传感器教案7-2热电偶温度测量
- 格式:doc
- 大小:276.50 KB
- 文档页数:8
初三热学教案:如何制作热电偶测量电偶对温度的应用热电偶是利用两种不同金属之间的热电效应制成的温度传感器,通常由两条不同种类的金属导线组成。
当两条导线的接触端温度不同,就会产生热电势,由此测量温度。
在工业生产、实验室以及日常生活中,热电偶都有广泛的应用。
本文将介绍如何制作热电偶测量电偶对温度的应用。
一、材料准备制作热电偶需要以下材料:1、两条不同金属导线,例如铜和铁、铜和常铝。
2、万用表或数字温度计。
3、电烙铁或电线钳。
4、万能接线板。
二、实验步骤1、量取金属导线:从铜和铁中分别取一条直径约为0.5mm的导线,长度约为30cm。
2、电烙铁烙接:将铜和铁的导线烙接在一起,留出一端,留出的一端可以接入万用表或数字温度计。
3、接线板连接:将留出的一端分别接入万用表或数字温度计和万能接线板。
4、测试热电势:将两个接头的温度分别设为T1和T2,测试热电势。
5、计算温度:根据测得的热电势E和两种金属的热电势系数β计算温度差ΔT,进而计算出两个接头的温度:T1 = T2 + ΔT。
三、注意事项1、制作热电偶时应该保持电路的连通性。
2、在烙接过程中要注意不要让两个金属接触过度,也不能让他们彻底分离,否则会影响测量的精度。
3、在使用数字温度计时,应当按压它的测量键,待显示屏显示温度后松开,避免误操作。
4、在使用热电偶测量高温物体时,应当降低测试电流,但保证其准确性。
四、应用案例热电偶在工业生产、实验室以及日常生活中有广泛的应用,例如:1、工业生产中,特别是冶金和化工领域,用于测量高温熔炼炉中金属和非金属的温度。
2、在实验室中,热电偶常用于测量化学反应的温度变化,例如测量酸碱中和反应中的温度变化。
3、在日常生活中,热电偶被广泛应用于家用电器中,例如多功能电饭煲、微波炉等,以确保食品的安全和经济性。
热电偶是一种广泛应用的温度传感器,准确、可靠、易于制作和使用。
在实践中,应当注意并掌握一定的细节操作技巧,以保证测量精度。
热电偶传感器电子教案第一章:热电偶传感器概述1.1 热电偶传感器的定义1.2 热电偶传感器的工作原理1.3 热电偶传感器的特点与应用第二章:热电偶的分类与结构2.1 热电偶的分类2.1.1 按材料分类2.1.2 按构造分类2.2 热电偶的结构2.2.1 热电偶的热电极2.2.2 热电偶的绝缘材料2.2.3 热电偶的连接线第三章:热电偶的工作原理与性能3.1 热电偶的工作原理3.1.1 塞贝克效应3.1.2 热电偶的工作曲线3.2 热电偶的性能参数3.2.1 热电偶的热电特性3.2.2 热电偶的温度范围3.2.3 热电偶的测量精度第四章:热电偶的应用与安装4.1 热电偶的应用领域4.1.1 工业生产4.1.2 科学研究4.1.3 日常生活4.2 热电偶的安装方法4.2.1 插入式安装4.2.2 固定式安装4.2.3 铠装式安装第五章:热电偶传感器的测量与校准5.1 热电偶传感器的测量原理5.2 热电偶传感器的测量电路5.3 热电偶传感器的校准方法5.3.1 对比法5.3.2 自动校准法5.3.3 手动校准法第六章:热电偶传感器的电路设计与应用6.1 热电偶传感器电路设计基础6.1.1 热电偶的冷端补偿电路6.1.2 热电偶的放大电路6.1.3 热电偶的线性化电路6.2 热电偶传感器在自动化控制系统中的应用6.2.1 温度控制系统的组成6.2.2 热电偶在温度控制系统中的应用案例第七章:常见热电偶传感器的选用与维护7.1 常见热电偶传感器的选用7.1.1 根据测量温度范围选用7.1.2 根据测量精度选用7.1.3 根据使用环境选用7.2 热电偶传感器的维护与保养7.2.1 清洁与保护7.2.2 定期校准7.2.3 注意使用寿命第八章:热电偶传感器的故障分析与处理8.1 热电偶传感器的常见故障8.1.1 测量误差过大8.1.2 显示值不稳定8.1.3 传感器损坏8.2 故障原因分析8.3 故障处理方法8.3.1 故障排查步骤8.3.2 故障处理策略第九章:新型热电偶传感器的研发与进展9.1 纳米材料在热电偶传感器中的应用9.2 光纤热电偶传感器的研发与应用9.3 无线热电偶传感器的研究与发展9.4 多功能热电偶传感器的创新应用第十章:热电偶传感器在国内外的发展趋势与展望10.1 国内外热电偶传感器市场现状10.2 热电偶传感器行业的发展趋势10.3 我国热电偶传感器产业的发展策略与展望10.4 热电偶传感器在未来的应用前景重点和难点解析重点环节一:热电偶传感器的工作原理解析:热电偶传感器的工作原理是基于塞贝克效应,即两种不同金属连接在一起形成的回路在温度变化时会产生电动势。
