2011年中考数学试卷分类汇编:22 全等三角形
- 格式:doc
- 大小:599.50 KB
- 文档页数:11
2011全国中考真题全等三角形的性质与判定一、选择题1.(2011•江苏宿迁,7,3)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A、AB=ACB、BD=CDC、∠B=∠CD、∠BDA=∠CDA2.(2011南昌,10,3分)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC3.(2011年山东省威海市,6,3分)在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等()A、EF∥AB B、BF=CF C、∠A=∠DFE D、∠B=∠DEF4.(2011年江西省,7,3分)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC5. (2011安徽省芜湖市,6,4分)如图,已知△ABC 中,∠ABC =45°,F 是高AD 和BE 的交点,CD =4,则线段DF 的长度为( )A、B 、4C、D、6. (2011浙江金华,9,3分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A.600mB.500mC.400mD.300mEDCBA7. (2011梧州,12,3分)如图,点B、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A 、△ACE ≌△BCDB 、△BGC ≌△AFCC 、△DCG ≌△ECFD 、△ADB ≌△CEA8.(2011广西百色,8,4分)如图,在△ABC中,AB=AC,∠ABC.∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④9.(2011•恩施州9,3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A、11B、5.5C、7D、3.510.(2011湖北十堰,6,3分)工人师傅常用角尺平分一个任意角。
江苏13市2011年中考数学试题分类解析汇编专题9:三角形1.选择题1.(苏州3分)如图,在四边形ABCD中,E、F分别是AB、AD的中点。
若EF=2,BC=5,CD=3,则tan C等于A.34B.43C.35D.45【答案】B。
【考点】三角形中位线定理, 勾股定理逆定理, 锐角三角函数定义。
【分析】连接BD,在△ABD中,E、F分别是AB、AD的中点,且EF=2,∴BD=4。
在△BDC中,∵BD=4, BC=5,CD=3,∴222BC BD CD=+。
∴△BDC是直角三角形。
∴4 tan C CD3==。
2. (无锡3分) 如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是A.①与②相似 B.①与③相似C.①与④相似 D.②与④相似【答案】B。
【考点】相似三角形的判定。
【分析】根据如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似的判定定理,直接得出结果:选项A和C,所给的两个三角形无角相等,无对应边的比相等,不相似;选项D,所给的两个三角形只有一组对角相等,无对应边的比相等,不相似;选项B,①与③对顶角相等,OA:OC=OB:OD,两三角形相似。
故选B。
2. (常州、镇江2分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D。
若AC=5,BC=2,则Sin∠ACD的值为A.35B.552C.25D.32【答案】A。
【考点】直角三角形的性质, 锐角三角函数,勾股定理。
4321OABDC【分析】∵在Rt△ABC 中,∠ACB=90°,AC=5,BC=2,∴根据勾股定理,得AB =22AC BC +()22523=+=。
又∵由直角三角形两锐角互余的性质,得∠ACD=90°-∠A=∠B,∴Sin∠ACD =Sin ∠B=AC 5AB 3=。
某某2011年中考数学试题分类解析汇编专题9:三角形一、选择题1.(某某某某3分)将一个有45°角的三角板的直角顶点放在一X宽为3c的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为A.3cmB.6cmC.32cmD.62cm【答案】D。
【考点】含300角的直角三角形的性质,等腰直角三角形的判定,勾股定理。
【分析】过点C作CD⊥AD,∴CD=3。
在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6。
又三角板是有45°角的三角板,∴AB=AC=6。
∴BC2=AB2+AC2=62+62=72,∴BC=62。
故选D。
2.(某某某某3分)工人师傅常用角尺平分一个任意角。
做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合。
过角尺顶点C作射线OC。
