’ function.It is crucial to select the appropriate number of PCs in constructing a BP-ANN identification model. Figure 3 shows the identification rates ofTable 2. Confusion matrix for the identification results of LDA model in the training and prediction sets SubsetsTea varieties Sample number Identification resultsIdentification rate (%)M1B T M2C L Q T r a i n i n g s e tM12020000000100B1801800000T 2200220000M22000020000C 1400001400L 1400000140Q 1800000018P r e d i c t i o n s e tM110910000093.65B 91701000T 1100110000M2100109000C 70000700L 70000070Q99M1 – Maofeng; B – Biluochun; T – Tieguanyin; M2 – Maojian; C – Cuilan; L – Longjing; Q – QuesheBP-ANN model with different PCs in the training and prediction sets. As can be seen in Figure 3, the highest identification rates of BP-ANN model are 100% in the training and prediction sets, re-spectively, when 4 PCs are included. Therefore, the optimal ANN model was achieved with four PCs, and all samples were identified correctly in both the training and prediction sets.Discussion on two identification results Table 3 shows the identification results from LDA and ANN models. As can be seen in Table 3, the identification rates of LDA model are 100% in the training set and 93.65% in the prediction set when the optimal number of PCs is 9, and the identification rates of LDA model are 100% in the training set and 100% in the prediction set, respectively, when the optimal number of PCs is 4. Compared by these identification results, BP-ANN model is a little better than LDA model, in other words, the non-linear pattern recognition is a little better than the linear pattern recognition method. Compared by their optimal number of PCs, BP-ANN model (4 PCs) is less demanding than LDA model (9 PCs), in other words, BP-ANN model is simpler than LDA model. The high number of PCs in LDA model can explain the differences between the tea varieties, but too high a number of PCs might include ‘specific information’ in the calibrating model, and this ‘specific information’ might result in a worse generalisation performance of the identification model. This ‘specific information’ included in the training model might bring too much redundant information, which is an inevitable effect on the robustness of the model. Therefore, it will lead to ‘bad’ results when some new samples are pre-dicted by this model. Generally, the non-linear pattern recognition method has better abilities than the linear pattern recognition method in self-organisation and self-learning (Zhao et al. 2006), therefore, the identification results obtained from ANN model are a little better than those from LDA model.CONCLUSIONThe overall results sufficiently demonstrate that the FT-NIR spectroscopy technique coupled with the pattern recognition has a high potential to identify the tea varieties in a nondestructive way. Seven varieties of tea were studied in this work. Linear Discriminant Analysis (LDA) and Artificial Neural Network (ANN) were compared as the pat-tern recognition methods in the calibrating model. The number of principal components factors (PCs) was optimised in the building of the models. The performances of two supervised pattern recogni-tion methods were compared. The experimental results showed that ANN model was better than LDA model, with both identification rates beingTable 3. Comparison of the identification results based on three modelsModels Optimalnumberof PCsIdentification results of models (%)training set validation setLAD910093.65 ANN4100100Figure 3. Identification rates of ANN model with different PCs in the trai-ning and prediction setsequal to 100% in the training and prediction sets when the optimal number of principal components factors (PCs) equaled 4.It can be concluded that FT-NIR spectroscopy technique coupled with the pattern recognition has a high potential to estimate another foods quality in a nondestructive way. A reliable overall characterisation of a food product quality may be obtained at a low cost. It may be applied to the food quality control, process monitoring, and rapid classification in the industry. In comparison to subjective sensory assessing methods and time-consuming chemical methods, the results obtained by FT-NIR technique represent a considerable improvement in estimating the food quality.R e f e r e n c e sBlanco M., Coello J., Iturriaga H., Maspoch S., Pagès J. (1999): Calibration in non-linear near infra-red reflectance spectroscopy: a comparison of several methods. Analytica Chimica Acta, 384: 207–214. Chen Q.S., Zhao J.W., Huang X.Y., Zhang H.D., Liu M.H. (2006a): Simultaneous determination of total polyphenols and caffeine contents of green tea by near-infrared reflectance spectroscopy. Microchemical Journal,83: 42–47.Chen Q.S., Zhao J.W., Zhang H.D., Wang X.Y. (2006b): Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration. Analytica