温度传感器教案教案标题:温度传感器教案教案目标:1. 了解温度传感器的基本原理和工作方式。
2. 学习如何使用温度传感器测量温度。
3. 掌握温度传感器在实际应用中的使用方法。
教案步骤:引入活动:1. 向学生介绍温度传感器的概念和作用,并与学生讨论温度传感器在日常生活中的应用场景,如温度计、恒温器等。
知识讲解:2. 解释温度传感器的基本原理,即利用物质的温度变化对电阻、电压或电流产生变化的特性。
3. 介绍常见的温度传感器类型,如热敏电阻、热电偶和半导体温度传感器,并比较它们的优缺点。
实验演示:4. 进行一个简单的实验演示,展示温度传感器的工作原理。
可以使用一个热敏电阻和一个电路板,通过连接电路,让学生观察电阻值随温度变化的情况。
实践操作:5. 分发温度传感器和测量设备给学生,让他们自己进行实际的温度测量。
可以提供一些不同温度的物体供学生测量,并记录测量结果。
6. 引导学生思考温度传感器在实际应用中的使用方法,如测量室内温度、控制恒温器等,并让学生设计一个简单的实验来验证温度传感器的应用效果。
讨论与总结:7. 组织学生进行讨论,分享他们的实验结果和观察。
引导他们总结温度传感器的优势和不足,并讨论如何改进温度传感器的设计和应用。
作业:8. 布置作业,要求学生独立完成一个小项目,使用温度传感器来测量和记录温度变化,并分析数据。
评估:9. 根据学生的实验结果、讨论参与度和作业完成情况,进行评估。
教案扩展:- 可以进一步讨论温度传感器在工业和科学研究中的应用,如温度控制、环境监测等。
- 可以引导学生进行更复杂的实验设计,如比较不同温度传感器的测量精度、响应时间等。
注意事项:- 确保学生在实验操作中的安全,提醒他们遵守实验室规则。
- 在实验操作中,提醒学生注意温度传感器的灵敏度和测量范围,避免过高或过低的温度对传感器造成损坏。
《传感器实验指导》热电偶测温实验1.掌握热电偶的工作原理;2.掌握热电偶测温调理电路的工作原理;3.掌握热电偶冷端补偿的原理。
1.分析热电偶传感器测量电路的原理;2.连接传感器物理信号到电信号的转换电路;3.软件观测温度变化时输出信号的变化情况;4.记录实验波形数据并进行分析。
1.开放式传感器电路实验主板;2.热电偶温度测量模块;3.万用表、温度计;4.导线若干。
热电偶(Thermocouple)是根据热电效应测量温度的传感器,是温度测量仪表中常用的测温元件。
热电偶是工业上最常用的温度检测元件之一。
其优点是:(1)测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
(2)测量范围广。
常用的热电偶从0~+1800℃均可连续测量,某些特殊热电偶最低可测到0-2300℃如金铁镍铬和钨-铼。
(3)构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
热电偶一般由热电极、绝缘套管、保护套管和接线盒等几部分组成。
通常分为以下两种热电偶:(1)铠装式热电偶(缆式热电偶),此种热电偶是将热电极、绝缘材料连同保护管一起拉制成型,经焊接密封和装配等工艺制成的坚实的组合体。
(2)标准型热电偶,它具有互换性好、统一的分度表、配套的显示仪表。
图:热电偶热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect)。
两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。
根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。
热电势的大小只与热电偶导体材质以及两端温差有关,与热电偶导体的长度、直径无关。
在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。
实验三热电偶与热电阻的温度测量一、实验目的:1、了解热电偶测量温度的原理与应用。
2、了解热电偶冷(自由)端温度补偿的原理与方法。
3、了解热电阻的测温原理与特性。