由做法得△MOC≌△NOC的依据是【答案】D。
【考点】全等三角形的判定。
【分析】∵OM=ON,CM=,OC为公共边,∴△MOC≌△NOC(SSS)。
故选D。
3.(某某某某3分)如图,在网格中有一个直角三角形(网格中的每个小正方形的边长均为1个单位长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其它的公共点,新三角形的顶点不一定在格点上,那么符合要求的新三角形有A.4个 B.6个 C.7个 D.9个【答案】C。
【考点】等腰三角形的判定【分析】根据题意进行分析可知:以原三角形的边长4,5为腰画出即可与新三角形一起组成一个等腰三角形即有6个。
作原来斜边的中垂线,并与边长为3的直角边的延长线交于一点,此点与原三角形斜边两点构成的三角形也符合要求,从而得出结论共有7个符合要求的三角形。
广东2011年中考数学试题分类解析汇编专题9:三角形一、选择题1. (茂名3分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,若DE=5,则BC=A 、6B 、8C 、10D 、12【答案】C 。
【考点】三角形中位线定理。
【分析】利用三角形的中位线定理求得BC 即可。
故选C 。
2.(茂名3分)如图,已知:45°<A <90°,则下列各式成立的是 A 、sinA=cosA B 、sinA >cosAC 、sinA >tanAD 、sinA <cosA【答案】B 。
【考点】锐角三角函数的定义,三角形的边角关系。
【分析】∵45°<A <90°,∴BC >AC 。
而sinA=BC AB ,cosA=ACAB ,∴sinA >cosA 。
又∵C=900,∴AB >BC >AC 。
而tanA=BCAC,∴sinA <tanA 。
故选B 。
3.(深圳3分)如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是【答案】B 。
【考点】相似三角形的判定。
【分析】如B图△EFG和△ABC中,∠EFG=∠ABC=1350,AB 2CB 22 , 2 EF 1GF 2====,AB CB EF GF∴=。
EFG ABC ∴∆∆∽。
实际上, A ,C ,D 三图中三角形最大角都小于∠ABC ,即可排它,选B 即可。
4.(深圳3分)如图,△ABC 与△DEF 均为等边三角形,O 为BC 、EF 的中点,则AD :BE的值为A.3:1 B. 2:1 C.5:3 D.不确定【答案】A 。
【考点】等边三角形的性质,相似三角形的判定和性质。
【分析】连接AO ,DO 。
设等边△ABC 的边长为a ,等边△ABC 的边长为b 。
∵O 为BC 、EF 的中点,∴AO 、DO 是BC 、EF 的中垂线。
∴∠AOC=∠DOC=900,∴∠AOD=1800—∠COE 。
全国2011年中考数学试题分类解析汇编(181套)专题29:三角形全等一、选择题1.(某某某某3分)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE,②△BAD≌△BCD,③△BDA≌△CEA,④△BOE≌△COD,⑤△ACE≌△BCE。
上述结论一定正确的是A. ①②③B. ②③④C. ①③⑤D. ①③④【答案】D。
【考点】全等三角形的判定。
【分析】根据全等三角形的判定定理,可知①由ASA可证△BCD≌△CBE;②△BAD≌△BCD不一定成立;③由AAS可证△BDA≌△CEA;④由AAS可证△BOE≌△COD;⑤△ACE≌△BCE不一定成立。
故选D。
2.(某某某某3分)如图,在△ABC中,∠ACB=90º,∠A=15º,AB=8,则AC·BC的值为A.14 B.16 3 C.415 D.16【答案】D。
【考点】全等三角形的判定和性质,锐角三角函数。
【分析】延长BC到点D,使CD=CB,连接AD,过点D作DE⊥AB,垂足为点E。
则知△ACD≌△ACB,从而由已知得∠CAD=∠A=15º,AD=AB。
因此,在Rt△ADE中,AD=8,∠BAD=30º,∴DE=AD·sin30º=4。
从而S△ADE=12·AB·DE=16,又S△ADE=12·BD·AC=12·2BC·AC=AC·BC,即AC·BC=16。
3.(某某宿迁3分)如图,已知∠1=∠2,则不一定...能使△ABD≌△ACD的条件是A.AB=AC B.BD=CD C.∠B=∠C D.∠ BDA=∠CDA【答案】B。
【考点】全等三角形的判定。
【分析】条件A构成SAS,条件C构成AAS,条件D构成ASA,根据全等三角形的判定定理,它们都能使△ABD≌△ACD。
