高中数学必修二2.3.3-2.3.4(第2课时)直线与平面、平面与平面垂直的性质习题新人教A版必修2
- 格式:pdf
- 大小:116.30 KB
- 文档页数:5
高中数学-打印版2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质知识梳理1.一条直线垂直于一个平面,则这条直线垂直于这个平面内任意一条直线.2.性质定理:垂直于同一平面的两条直线平行.3.两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.4.垂直于同一直线的两个平面平行.5.两个平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.知识导学直线与平面垂直的性质定理给出了判断两条直线平行的另一种方法,即“线面垂直,则线线平行”,它揭示了“平行”与“垂直”的内在联系.面面垂直的性质定理则揭示了线面垂直与面面垂直的内在联系.疑难突破1.请思考线面垂直的实质是什么,直线与平面垂直的性质定理与“如果两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面”有什么联系?剖析:直线和平面的垂直实质上取决于线与线的垂直,反过来,线面的垂直又得到线线的垂直,这是线面垂直的实质.对于垂直于同一平面的两条直线,我们有性质定理:垂直于同一平面的两条直线平行.它与“如果两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面”相互结合,在证明线面垂直的问题中发挥着重要作用.直线与平面垂直的性质定理,考查的是在直线与平面垂直的条件下,可以得出哪些结论.它与“如果两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面”互为逆命题.这两个命题可用符号表示为:当a⊥α时,a∥b b⊥α.2.两个平面垂直有什么性质?剖析:两个平面垂直的性质有:(1)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直;(2)两个平面垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内.其中性质定理成立要有两个条件:一是线在面内,二是线垂直于交线,才能线面垂直,这一定理也可简述为“面面垂直,则线面垂直”,它反映了面面垂直与线面垂直的密切关系;对于第二条性质,只要在其中一个平面内通过一点作另一平面的垂线,那么这条垂线必在这个平面内.对点的位置,它既可以在交线上,也可以不在交线上.平面与平面垂直的性质,讨论的是在两个平面相互垂直的条件下,能够得出一些什么结论.这个问题的过程采用的思路自然是“直观感知、操作确认、推理证明”,即充分利用长方体等实物模型感知在相邻的两个相互垂直的平面中,有哪些特殊的直线、平面的关系,然后通过操作,确认两个平面垂直的性质定理的合理化,进而提出猜想,最后进行逻辑推理,证明性质定理成立.沿用这一模式,对培养空间观念、空间想象能力以及逻辑推理能力的基本规律的认识是有益的.精心校对。
2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质一、课标解读1.掌握直线和平面垂直的性质定理和推论的内容、推导和简单应用。
2.掌握等价转化思想在解决问题中的运用.3.使学生掌握直线与平面垂直,平面与平面垂直的性质定理.4.能运用性质定理解决一些简单问题.了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系.二、自学导引问题1:如图,长方体ABCD —A ′B ′C ′D ′中,棱A A ′、B B ′、C C ′、D D ′所在直线都垂直于平面ABCD ,它们之间具有什么位置关系?问题2:已知:a α⊥,b α⊥。
求证:b ∥a直线和平面垂直的性质定理: 垂直于同一个平面的两条直线平行。
符号语言作用:a b问题3:黑板所在平面与地面所在平面垂直,你们能否在黑板上画一条直线与地面垂直呢?问题4:如图,长方体ABCD-A'B'C'D中,平面A'ADD’与平面ABCD垂直,直线A'A垂直于其交线AD,平面A'ADD’内的直线A'A与平面ABCD垂直吗?问题5:设α⊥β,α∩β=CD,A B α,AB⊥CD,AB∩CD=B,研究直线AB与平面β的位置关系。
归纳得到平面与平面垂直的性质定理:定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
