“X射线”探测器——胶片成像修改版
- 格式:ppt
- 大小:2.06 MB
- 文档页数:37
无损检测 工业射线照相胶片第2部分:用参考值方法控制胶片处理1 范围本文件规定了控制胶片处理系统的程序。
2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
ISO 11699-1 无损检测 工业射线照相胶片 第1部分:工业射线照相胶片系统的分类(Non-destructive testing — Industrial radiographic films — Part 1: Classification of film systems for industrial radiography )2008,MOD 注1:GB/T 19348.1-2014 无损检测工业射线照相胶片第1部分:工业射线照相胶片系统的分类(ISO 11669-1:)ISO 18901 成像材料 加工银-明胶型黑白胶卷 稳定性规范(Imaging materials — Processed silver-gelatin-type black-and-white films — Specifications for stability )3 术语和定义下列术语和定义适用于本文件。
胶片系统 film system胶片与按照胶片制造商和/或处理化学试剂制造商的说明书进行的胶片处理的组合。
[来源:ISO 11699-1:2008,3.1]胶片系统类别 film system class符合ISO 11699-1:2008表1规定的限值的胶片系统(3.1)的分类。
胶片测试片 film strip曝光不同的恒定光密度阶梯的条形胶片。
预先曝光胶片测试片 pre-exposed film strip经X射线预先曝光,在处理后能给出至少10种不同光密度的胶片测试片(3.3)。
净密度 net density不包括片基密度和灰雾度的漫射光密度。
收稿日期:2003204218 基金项目:国家自然科学基金资助项目(50275008) 作者简介:周正干(1967-),男,湖南湘潭人,教授,zzhenggan @.X 射线平板探测器数字成像及其图像校准周正干 滕升华 江 巍 安振刚(北京航空航天大学机械工程及自动化学院,北京100083) 摘 要:为了提高X 射线数字成像系统的图像质量,以基于平板探测器的X 射线数字照相系统为研究对象,介绍了平板探测器自身影响图像质量的4大因素:随机噪声,偏置误差,像元响应不一致性和瑕疵像元等,分析了这些因素的成因及其对图像质量的影响,提出了相应的减小和消除这些影响的图像校准方法.实验结果表明:运用这些图像校准方法,可以有效地去除上述因素对图像质量的影响,显著提高平板探测器输出图像的质量,为后续图像判读奠定了良好的基础.关 键 词:无损检验;图像处理;图像校准;平板探测器中图分类号:TH 87811文献标识码:A 文章编号:100125965(2004)0820698204X 2ray flat 2panel 2detector 2ba sed digital radiography and its image calibrationZhou Zhenggan T eng Shenghua Jiang Wei An Zhengang(School of M echanical Engineering and Automation ,Beijing University of Aeronautics and Astronautics ,Beijing 100083,China )Abstract :T o im prove imaging quality of X 2ray digital radiography system ,an X 2ray flat 2panel 2detector 2based digital radiography system was investigated.F our factors of flat panel detector which degrade image quality ,such as random noise ,offset ,response nonuniformity and defective pixels ,were introduced.H ow they occur and in fluence imaging quality was analyzed.C orresponding methods for image calibration were put forward to minish and eliminate the in fluences on image quality.Experimental results indicate that ,with the image calibration methods ,the in flu 2ences of above mentioned factors can be rem oved effectively and the quality of image from flat panel detector can be im proved greatly ,which has founded a g ood foundation for succedent image identifying.K ey words :non 2destructive tests ;image processing ;image calibration ;flat panel detector 射线检测是常规无损检测的重要方法之一,广泛应用于航空、航天、核电、国防以及其它工业部门,在工业生产和国民经济中发挥了重要作用[1].目前,在生产实际中,射线检测普遍使用胶片照相法.X 射线胶片照相的成像质量较高,能正确提供被测试件缺陷真实情况的可靠信息,但是,它具有操作过程复杂、运行成本高、结果不易保存且查询携带不便以及评片人员眼睛易受强光损伤等缺点.为了解决上述问题,20世纪90年代末出现了X 射线数字照相(Digital Radiography ,DR )检测技术.X 射线数字照相系统中使用了平板探测器(flat panel detector ),其像元尺寸可小于0.1mm ,因而其成像质量及分辨率几乎可与胶片照相媲美,同时还克服了胶片照相中表现出来的缺点,也为图像的计算机处理提供了方便[2].因此,基于平板探测器的X 射线数字成像系统在无损检测和评价(NDT ΠNDE )、集装箱扫描、电路板检查以及医疗应用等方面具有广阔的应用前景[3].1 平板探测器的组成及工作原理X 射线平板探测器由射线接收器、命令处理器和电源组成.射线接收器中包含有闪烁晶体屏(G d 2O 2S 或CsI )、大面积非晶硅传感器阵列以及2004年8月第30卷第8期北京航空航天大学学报Journal of Beijing University of Aeronautics and Astronautics August 2004V ol.30 N o 18读出电路等,其结构示意图如图1所示.其中,闪烁晶体屏用来将X 射线光子转换成可见光,与其紧贴的大规模集成非晶硅传感器阵列将屏上的可见光转换成电子,然后由读出电路将其数字化,传送到计算机中形成可显示的数字图像.命令处理器是接收器和用户系统之间的接口.由该种平板探测器组成的X 射线数字成像系统结构如图2所示.图1 接收器内部结构示意图图2 平板探测器成像系统结构示意图2 平板探测器图像校准的必要性尽管平板探测器具备前述一些优良特性,但是,X 射线源的不同、接收器内电子线路的不一致性及其正常变化,都会引起平板探测器上不同像元在同样X 射线剂量辐射的情况下具有不同的输出信号.导致这一现象产生的原因可以归纳为以下几个方面.2.1 随机噪声(random noise)探测器中,从射线到可见光的转换以及后续的光电转换和模数转换等都伴有随机噪声.另外,由于探测器的像元数据是逐行读出的,对指定行的采样瞬间也不可避免地要受到相邻行的影响.2.2 偏置误差(offset)在没有X 射线照射的情况下,由于光电二极管(photodiode )和薄膜晶体管(Thin 2Film 2Transistor ,TFT )的漏电流以及数据采集电路中电荷放大器零点漂移的影响,探测器各像元仍有一定的输出值,这就是偏置误差.