(2012中考必备)等腰·直角·全等·相似解答题与答案一·等腰三角形1. (2011广东东莞,21,9分)如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =EF =9,∠BAC =∠DEF =90°,固定△ABC ,将△EFD 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE 、DF (或它们的延长线)分别交BC (或它的延长线)于G 、H 点,如图(2).(1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据2的情况说明理由); (3)问:当x 为何值时,△AGH 是等腰三角形?2. (2011山东德州19,8分)如图 AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1)求证AD =AE ;(2) 连接OA ,BC ,试判断直线OA ,BC 的关系并说明理由.3. (2011山东日照,23,10分)如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA . (1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC=DM ,求证: ME=BD .4. (2011湖北鄂州,18,7分)如图,在等腰三角形ABC 中,∠ABC=90°,D 为AC 边上中点,过D点作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE=4,FC=3,求EF 长.第3题图5. (2011浙江衢州,23,10分)ABC ∆是一张等腰直角三角形纸板,Rt 2C AC BC ∠=∠==,.第4题图BAEF C要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.图1中甲种剪法称为第1次剪取,记所得的正方形面积为1S ;按照甲种剪法,在余下的ADE BDF ∆∆和中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为2S (如图2),则2=S ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形的面积和为3S (如图3);继续操作下去…则第10次剪取时,10S = . 求第10次剪取后,余下的所有小三角形的面积和.6. (2011浙江绍兴,23,12分)数学课上,李老师出示了如下框中的题目.A小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论: AE DB (填“>”,“<”或“=”).CDD(2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“<”或“=”).理由如下:如图2,过点E 作//EF BC ,交AC 于点F .(请你完成以下解答过程) (3)拓展结论,设计新题:在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC ∆的边长为1,2AE =,求CD 的长(请你直接写出结果).7. (2011浙江台州,23,12分)如图1,过△ABC 的顶点A 分别做对边BC 上的高AD 和中线AE ,点DFEBQ是垂足,点E 是BC 中点,规定BEDEA =λ。
某某2011年中考数学试题分类解析汇编专题9:三角形 一、选择题 1.(某某某某、某某3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为(A )32(B )33 (C )34 (D )36【答案】B 。
【考点】等边三角形的性质,三角形中位线定理,勾股定理或正弦函数。
【分析】根据边长为4的等边△ABC 中,DE 为中位线,得出DE=2,BD=2,∠B=600。
从而DF=3(可用勾股定理或正弦函数求得)。
再利用梯形的面积公式求出:DE BC 24DF 33322++⋅=⋅=。
故选B 。
2(某某某某4分)如图,在△ABC 中,∠C=90°,AB=13,BC=5,则sinA 的值是A 、513B 、1213C 、513D 、135【答案】A 。
【考点】锐角三角函数的定义。
【分析】直接利用锐角三角函数的定义求解,sinA 为∠A 的对边比斜边,求出即可:sinA=BC 5AB 13=。
故选A 。
3.(某某某某、某某3分)如图,某某路与某某路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在某某路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为A 、600mB 、500mC 、400mD 、300m 【答案】 B 。
【考点】平行的性质,全等三角形的判定和性质,勾股定理。
【分析】如图,由于BC∥AD ,那么有∠DAE=∠ACB ,由题意可知∠ABC=∠DEA=90°,BA=ED ,利用AAS 可证△ABC≌△DEA ,于是AE=BC=300,再利用勾股定理可求AC=22AB BC 500+=,从而可求得CE=AC ﹣AE=200。
根据图可知从B 到E 的走法有两种:①BA+AE=700;②BC+CE=500。
∴最近的路程是500m 。
故选B 。
4.(某某某某3分)如图,在△ABC 中,∠C=90º,BC =1,AC =2,则tanA 的值为A .2B . 1 2C .55D .255【答案】B 。