想一想:用符号语言如何表述这个定理?三、典例精析例1 如图所示,正方体1111ABCD A B C D -中,D A AC EF 1及与异面直线都垂直相交. 求证:EF ∥1BD变式训练1 如图所示,已知SA 垂直于ABCD 所在平面,过A 且垂直于SC 的平面分别交 .,,,,G F E SD SC SB 于求证:SB AE ⊥例2 如图所示,平面⊥⊥PAC ABC PAB 平面平面,平面ABC ,⊥AE 平面PBC ,E 为垂足.(1) 求证:ABC PA 平面⊥(2) 当E 为PBC ∆的垂心时,求证:ABC ∆是直角三角形变式训练2 如图所示,是所在平面外一点,是四边形ABCD ABCD P60=∠DAB 且 边长ABCD PAD a 面垂直于底面为正三角形,其所在平的菱形,侧面. (1) 若PAD BG AD G 平面边的中点,求证:为⊥ (2) 求证:PB AD ⊥四、自主反馈 1.两异面直线在平面α内的射影( )A .相交直线B .平行直线C .一条直线—个点D .以上三种情况均有可能2.若两直线a 与b 异面,则过a 且与b 垂直的平面( )A .有且只有—个B .可能存在也可能不存在C .有无数多个D .—定不存在3.在空间,下列哪些命题是正确的( )①平行于同一条直线的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③平行于同一个平面的两条直线互相平行;④垂直于同—个平面的两条直线互相平行.A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确4.若平面α的斜线l 在α上的射影为l ′,直线b ∥α,且b ⊥l ′,则b 与l ( )A .必相交B .必为异面直线C .垂直D .无法确定5.下列命题①平面的每条斜线都垂直于这个平面内的无数条直线;②若一条直线垂直于平面的斜线,则此直线必垂直于斜线在此平面内的射影; ③若平面的两条斜线段相等,则它们在同一平面内的射影也相等;④若一条线段在平面外并且不垂直于这个平面,则它的射影长一定小于线段的长. 其中,正确的命题有( )A .1个B .2个C .3个 n 4个6.在下列四个命题中,假命题为( )A .如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直B .垂直于三角形两边的直线必垂直于第三边C .过点A 垂直于直线a 的所有直线都在过点A 垂直于a 的平面内D .如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面7.已知P 是四边形ABCD 所在平面外一点且P 在平面ABCD 内的射影在四边形ABCD 内,若P 到这四边形各边的距离相等,那么这个四边形是( )A .圆内接四边形B .矩形C .圆外切四边形D .平行四边形8.在△ABC 中,AB =AC =5,BC =6,P A ⊥平面ABC ,P A =8,则P 到BC 的距离等于( )A .5B .52C .35D .45答案2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质例1 证明:连接BD C B AB ,,11ABCD AC ABCD DD 平面平面⊂⊥,1D DD BD BD AC AC DD =⊥⊥∴11,, 又111,BD AC B BDD AC ⊥∴⊥∴平面C AB BD C B BD 1111,平面同理可证⊥∴⊥C BD A AD EF AC EF 11//,,又⊥⊥C AB EF C B EF 11,平面⊥∴⊥∴1//BD EF ∴例2 证明(1)在平面F AC DF D ABC 于作内取一点⊥,AC ABC PAC 且交线为平面平面,⊥AP DF PAC PA PAC DF ⊥∴⊂⊥∴,,平面平面AP DG G AB DG ⊥⊥同理可证于作,D DF DG ABC DF DG = 内,且都在平面,ABC PA 平面⊥∴(2)连接H PC BE 于并延长交BE PC PBC E ⊥∴∆的垂心,是又已知AE PC PBC AE ⊥∴的垂线,是平面AB PC ABE PC ⊥∴⊥∴,平面PAC AB AB PA ABC PA 平面平面又⊥∴⊥∴⊥,, 是直角三角形即ABC AC AB ∆⊥∴,变式训练1.SA BC ABCD BC ABCD SA ⊥∴⊂⊥,平面,平面证明:SAB SA SAB AB A SA AB AB BC 平面平面⊂⊂=⊥,,, BC AE SAB AE SAB BC ⊥∴⊂⊥∴,,平面平面 SC AE AEFG AE AEFG SC ⊥∴⊂⊥,,平面平面 SBC BC SBC SC C BC SC 平面平面又⊂⊂=,, SB AE SBC SB SBC AE ⊥∴⊂⊥∴,,平面平面2.略自主反馈1.D 2.B 3.B 4.C 5.A 6.A 7.C 8.D。