二、实验原理:将两种不同的金属丝组成回路,如果二种金属丝的两个接点有温度差,在回路内就会产生热电势,这就是热电效应,热电偶就是利用这一原理制成的一种温差测量传感器,置于被测温度场的接点称为工作端,另一接点称为冷端(也称自由端),冷端可以是室温值也可以是经过补偿后的0℃、25℃的模拟温度场。
热电偶是一种温差测量传感器。
为直接反映温度场的摄氏温度值,需对其自由端进行温度补偿。
热电偶冷端温度补偿的方法有:冰水法、恒温槽法、自动补偿法、电桥法,常用的是电桥法(图3-2),它是在热电偶和测温仪表之间接入一个直流电桥,称冷端温度补偿器,补偿器电桥在0℃时达到平衡(亦有20℃平衡)。
当热电偶自由端(a、b)温度升高时(>0℃)热电偶回路的电势Uab下降,由于补偿器中PN结呈负温度系数,其正向压降随温度升高而下降,促使Uab上升,其值正好补偿热电偶因自由端温度升高而降低的电势,达到补偿目的。
热电阻用于测温时利用了导体电阻率随温度变化这一特性,对于热电阻要求其材料电阻温度系数大,稳定性好、电阻率高,电阻与温度之间最好有线性关系。
常用的有铂电阻和铜电阻,热电阻阻值Rt与温度t的关系为:Rt=R0(1+At+Bt2)本实验采用的是Pt100铂电阻,它的R0=100Ω,A=3.9684×10-2/℃,B=5.847×10-7/℃2,铂电阻采用三线连接法,其中一端接二根引线主要为了消除引线电阻对测量的影响。
三、需用器件与单元:K型、E型热电偶、温度源、温度控制仪表、温度控制测量仪(9000型)。
温度传感器实验模板、冷端温度补偿器、直流±15V、外接+5V电源适配器。
Pt100铂热电阻。
四、实验步骤:1、将热电偶插到温度源两个传感器插孔中任意一个插孔中,(K型、E型已装在一个护套内),K型热电偶的自由端接到主控箱面板上温控部分的Ek端,用它作为标准传感器,配合温控仪表用于设定温度,注意识别引线标记,K型、E型及正极、负极不要接错。
温度传感器—热电偶测温实验一、实验原理:由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。
图1 热电偶测温系统图图1中T 为热端,To 为冷端,热电势Et=)T ()T (o AB AB本实验中选用两种热电偶镍铬—镍硅(K )和镍铬—铜镍(E )。
实验所需部件:K 、E 分度热电偶、温控电加热炉、214位数字电压表(自备) 二、实验步骤:1、观察热电偶结构(可旋开热电偶保护外套),了解温控电加热器工作原理。
温控器:作为热源的温度指示、控制、定温之用。
温度调节方式为时间比例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。
温度设定:拨动开关拨向“设定”位,调节设定电位器,仪表显示的温度值℃随之变化,调节至实验所需的温度时停止。
然后将拨动开关扳向“测量”侧,(注:首次设定温度不应过高,以免热惯性造成加热炉温度过冲)。
2、首先将温度设定在50℃左右,打开加热开关,热电偶插入电加热炉内,K 分度热电偶为标准热电偶,冷端接“测试”端,E 分度热电偶接“温控”端,注意热电偶极性不能接反,而且不能断偶,214位万用表置200mv 档,当钮子开关倒向“温控”时测E 分度热电偶的热电势,并记录电炉温度与热电势E 的关系。
3、因为热电偶冷端温度不为0℃,则需对所测的热电势值进行修正E (T ,To )=E(T,t 1)+E(T 1,T 0)实际电动势=测量所得电势 +温度修正电势查阅热电偶分度表,上述测量与计算结果对照。
4、继续将炉温提高到70℃、90℃、110℃和130℃,重复上述实验,观察热电偶的测温性能。
三、注意事项:加热炉温度请勿超过150℃,当加热开始,热电偶一定要插入炉内,否则炉温会失控,同样做其它温度实验时也需用热电偶来控制加热炉温度。
热电偶温度测量步骤说明书前言:热电偶是一种常用的温度测量设备,利用温度和电压的线性关系进行测量,广泛应用于工业生产和科学研究领域。
本说明书将详细介绍热电偶温度测量的步骤和操作要点,以帮助用户正确、准确地使用热电偶进行温度测量。
I. 器材准备在进行热电偶温度测量之前,首先要确保以下器材准备齐全:1. 热电偶:选择适合测量温度范围的热电偶,并检查其外观是否完好。
2. 测温仪表:使用符合要求的数字温度计或其他温度测量仪表,确保其稳定性和准确性。