山东17市2011年中考数学试题分类解析汇编专题9:三角形一、选择题1. (日照4分)在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=ba.则下列关系式中不成立的是A、tanA·cotA=1B、sinA=tanA·cosAC、cosA=cotA·sinAD、tan2A+cot2A=12.(滨州3分)在△ABC中,∠C=90°,∠A=72°,AB=10,则边AC的长约为(精确到0.1)A、9.1B、9.5C、3.1D、3.53.(烟台4分)如果△ABC中,,则下列最确切的结论是A. △ABC是直角三角形B. △ABC是等腰三角形C. △ABC是等腰直角三角形D. △ABC是锐角三角形4.(东营3分)河堤横断面如图所示.堤高BC=5,迎水坡AB的坡比是坡比是坡面的铅直高度BC 与水乎宽度AC之比).则AC的长是A,米 8.10米 C. 15米 D.5.(济南3分)如图,在△ABC中,∠ACB=90º,AC>BC,分别以AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是A.S1=S2=S3 B.S1=S2<S3C.S1=S3<S2 D.S2=S3<S16.(潍坊3分)如图,已知等腰三角形ABC,AB = AC,底边BC的长为2,DE是它的中位线,则下面三个结论:(1)DE=1;(2)△ADE∽△ABC;(3)△ADE的面积与△ABC的面积之比为1︰4. 其中正确的有.A.0个 B.1个 C.2个 D.3个7.(潍坊3分)身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面夹角如表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是.A .甲B .乙C .丙D .丁8.(临沂3分)如图,△ABC 中,sinC=35,AC=5,则△ABC 的面积是 A 、212 B 、12 C 、14D 、21 9.(威海3分)在 ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则AF :CF=A .1:2B .1:3C .2:3D .2:510.(威海3分)在△ABC 中,AB >AC ,点D 、E 分别是边AB 、AC 的中点,点F 在BC 边上,连接DE ,DF ,EF ,则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等A .EF∥AB B .BF=CFC .∠A=∠DFED .∠B=∠DEF11.(枣庄3分)如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APC 是等腰三角形,则点P 的坐标不可能...是A .(2,0)B .(4,0)C .(-0)D .(3,0)二、填空题1. (滨州4分)边长为6cm 的等边三角形中,其一边上高的长度为 ▲ .2.(滨州4分)在等腰△ABC 中,∠C=90°,则tanA = ▲ .3.(济宁3分)如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两动点,且总使AD=BE ,AE 与CD 交于点F ,AG⊥CD 于点G ,则FG AF= ▲ 。
热点12 图形的全等(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.以下列各组线段长为边不能组成三角形的是()A.1cm,2cm,3cm B.2cm,3cm,4cmC.3cm,4cm,5cm D.4cm,5cm,6cm2.若直角三角形的三边长分别为2,4,x,则x的值可能有()A.1个 B.2个 C.3个 D.4个3.如图1,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN( •)A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN(1) (2) (3) (4)4.如果两条平行线被第三条直线所截得的8个角中有一个角的度数已知,则()A.只能求出其余3个角的度数 B.只能求出5个角的度数C.只能求出其余6个角的度数 D.能求其余7个角的度数5.能判断两个三个角形全等的条件是()A.已知两角及一边相等 B.有两边及一角对应相等C.已知三条边对应相等 D.有三个角对应相等6.小明用四根木棒钉成一个四边形,发现这样的四边形容易变形,于是他就把对角上又加钉了一根木棒,这时的四边形稳定了,这说明()A.四边形具有稳定性 B.三角形具有稳定性C.四边形的内角和等于两个三角形的内角和D.三角形的内角和是180°7.已知一个等腰三角形的一边长是3,另一边长为7,则这个等腰三角形的周长为()A.13 B.17 C.13或17 D.48.△ABC和△MNP中,满足下列()组条件时,一定能判定△ABC≌△MNPA.∠A=34°,b=5,∠C=71°,∠M=34°,∠P=71°,p=5B.∠A=34°,∠B=75°,b=5,∠M=34°,∠P=71°,m=5C.∠B=75°,∠C=71°,c=5,∠P=71°,∠N=75°,n=5D.