2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质学习目标 1.掌握空间中线面、面面垂直的性质定理.2.能够运用线面、面面垂直的性质定理证明一些简单的问题.3.理解线面垂直、面面垂直的判定定理和性质定理之间的相互联系.知识点一直线与平面垂直的性质定理知识点二平面与平面垂直的性质定理1.如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面.(√)2.若平面α⊥平面β,任取直线l⊂α,则必有l⊥β.(×)3.若一条直线垂直于两个平行平面中的一个,则该直线也垂直于另一个平面.(√)4.已知两个平面垂直,过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.(×)题型一线面垂直性质定理的应用例1如图,已知正方体A1C.(1)求证:A1C⊥B1D1;(2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN⊥C1D,求证:MN∥A1C. 考点直线与平面垂直的性质题点应用线面垂直的性质定理判定线线平行证明(1)如图,连接A1C1.∵CC1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,∴CC1⊥B1D1.∵四边形A1B1C1D1是正方形,∴A1C1⊥B1D1.又∵CC1∩A1C1=C1,A1C1,CC1⊂平面A1C1C,∴B1D1⊥平面A1C1C.又∵A1C⊂平面A1C1C,∴B1D1⊥A1C.(2)连接B1A,AD1.∵B1C1∥AD,且B1C1=AD∴四边形ADC1B1为平行四边形,∴C1D∥AB1.∵MN⊥C1D,∴MN⊥AB1.又∵MN⊥B1D1,AB1∩B1D1=B1,AB1,B1D1⊂平面AB1D1,∴MN⊥平面AB1D1.由(1)知A1C⊥B1D1.同理可得A1C⊥AB1.又∵AB1∩B1D1=B1,AB1,B1D1⊂平面AB1D1,∴A1C⊥平面AB1D1.∴A1C∥MN.反思感悟证明线线平行的常用方法(1)利用线线平行定义:证共面且无公共点.(2)利用三线平行公理:证两线同时平行于第三条直线.(3)利用线面平行的性质定理:把证线线平行转化为证线面平行.(4)利用线面垂直的性质定理:把证线线平行转化为证线面垂直.(5)利用面面平行的性质定理:把证线线平行转化为证面面平行.跟踪训练1如图,α∩β=l,P A⊥α,PB⊥β,垂足分别为A,B,a⊂α,a⊥AB.求证:a∥l.考点直线与平面垂直的性质题点应用线面垂直的性质定理判定线线平行证明∵P A⊥α,l⊂α,∴P A⊥l.同理PB⊥l.∵P A∩PB=P,P A,PB⊂平面P AB,∴l⊥平面P AB.又∵P A⊥α,a⊂α,∴P A⊥a.∵a⊥AB,P A∩AB=A,P A,AB⊂平面P AB,∴a⊥平面P AB.∴a∥l.题型二面面垂直性质定理的应用例2如图,在三棱锥P-ABC中,P A⊥平面ABC,平面P AB⊥平面PBC.求证:BC⊥AB.考点平面与平面垂直的性质题点应用面面垂直的性质判定线线垂直证明如图,在平面P AB内,作AD⊥PB于点D.∵平面P AB⊥平面PBC,且平面P AB∩平面PBC=PB,AD⊂平面P AB,∴AD⊥平面PBC.又BC⊂平面PBC,∴AD⊥BC.又∵P A⊥平面ABC,BC⊂平面ABC,∴P A⊥BC,又∵P A∩AD=A,∴BC⊥平面P AB.又AB⊂平面P AB,∴BC⊥AB.反思感悟证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理.本题已知面面垂直,故可考虑面面垂直的性质定理.利用面面垂直的性质定理证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.跟踪训练2如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线EC与平面ABE所成角的正切值.(1)证明∵平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,BC⊥AC,∴BC⊥平面ACDE.又AM⊂平面ACDE,∴BC⊥AM.∵四边形ACDE是正方形,∴AM⊥CE.又BC∩CE=C,∴AM⊥平面EBC.(2)解取AB的中点F,连接CF,EF.∵EA⊥AC,平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,∴EA⊥平面ABC,∵CF⊂平面ABC,∴EA⊥CF.又AC=BC,∴CF⊥AB.∵EA∩AB=A,∴CF⊥平面AEB,∴∠CEF即为直线EC与平面ABE所成的角.在Rt△CFE中,CF=2,FE=6,tan∠CEF=26=33.垂直关系的综合应用典例在四棱锥P-ABCD中,底面ABCD是边长为a的菱形,∠DAB=60°,侧面P AD为等边三角形,其所在平面垂直于底面ABCD.(1)求证:AD⊥PB;(2)若E为BC边上的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.(1)证明设G为AD的中点,连接PG,BG,如图.因为△P AD为等边三角形,所以PG⊥AD.在菱形ABCD中,∠DAB=60°,因为G为AD的中点,所以BG⊥AD.又因为BG∩PG=G,所以AD⊥平面PGB.因为PB⊂平面PGB,所以AD⊥PB.