偏置误差是一种系统误差,在实际工作中,它叠加在实际射线响应输出之上,而且各像元的偏置误差各不相同.通常情况下,可以认为每个像元的偏置误差是固定不变的,因此能够将其消除.2.3 像元响应不一致性(response nonuniformity)像元响应不一致性是指探测器在均匀强度X 射线的照射下,各像元响应的不均匀程度,它与像元接收到的射线剂量到像元图像灰度值转换的整个过程有关.一方面,各像元对应的射线Π可见光转换、光Π电转换及电荷放大程度各不相同;其次,探测器中用到的电荷放大器因工艺所限不可能做得很宽,所以只能将多片集成的放大器拼接在一起(见图1),于是又产生了不同放大器模块之间放大程度的差异.由于各探测器像元对均匀射线的响应不一致性是随机的,因此,在图像上反映出灰度空间分布的随机性[2].然而,可以近似认为各像元的响应灵敏程度是固定不变的.2.4 瑕疵像元(defective pixels)瑕疵像元是指不能依据射线强度做出合理响应的像元,或者说是响应灵敏程度明显有别于正常点的像元.按对射线响应的灵敏程度来分,瑕疵像元可以分为对射线响应过于敏感的像元和过度迟钝的像元两种.在探测器生成的原始图像上,可以很明显地看到星星点点散布着的亮点和黑点,甚至整条的白线或黑线,这些就是典型的瑕疵像元.从本质上讲,瑕疵像元是像元响应不一致性的极端情况,但由于其极端性,又不宜采取与响应不一致性相同的校正方法,故将其单独列出.由于上述原因,从探测器采集的原始图像一般不能满足实际检测的要求.因此,全面分析平板探测器自身影响输出图像质量的各种因素,在此基础上研究针对性的图像校准方法对原始图像进行处理,是实际检测过程中一个必不可少的环节.3 平板探测器的图像校准方法3.1 随机噪声的消除对于随机噪声,最有效的消除方法就是采用多幅图像叠加取平均值的经典方法[4].对均匀射线辐射探测器所获得的图像(由12bit 的图像采集卡获得,下同)进行分析,如图3所示,图3c 表示了去掉的随机噪声.通过多幅叠加,灰度标准差由33.83减小至30.74.由此可见,通过采用多幅平均的方法去掉随机噪声后,图像质量得到了提高,但通过16幅叠加取平均的方法去噪耗时太长.实验结果表明,4996第8期 周正干等:X 射线平板探测器数字成像及其图像校准a 单幅图像某行的一段灰度曲线b 16幅图像叠加平均后与a图同位置的灰度曲线c a 图减去b 图的结果图3 随机噪声及其消除幅叠加处理后即可获得同16幅叠加处理大致相当的效果.3.2 偏置误差的修正在没有X 射线辐射探测器的情况下采集一幅图像,称之为暗场图像,它是探测器传感器阵列在无信号输入时的输出信号,包含了偏置误差的全部信息.偏置误差修正过程如图4所示.从图4a 可见,不同像元的偏置误差相差很大,且毫无规律可言.图4c 代表了偏置误差被修正后的结果.图4c 的图像质量较图4b 有了显著提高,灰度标准差由30.74降到18.88.3.3 像元响应不一致性校正由图4c 可见,经过偏置误差修正,该行的灰度曲线仍有较大的起伏,而且呈明显的分段特性,即该行可以分为灰度相差较大的几段,而整幅图像的灰度分布则呈现规则的柱状,如图5所示.这表明,还有严重影响图像质量的因素有待校正,这就是像元响应不一致性.为了对响应不一致性进行校正,首先需要掌握各点的响应特性,这就需要采集并分析校准图像.在实际工作中,分别在3种不同射线辐射状态a 暗场图像某行的一段灰度曲线b 均匀射线辐射下与a图同位置的图像灰度曲线c b 图减去a 图的结果图4 偏置误差及其消除图5 偏置误差校正后图像灰度拉伸效果下采集校准图像:①在没有X 射线辐射探测器的情况下获取一幅图像,前已提及,称为暗场图像;②在能使各像元和电子线路饱和的均匀X 射线照射探测器的情况下获取一幅图像,称为亮场图像;③在亮场图像所用剂量70%左右的X 射线均匀照射下采集一幅图像,称为中亮场图像.在采集校准图像时,为消除随机噪声的影响,一般应该采取多幅叠加取平均的方式.由前面对偏置误差的分析可知,这里的暗场图像实际上就代表了偏置误差.若用中亮场图像与暗场图像相减,得到的差值就是各像元在中亮场射线强度下的响应.同理,由于各种射线条件下得到的图像都包含了暗场图像所代表的偏置误差成分,所以任意两幅图像相减的结果,就是二者对应射线剂量的差值在各像元的实际响应.