Chimica Acta, 572: 77–84. Chen Q.S., Zhao J.W., Cai J.R. (2008): Identification of tea varieties using computer vision. Transcations of ASABE, 51: 623–628.Clark C.J., Mcglone V.A., Jordan R.B. (2005): Detec-tion of Brownheart in ‘Braeburn’ apple by transmission NIR spectroscopy. Postharvest Biology and Technol-ogy, 28: 65–71.Esteban-Diez I., Gonzalez-Saiz J.M., Pizarro C. (2004): An evaluation of orthogonal signal correc-tion methods for the characterization of Arabica and Robusta coffee varieties by NIRS. Analytica Chimica Acta, 514: 57–67.Hall M.N., Robertson A., Scotter C.N.G. (1988): Near-infrared reflectance prediction of quality, thea-flavin content and moisture content of black tea.Food Chemistry, 27: 61–75.Herrador M.A., Gonzalez A.G. (2001): Pattern rec-ognition procedures for differentiation of green, black and Oolong teas according to their metal content from inductively coupled plasma atomic emission spectro- metry. Talanta, 53: 1249–1257.Hideki H., Toshihiro M., Katsunori K. (1997): Si-multaneous determination of qualitatively important components in green tea infusions using capillary electrophoresis. Journal of Chromatography A, 758: 332–335.Huck C.W., Guggenbichler W., Bonn G.K. (2005): Analysis of caffeine, theobromine and theophylline in coffee by near infrared spectroscopy compared to high-performance liquid chromatography (HPLC) cou-pled to mass spectrometry. Journal of Pharmaceutical Biomedical Analysis, 538: 195–203.Luo Y.F., Guo Z.F., Zhu Z.Y., W ang C.P., Jiang H.Y., Han B.Y. (2005): Studies on ANN models of determination of tea polyphenol and amylose in tea by near-infrared spectroscopy. Spectroscopy Spectral Analysis, 25: 1230–1233.Luypaert J., Zhang M.H., Massart D.L. (2003): Feasi-bility study for the using near infrared spectroscopy in the qualitative and quantitative of green tea, Camellia sinensis (L). Analytica Chimica Acta,487: 303–312. McGlone V.A., Jordan R.B., Seelye R., Martinsen P.J. (2002): Comparing density and NIR methods for measurement of kiwi fruit dry matter and soluble solids content.Postharvest Biology and Technology, 26: 191–198.Mouwen D.J.M., Capita R., Alonso-Calleja C., Prie- to-Gómez J., Prieto M. (2006): Artificial neural network based identification of Campylobacter species by Fourier transform infrared spectroscopy. Journal of Microbiological Methods, 67: 131–140.Roggo Y., Duponchel L., Huvenne J.P. (2003): Com-parison of supervised pattern recognition methods with McNemar’s statistical test. Application to qualitative analysis of sugar beet by near-infrared spectroscopy. Analytica Chimica Acta, 477: 187–200.Schulz H., Engelhardt U.H., Wegent A., Drews H.H., Lapczynski S. (1999): Application of NIRS to the simultaneous prediction of alkaloids and phenolic substances in green tea leaves. Journal of Agricultural and Food Chemistry, 475: 5064–5067.Sun Y.G., Lin M., Lv J., Xu L.H. (2004): Determination of the contents of free amino acids, caffeine and tea polyphenols in green tea by Fourier transform near-infrared spectroscopy. Chinese Journal of Spectroscopy Laboratory, 21: 940–943.Togari N., Kobayashi A., Aishima T. (1995): Pattern recognition applied to gas chromatographic profiles of volatile component in three tea categories. Food Research International, 28: 495–502.Valera P., Pablo F., Gonzalez A.G. (1996): Classifica-tion of tea samples by their chemical composition using discriminant analysis. Talanta, 43: 415–419.Woo Y.A., Kim H.J., Ze K.R., Chung H. (2005): Near-infrared (NIR) spectroscopy for the non-destructive and fast determination of geographical origin of angelicae gigantis Radix. Journal of Pharmaceutical Biomedical Analysis, 36: 955–959.Yan S.H. (2005): Evaluation of the composition and sensory properties of tea using near infrared spectros-copy and principal component analysis. Journal Near Infrared Spectroscopy, 6: 313–325.Yang H., Irudayaraj J., Paradkar M.M. (2005): Dis-criminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry, 93: 25–32.Zhang M.H., Luypaert J., Xu Q.S., Massart D.L. (2004): Determination of total antioxidant capacity in green tea by NIRS and multivariate calibration. Talanta, 62: 25–35.Zhao J.W., Chen Q.S., Huang X.Y., Fang C.H. (2006): Qualitative identification of tea categories by near infrared spectroscopy and support vector machine. Journal of Pharmaceutical Biomedical Analysis, 41: 1198–1204.Zuo Y.G., Chen H., Deng Y.W. (2002): Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta, 57: 307–316.Received for publication November 11, 2007Accepted after corrections August 18, 2008Corresponding author:Dr. Quansheng Chen, Jiangsu University, School of Food & Biological Engineering, Xuefu Road 301#, Zhenjiang City, Jiangsu Province, 212013, P. R. Chinatel.: + 86 511 887 903 18, fax: + 86 511 887 802 01, e-mail: q.s.chen@。