(2)解当F为PC的中点时,满足平面DEF⊥平面ABCD.设F为PC的中点,则在△PBC中,EF∥PB.在菱形ABCD中,GB∥DE,而PB∩GB=B,EF∩DE=E,所以平面DEF∥平面PGB.由(1)得,PG⊥平面ABCD,而PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.[素养评析]以四棱锥为载体,通过对线线、线面、面面垂直关系的论述,使学生掌握推理的基本形式和规则,发现表述论证过程,学会有逻辑地思考问题,提升逻辑推理的数学核心素养.1.在空间中,下列哪些命题是正确的()①平行于同一条直线的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③平行于同一个平面的两条直线互相平行;④垂直于同一个平面的两条直线互相平行.A.①③④B.①④C.①D.①②③④答案 B2.下列命题正确的是()①⎭⎪⎬⎪⎫a ∥b ,a ⊥α⇒b ⊥α; ② ⎭⎪⎬⎪⎫a ⊥α,a ⊥b ⇒b ∥α; ③⎭⎪⎬⎪⎫a ∥α,a ⊥b ⇒b ⊥α. A.①② B.①③ C.②③ D.① 答案 D3.已知平面α⊥平面β,则下列命题中真命题的个数是( ) ①α内的任意直线必垂直于β内的无数条直线;②在β内垂直于α与β的交线的直线必垂直于α内的任意一条直线; ③α内的任意一条直线必垂直于β;④过β内的任意一点作α与β交线的垂线,则这条直线必垂直于α. A.4 B.3 C.2 D.1考点 平面与平面垂直的性质题点 应用面面垂直的性质判定线面垂直 答案 C解析 ①设α∩β=l ,a ⊂α,b ⊂β,b ⊥l ,则a ⊥b ,故β内与b 平行的无数条直线均垂直于α内的任意直线,为真命题;②β内垂直于α与β交线的直线垂直于平面α,则它垂直于α内的任意直线,为真命题;③α内不与交线垂直的直线不垂直于β,为假命题;④垂直于交线的直线必须在平面β内才与平面α垂直,否则不垂直,为假命题.4.如图所示,已知AF ⊥平面ABCD ,DE ⊥平面ABCD ,且AF =DE ,AD =6,则EF =________.考点 平面与平面垂直的性质 题点 有关面面垂直性质的计算 答案 6解析 ∵AF ⊥平面ABCD ,DE ⊥平面ABCD , ∴AF ∥DE .又AF =DE ,∴四边形AFED 为平行四边形, 故EF =AD =6.5.如图所示,在四棱锥S -ABCD 中,底面ABCD 是矩形,侧面SDC ⊥底面ABCD ,求证:平面SDC⊥平面SBC.考点平面与平面垂直的性质题点面面垂直性质的综合应用证明因为底面ABCD是矩形,所以BC⊥CD.又平面SDC⊥平面ABCD,平面SDC∩平面ABCD=CD,BC⊂平面ABCD,所以BC⊥平面SDC.又因为BC⊂平面SBC,所以平面SDC⊥平面SBC.1.线面垂直的性质定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系相互转化的依据.2.面面垂直的性质定理揭示了“面面垂直、线面垂直及线线垂直”间的内在联系,体现了数学中的转化与化归思想,其转化关系如下:一、选择题1.对于任意的直线l与平面α,在平面α内必有直线m,使m与l()A.平行B.相交C.垂直D.互为异面直线答案 C2.已知m ,n 为两条不同直线,α,β为两个不同平面,给出下列命题:①⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ⇒n ∥α; ②⎩⎪⎨⎪⎧m ⊥β,n ⊥β⇒m ∥n ; ③⎩⎪⎨⎪⎧m ⊥α,m ⊥β⇒α∥β; ④⎩⎪⎨⎪⎧m ⊂α,n ⊂β,α∥β⇒m ∥n .其中正确命题的序号是( ) A.②③ B.③④ C.①②D.①②③④考点 直线与平面垂直的性质题点 应用线面垂直的性质定理判定线线平行 答案 A解析 ①中n ,α可能平行或n 在平面α内;②③正确;④两直线m ,n 平行或异面,故选A.3.设平面α⊥平面β,若平面α内的一条直线a 垂直于平面β内的一条直线b ,则( ) A.直线a 必垂直于平面β B.直线b 必垂直于平面α C.直线a 不一定垂直于平面β D.过a 的平面与过b 的平面垂直 答案 C解析 当两个平面垂直时,在一个平面内只有垂直于交线的直线才垂直于另一个平面. 4.已知l ⊥平面α,直线m ⊂平面β.有下面四个命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β. 其中正确的两个命题是( ) A.①② B.③④ C.②④D.①③考点 线、面平行、垂直的综合应用 题点 平行与垂直的判定 答案 D解析 ∵l ⊥α,α∥β,∴l ⊥β,∵m ⊂β,∴l ⊥m ,故①正确;∵l ∥m ,l ⊥α,∴m ⊥α,又∵m⊂β,∴α⊥β,故③正确.5.如图,设平面α∩平面β=PQ,EG⊥平面α,FH⊥平面α,垂足分别为G,H.为使PQ⊥GH,则需增加的一个条件是()A.EF⊥平面αB.EF⊥平面βC.PQ⊥GED.PQ⊥FH考点平面与平面垂直的性质题点应用面面垂直的性质判定线线垂直答案 B解析因为EG⊥平面α,PQ⊂平面α,所以EG⊥PQ.