这样,利007北京航空航天大学学报 2004年用3幅校正图像,对于每一像元,都可得到一条灰度值随射线强度变化的响应曲线,也就可获得图像校正值随原始灰度值的变化曲线.图6为某点的灰度校正曲线,其中,横坐标表示原始灰度值P ,纵坐标对应校正输出Q .P d ,P m ,P l 分别代表该像元在暗场、中亮场和亮场图像中的对应灰度值.暗场图像像元灰度值的校正输出Q d 对应灰度0,亮场图像像元灰度值的校正输出则可以根据实际需要确定为某一恒定值,如像元灰度为12bit ,则Q l 取4095.中亮场的校正值Q m 可以根据暗场和亮场的对应值,结合射线强度差求得,或根据3幅图像的灰度均值用下式近似得到:Q m =P mm -P dmP lm -P dm ×Q l(1)式中 P dm ,P mm ,P lm 分别是暗场、中亮场和亮场图像的灰度平均值.图6 某像元的灰度校正曲线对于任意一幅需要校正的图像,校正值根据P 值与中、亮场灰度的对比关系,对应图6中分段线性校正曲线的上半段或下半段.实际利用下式计算:Q =P -P dP m -P d×Q m P <P mP -P mP l -Pm×(Q l -Q m )+Q m P >P m(2) 图7是图5对应原始图像经过不一致性校正后的结果,区域灰度标准差由39129降为27106,降低了3111%.图7 经像元相应不一致性校正后的图像314 瑕疵像元校正仔细观察图7,可以发现其中存在一些灰度值奇异点,这是受到前述瑕疵像元影响的结果.为对瑕疵像元进行具体界定,根据实验结果设定了一个灰度区间,若某像元P l 与P d 的差值落在该区间之外,则判定该像元为瑕疵像元.对瑕疵像元的校正采用邻域选择性平均法,即瑕疵像元的校正输出取其邻域中正常像元的灰度平均值;除非位于传感器阵列的边缘,每个像元有8个相邻像元.如果瑕疵像元的相邻像元中有3个以上是正常的,则相邻正常像元的灰度平均值可作为该瑕疵像元的灰度值;若相邻像元中正常的像元少于3个,则该瑕疵像元不能被校正,否则,图像有可能失真.综合运用上述各种校正方法,对某均匀射线照射图像进行校准,校准之后的图像灰度分布趋于平坦化,灰度标准差由39.29降到了19.24,降幅高达51.0%.4 结 论由于受到随机噪声、偏置误差、像元相应不一致性和瑕疵像元等各种图像降质因素的影响,从平板探测器采集的原始图像一般不能满足实际检测工作的要求.在全面分析各种图像降质因素的成因及特性的基础上,本文介绍了平板探测器数字图像校准的方法.利用本文介绍的图像校准方法,可显著改善平板探测器的图像质量,为后续的图像判读,以及其缺陷识别等工作奠定了良好的基础.参考文献(R eferences )[1]刘德镇.现代射线检测技术[M].北京:中国标准出版社,1999.240~251Liu Dezhen.M odern radiology techniques[M].Beijing :China S tan 2dard Press ,1999.240~251(in Chinese )[2]曹厚德.数字化X 射线影像技术的发展[J ].感光材料,1999,(1):31~34Cao H oude.Development of digital radiography[J ].Sensitive M ate 2rial ,1999,(1):31~34(in Chinese )[3]Reiff KJ.Flat panel detectors 2closing the (digital )gap in chest andskeletal radiology[J ].European Journal of Radiology ,1999,31:125~131[4]陈树越,路宏年.X 射线数字成像噪声特性及噪声消除方法研究[J ].无损检测,2001,23(1):9~14Chen Shuyue ,Lu H ongnian.Research on noise characteristics and noise depression in X 2ray digital radiographic system [J ].N onde 2structive T esting ,2001,23(1):9~14(in Chinese )107第8期 周正干等:X 射线平板探测器数字成像及其图像校准。