∠A=34°,∠B=75°,a=5,∠N=75°,∠P=71°,m=59.等腰三角形一腰上的高与另一腰的夹角为45°,则这个等腰三角形的底角为()A.67° B.67.5° C.22.5° D.67.5°或22.5°10.如图2,已知边长为5的等边△ABC纸片,点E在AC上,点F在AB边上,•沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是()A.103-15 B.10-53 C.53-5 D.20-103二、填空题(本大题共8小题,每小题3分,共24分)11.如图3,某同学将一块三角形的玻璃打碎成了三块,•现需配一块完全一样的玻璃,那么只需要其中的第______块就可以了.12.如图4,△ABC中,∠C=90°,AM平分∠CAB,BC=16cm,CM:MB=3:5,•则点M•到AB的距离是_______.13.如图5,在△ABC中,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,若DE=4,则BD+CE=_______.(5) (6) (7) (8)14.有一玻璃杯,底面直径为6cm,高为8cm,现有一根长为12cm的木筷放在杯中,•则木筷露在杯外部分的长度m 的取值范围是________.15.如图6,一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,•则旗杆折断之前有_______米.16.如图7,将一副三角板的直角顶点重合,摆放在桌面上,若∠AOD=145°,则∠BOC=______.17.已知:如图8,Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,•使点C恰好落在AB边的中点D处,则∠A=_______.18.如图,圆柱形油罐,要从A点处开始环绕油罐建造梯子,正好到达A点的正上方B处,问梯子长______米(已知油罐周长12米,高AB为5米).三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.已知:如图14-10,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边的中点,•求证:AE=DE.20.如图,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC•于E,交BC于F,求证:BF=2CF.21.如图,有一池塘,要测量两端A、B的距离,•可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA,连结BC并延长到E,使CE=CB,那么量出DE的长,就是A、B两点间的距离,为什么?22.有一水池,水面是一边长为10米的正方形,在水池正中央有一根新生芦苇,它高出水面1米,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?23.如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,•那么BE⊥AC吗?为什么?24.如图,AE⊥AB,AD⊥AC,AB=AE,∠B=∠E,求证:(1)BD=CE;(2)BD⊥CE.25.如图,Rt△ABC中,AB=AC,∠BAC=90°,直线AE•是经过点A•的任一直线,BD⊥AE于D,CE⊥AE于E,若BD>CE,试问:(1)AD与CE的大小关系如何?请说明理由.(2)你能说明DE=BD-CE的理由吗?答案:一、选择题1.A 2.B 3.C 4.D 5.C 6.B 7.B 8.D 9.D 10.A 二、填空题11.① 12.6cm 13.4 14.2cm≤m≤4cm 15.2416.35° 17.30° 18.•13米三、解答题19.证明:在梯形ABCD中,AD∥BC,∠B=∠C,∴AB=CD.又∵E是中点,∴BE=CE.而∠B=∠C,∴△ABE≌△DCE,∴AE=DE.20.证明:连结AF.∠BAC=120°,BA=CA ∠C=∠B=30°.EF是垂直平分线 FA=FC ∠FAC=∠C=30°,∴∠BAF=90°,而∠ABF=30°,∴BF=2AF=2CF.21.解:在△ACB与△DCE中,AC=CD,∠ACB=∠DCE,BC=CE,∴△ACB≌△DCE.•∴AB=DE.22.解:设水池的深度为x米,则芦苇的长度为(x+1)米.由题意知(x+1)=5+x,解得x=12.所以x+1=13米.23.解:由BF=AC、DF=DC,而∠ADB=∠ADC,可知△BDF≌△ADC.∴∠CAD=∠DBF.∴∠CAD+∠AFE=∠DBF+∠BFD=90°,∴BE⊥AC.24.证明:(1)AE⊥AB,AD⊥AC ∠BAE=∠CAD⇒∠BAD=∠CAE.而AB=AE,∠B=∠E,∴△ABD≌△AEC.∴BD=CE.(2)由△ABD≌△AEC知∠B=∠E.而∠AGB=∠EGF,∴∠EFG=∠EAB=90°,∴BD⊥CE.25.解:(1)909090BAC BAD CAEBD AE BAD ABD∠=︒⇒∠+∠=︒⎫⇒⎬⊥⇒∠+∠=︒⎭∠CAE=∠ABD.又∵AB=AC,∠ADB=∠AEC=90°,∴△ABD≌△CAE,∴AD=CE.(2)∵△ABD≌△CAE,∴BD=AE.∴DE=AE-AD=BD-CE.。