若EF⊥平面β,则由PQ⊂平面β,得EF⊥PQ.又EG与EF为相交直线,所以PQ⊥平面EFHG,所以PQ⊥GH,故选B.6.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部考点平面与平面垂直的性质题点应用面面垂直的性质判定线线垂直答案 A解析在四面体ABCD中,已知AB⊥AC,BD⊥AC,AB∩BD=B,∴AC⊥平面ABD.又∵AC⊂平面ABC,∴平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,D在平面ABC内的射影H必在直线AB上.故选A.7.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出如下命题:①若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β;②若α⊥γ,β⊥γ,则α∥β;③若α⊥β,m⊥β,m⊄α,则m∥α;④若α⊥β,m∥α,则m⊥β.其中正确命题的个数为()A.1B.2C.3D.4答案 B解析①正确;③正确.8.在三棱锥P-ABC中,平面P AC⊥平面ABC,∠PCA=90°,△ABC是边长为4的正三角形,PC=4,M是AB边上的一动点,则PM的最小值为()A.2 3B.27C.4 3D.47答案 B解析连接CM,则由题意PC⊥平面ABC,可得PC⊥CM,所以PM=PC2+CM2,要求PM的最小值只需求出CM的最小值即可,在△ABC中,当CM⊥AB时CM有最小值,此时有CM=4×32=23,所以PM的最小值为27.二、填空题9.a,b是异面直线,直线l⊥a,l⊥b,直线m⊥a,m⊥b,则l与m的位置关系是________. 考点直线与平面垂直的性质题点应用线面垂直的性质定理判定线线平行答案平行解析由线面垂直的性质定理可得.10.如图,平面ABC⊥平面ABD,∠ACB=90°,CA=CB,△ABD是正三角形,O为AB中点,则图中直角三角形的个数为________.考点平面与平面垂直的性质题点应用面面垂直的性质判定线线垂直答案 6解析∵CA=CB,O为AB的中点,∴CO⊥AB.又平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,CO⊂平面ABC,∴CO⊥平面ABD. ∵OD⊂平面ABD,∴CO⊥OD,∴△COD为直角三角形.∴图中的直角三角形有△AOC,△COB,△ABC,△AOD,△BOD,△COD共6个.11.已知m,n是空间两条不同的直线,α,β是两个不同的平面,下面有四个命题:①m⊥α,n∥β,α∥β⇒m⊥n;②m⊥n,α∥β,m⊥α⇒n∥β;③m⊥n,α∥β,m∥α⇒n⊥β;④m⊥α,m∥n,α∥β⇒n⊥β.其中所有真命题的序号是________.答案①④三、解答题12.如图,三棱锥P-ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△P AC是直角三角形,∠P AC=90°,平面P AC⊥平面ABC,求证:平面P AB⊥平面PBC.考点平面与平面垂直的性质题点面面垂直性质的综合应用证明∵平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,P A⊥AC,P A⊂平面P AC,∴P A⊥平面ABC.又BC⊂平面ABC,∴P A⊥BC.又∵AB⊥BC,AB∩P A=A,AB⊂平面P AB,P A⊂平面P AB,∴BC⊥平面P AB.又BC⊂平面PBC,∴平面P AB⊥平面PBC.13.如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.考点线、面平行、垂直的综合应用题点平行与垂直的判定证明(1)在平面ABD内,因为AB⊥AD,EF⊥AD,则AB∥EF.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.14.如图,若边长为4和3与边长为4和2的两个矩形所在的平面互相垂直,则cos α∶cos β=________.答案5∶2解析由题意,两个矩形的对角线长分别为5,25,所以cos α=525+4=529,cos β=2529,所以cos α∶cos β=5∶2.15.如图,四棱锥P-ABCD的底面是边长为a的菱形,∠BCD=120°,平面PCD⊥平面ABCD,PC=a,PD=2a,E为P A的中点,求证:平面EDB⊥平面ABCD.证明设AC∩BD=O,连接EO,则EO∥PC.∵PC=CD=a,PD=2a,∴PC2+CD2=PD2,∴PC⊥CD.∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,∴PC⊥平面ABCD,∴EO⊥平面ABCD.又EO⊂平面EDB,故有平面EDB⊥平面ABCD.。