新型 X 线探测器材料及性能评估第一部分X 线探测器材料概述 (2)第二部分新型材料研究背景与意义 (3)第三部分常见X 线探测器类型介绍 (6)第四部分新型X 线探测器材料分类 (8)第五部分无机半导体探测器材料特性 (10)第六部分有机半导体探测器材料特性 (13)第七部分薄膜晶体管(TFT)技术应用 (15)第八部分探测器性能评估方法与指标 (17)第九部分实际应用中的挑战与解决方案 (20)第十部分未来发展趋势与前景展望 (21)第一部分X 线探测器材料概述X 线探测器材料是实现X 射线成像的关键组成部分。
随着科学技术的不断发展,各种新型X 线探测器材料的研发和应用逐渐成为研究热点。
X 线探测器的工作原理主要基于光电效应、康普顿散射和电子-空穴对的产生与分离。
根据不同的物理过程和信号转换方式,X 线探测器可分为直接转换型和间接转换型两大类。
其中,直接转换型探测器将X 射线能量直接转化为电荷或电信号;而间接转换型探测器则需要通过闪烁体等中介物质将X 射线能量转化为可见光或其他形式的能量,然后再通过光电二极管等器件将这种能量转化为电信号。
常见的直接转换型X 线探测器材料包括硅(Si)、硒化镉(CdSe)、碲化镉(CdTe)和硒化锌镉(ZnCdSe)等半导体材料。
这些材料具有较高的检测效率和良好的线性响应特性,能够实现高分辨率和快速响应的X 射线成像。
然而,由于其成本较高、工艺复杂等原因,它们的应用范围相对较窄。
相比之下,间接转换型X 线探测器材料具有更广泛的应用前景。
常用的间接转换型X 线探测器材料主要包括碘化铯(CsI)、碘化铅(PbI2)和硫氧化钆(GdOS)等闪烁体材料。
这些闪烁体材料具有较低的成本、较宽的吸收范围和较好的发光特性,能够在低剂量条件下获得高质量的X 射线图像。
此外,近年来还出现了一些新型X 线探测器材料,如钙钛矿材料、二维材料等。
例如,钙钛矿材料因其独特的光电性能和易于制备的特点,被广泛关注。
X射线实时成像检测系统DUT06是基于计算机图像处理技术的X光无损探伤系统。
该探伤系统适用于任何以X光无损探伤为主要探伤方法的企业,可对夹杂、气孔、未焊透等缺陷进行检测和测量。
该探伤系统可以分为静态检测与动态检测两大部分。
在静态检测中,系统包括图像放大缩小、图像局部放大、伪彩色、负像、浮雕、缺陷区域检测、缺陷尺寸测量、图片存储与查询、图像细节调整、标注划线和添字、预览和打印多幅图片、报表打印等X光探伤中的典型功能;在动态显示系统实现了实时负像、实时伪彩、实时降噪、动态细节调整、动态实时存贮、视频压缩存储和回放功能。
系统具有静态检测灵敏度高和动态智能化,方便可靠等优点。
右上图为工业电视成像效果和系统处理后的显示效果对比图;图1为系统操作界面。
图1一技术指标●标准PAL、NTSC制黑白视频信号输入;●采集速度:PAL制每秒25帧;NTSC制每秒30帧;●图像采集最大分辨率:PAL—768×576;NTSC—640×480;●亮度、对比度等软件连续可调;●静态检测灵敏度≥2%,动态显示灵敏度≥4%。
二工作条件要求工作电压要求稳定,动态范围是220V±10V,而且系统不能总是突然断电;如果用户工作的环境工作电压不合适,建议用户安装稳压电源。
三操作步骤程序启动以后,您首先需要进行一些基本的系统参数设置,以保证您的后续操作的顺利进行。
这里我们主要向您介绍一些基本参数的设定,其他具体的功能选项,请您参照第三部分的功能简介。
1.用户管理点击菜单[参数设定]里的[用户管理]选项(或者单击工具拦右侧的[用户管理]按钮),启动用户管理对话框,如图2所示。
在该对话框中,左边列表显示的是已经存在的用户情况。
您可以单击[添加用户]按钮来添加您需要的用户,点击以后会出现如图3示的“请输入新用户名”的对话框,输入名称以后点击[确定]按钮退出即可;如果不想保留请点击[取消]按钮。
如果想删除某个用户,则先选中某个用户名,然后点击[删除用户]按钮;注意:为了避免您误删除有用的文件,我们硬性要求您事先应该删除该用户名文件夹下面的所有文件,否则您在进行删除操作时,系统会给您提示,如图4所示。