2011年中考数学试卷分类汇编:22 全等三角形一、选择题1. (2011安徽芜湖,6,4分)如图,已知ABC △中,45ABC ∠= , F 是高AD 和BE 的交点,4CD =,则线段DF 的长度为( ). A.B . 4 C.D.【答案】B2. (2011山东威海,6,3分)在△ABC 中,AB >AC ,点D 、E 分别是边AB 、AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等( ). A . EF ∥ABB .BF =CFC .∠A =∠DFED .∠B =∠DFE【答案】C3. (2011浙江衢州,1,3分)如图,OP 平分,MON PA ON ∠⊥于点A ,点Q 是射线OM 上的一个动点,若2PA =,则PQ 的最小值为( )A.1B.2C.3D. 4【答案】BON4. (2011江西,7,3分)如图下列条件中,不能..证明△ABD≌△ACD的是().A.BD=DC,AB=ACB.∠ADB=∠ADCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC第7题图【答案】D5. (2011江苏宿迁,7,3分)如图,已知∠1=∠2,则不一定...能使△ABD≌△ACD的条件是(▲)A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA【答案】B6. (2011江西南昌,7,3分)如图下列条件中,不能..证明△ABD≌△ACD的是().A.BD=DC,AB=ACB.∠ADB=∠ADCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC第7题图【答案】D7. (2011上海,5,4分)下列命题中,真命题是().(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等;(C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等.【答案】D8. (2011安徽芜湖,6,4分)如图,已知ABC △中,45ABC ∠= , F 是高AD 和BE 的交点,4CD =,则线段DF 的长度为( ).A .B . 4C .D .【答案】B 9. 10. 二、填空题1. (2011江西,16,3分)如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。
有以下四个结论:①AF ⊥BC ;②△ADG ≌△ACF ; ③O 为BC 的中点; ④AG :DE =3:4,其中正确结论的序号是 .(错填得0分,少填酌情给分)【答案】①②③2. (2011广东湛江19,4分)如图,点,,,B C F E 在同一直线上, 12∠=∠,BC FE =,1∠ (填“是”或“不是”) 2∠的对顶角,要使ABC DEF ∆≅∆,还需添加一个条件,这个条件可以是 (只需写出一个).【答案】AC DF3.4.5.三、解答题1.(2011广东东莞,13,6分)已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B..求证:AE=CF【答案】∵AD∥CB∴∠A=∠C又∵AD=CB,∠D=∠B∴△ADF≌△CBE∴AF=CE∴AF+EF=CE+EF即AE=CF2. (2011山东菏泽,15(2),6分)已知:如图,∠ABC=∠DCB,BD、C A分别是∠ABC、∠DCB的平分线.求证:AB=DC证明:在△ABC与△DCB中(ABC DCB ACB DBC BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩已知)(公共边)(∵AC 平分∠BCD ,BD 平分∠ABC )∴△ABC ≌△DCB∴AB =DC3. (2011浙江省,19,8分)如图,点D ,E 分别在AC ,AB 上. (1) 已知,BD=CE ,CD=BE ,求证:AB=AC ;(2) 分别将“BD=CE ”记为①,“CD=BE ” 记为②,“AB=AC ”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③以①为结论构成命题2.命题1是命题2的 命题,命题2是 命题.(选择“真”或“假”填入空格).【答案】(1) 连结BC ,∵ BD=CE ,CD=BE ,BC=CB . ∴ △DBC ≌△ECB (SSS ) ∴ ∠DBC =∠ECB ∴AB=AC(2) 逆, 假;4. (2011浙江台州,19,8分)如图,在□ABCD 中,分别延长BA ,DC 到点E ,使得AE=AB ,CH=CD ,连接EH ,分别交AD ,BC 于点F,G 。
求证:△AEF ≌△CHG.【答案】证明:∵□ABCD∴ AB=CD,∠BAD=∠BCD AB∥CD∴∠EAF=∠HCG ∠E=∠H∵ AE=AB,CH=CD∴ AE=CH∴△AEF≌△CHG.5. (2011四川重庆,19,6分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.【证明】∵AF=DC,∴AC=DF,又∠A=∠D ,AB=DE,∴△ABC≌△DEF,∴∠ACB=∠DFE,∴BC∥EF.6. (2011江苏连云港,20,6分)两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点.不重叠的两部分△AOF与△DOC是否全等?为什么?【答案】解:全等 .理由如下:∵两三角形纸板完全相同,∴BC=BF,AB=BD,∠A=∠D,∴AB-BF=BD-BC,即AF=DC.在△AOF和△DOC中,∵AF=DC,∠A=∠D,∠AOF=∠DOC,∴△AOF≌△DOC (AAS ).7. (2011广东汕头,13,6分)已知:如图,E,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B . 求证:AE =CF.【答案】∵AD ∥CB ∴∠A=∠C又∵AD=CB ,∠D=∠B ∴△ADF ≌△CBE ∴AF=CE ∴AF+EF=CE+EF 即AE=CF8. ( 2011重庆江津, 22,10分)在△ABC 中,AB=CB,∠ABC=90º,F 为AB 延长线上一点,点E 在BC 上,且AE=CF.(1)求证:Rt △ABE ≌Rt △CBF; (2)若∠CAE=30º,求∠ACF 度数.【答案】(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°.在Rt △ABE 和Rt △CBF 中,∵AE=CF, AB=BC, ∴Rt △ABE ≌Rt △CBF(HL) (2)∵AB=BC, ∠ABC=90°, ∴ ∠CAB=∠ACB=45°. ∵∠BAE=∠CAB-∠CAE=45°-30°=15°.AB CEF第22题图由(1)知 Rt △ABE ≌Rt △CBF , ∴∠BCF=∠BAE=15°, ∴∠ACF=∠BCF+∠ACB=45°+15°=60°.9. (2011福建福州,17(1),8分)如图6,AB BD ⊥于点B ,ED BD ⊥于点D ,AE 交BD于点C ,且BC DC =. 求证AB ED =.【答案】(1)证明:∵AB BD ⊥,ED BD ⊥∴90ABC D ∠=∠=在ABC ∆和EDC ∆中 ABC DBC DC ACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC ∆≌EDC ∆∴AB ED =10.(2011四川内江,18,9分)如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连结BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.【答案】BE=EC ,BE ⊥EC∵AC=2AB ,点D 是AC 的中点 ∴AB=AD=CD ∵∠EAD=∠EDA=45°ACDEA图6B CDE∴∠EAB=∠EDC=135°∵EA=ED∴△EAB≌△EDC∴∠AEB=∠DEC,EB=EC∴∠BEC=∠AED=90°∴BE=EC,BE⊥EC11.(2011广东省,13,6分)已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B. 求证:AE=CF.【答案】∵AD∥CB∴∠A=∠C又∵AD=CB,∠D=∠B∴△ADF≌△CBE∴AF=CE∴AF+EF=CE+EF即AE=CF12. (2011湖北武汉市,19,6分)(本题满分6分)如图,D,E,分别是 AB,AC 上的点,且AB=AC,AD=AE.求证∠B=∠C.【答案】证明:在△ABE和△ACD中,AB=AC∠A=∠A AE=AD∴△ABE≌△ACD∴∠B=∠C13. (2011湖南衡阳,21,6分)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.【证明】∵在△ABC中,AD是中线,∴BD=CD,∵CF⊥AD,BE⊥AD,∴∠CFD=∠BED=90°,在△BED与△CFD中,∵∠BED=∠CFD,∠BDE=∠CDF,BD=CD,∴△BED≌△CFD,∴BE=CF.14. (20011江苏镇江,22,5分)已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,ED=DC.求证:AB=AC【答案】证明∵AD平分∠EDC,∴∠ADE=∠ADC,又DE=DC,AD=AD,∴△ADE≌△ADC, ∴∠E=∠C,又∠E=∠B, ∴∠B =∠C, ∴AB=AC.15. (2011湖北宜昌,18,7分)如图,在平行四边形ABCD 中,E为BC 中点,AE的延长线与DC的延长线相交于点F.(1)证明:∠DFA = ∠FAB;(2)证明: △ABE≌△FCE.(第18题图)【答案】证明:(1)∵AB与CD是平行四边形ABCD的对边,∴AB∥CD,(1分)∴∠F=∠FAB.(3分)(2)在△ABE和△FCE中,∠FAB=∠F (4分)∵∠AEB=∠FEC (5分)BE=CE (6分)∴△ABE≌△FCE.(7分)11。