3. 连接线:选用符合要求的热电偶连接线,连接端子牢固可靠。
II. 步骤说明1. 确定测量位置:根据实际需求,确定热电偶的测量位置。
注意选择位置避开可能影响测量准确性的因素,如辐射热源、振动源等。
2. 清洁准备:使用干净、柔软的布或纱布将测量位置进行清洁,确保无尘、无油污等污染物存在。
3. 连接热电偶:将热电偶的接头插入测量位置,确保插头与测量物体紧密接触。
注意避免弯曲或拉伸热电偶连接线,避免产生测量误差。
4. 连接测温仪表:将测温仪表的热电偶输入端与热电偶连接线的接线端子相连,确保接触良好。
5. 仪器校准:在进行真实温度测量之前,对测温仪表进行校准,确保其准确性。
可采用标准温度源进行对比校准,或根据仪表说明书进行校准操作。
6. 测量读数:打开测温仪表的电源,观察读数稳定后记录温度值。
注意及时记录读数,避免温度变化导致测量误差。
III. 注意事项1. 安全性:在进行热电偶温度测量时,要注意安全操作,避免触电、火灾等可能出现的危险情况。
2. 精度要求:根据实际需求,选择合适的热电偶和测温仪表,以满足精度要求。
注意不同型号的热电偶和仪表可能具有不同的测量误差范围。
3. 温度范围:在使用热电偶进行温度测量时,要注意选择适合的温度范围,避免超出热电偶的工作范围造成损坏。
4. 环境干扰:避免热电偶受到周围环境的干扰,如强磁场、电磁辐射等,以保证测量的准确性。
5. 维护保养:定期检查热电偶和测温仪表的状态,确保其正常工作。
福建交通职业技术学院(教案)首页
班级: 09计控1、2班日期:2011年4月8日编号:7-2
课程:传感器原理及应用 10~11学年第_2_学期第 7 周 4 月 8日
教学内容备注
复习上节课内容:
一、认识热电偶
热电偶是工业上最常用的温度检测元件之一。
其优点是:
①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-271--+2800℃如金铁镍铬和钨-铼。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
二、热电偶测温基本原理
理论说法:电子速率做为温度变量的基础,偶合到电量参数而显示。
热电偶测温基本原理是将两种不同材料的导体或半导体焊接起来,构成一个闭合回路。
由于两种不同金属所携带的电子数不同,当两个导体的二个执着点之间存在温差时,就会发生高电位向低电位放电现象,因而在回路中形成电流,温度差越大,电流越大,这种现象称为热电效应,也叫塞贝克效应。
热电偶就是利用这一效应来工作的。
根据以上原理,任何两种和两种以上的金属或者合金都可以构成热电偶,但是,不是任何金属都可以作为标准测量仪器的!还必须满足以下基本条件:
1】材料廉价易得
2】容易提纯
3】高熔点
4】抗氧化
5】信号具有较高的复现性
6】信号要具有非常好的线性
目前能够满足以上条件的热电偶如下:
2、热电偶的种类及结构形成
(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所谓标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热
课程:传感器原理及应用 10~11学年第_2_学期第 7 周 4 月 8日
教学内容备注
电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
5安装尺寸。
三、热电偶的冷端补偿
热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。
必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。
因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。
一般显示、控制仪表都有温度自动补偿系统,不需要担心。
仪表在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度一般不超过100℃,这里需要特别说明一下:网络上很多转载的技术资料都讲:补偿导线与热电偶连接端的温度一般不超过100℃,其实,这个说法是错误的!特殊工况下,可以选用热电偶延长线,即导线材质和热电偶电极材质一致的导线连接,比如:KX镍铬-镍硅补偿导线;EX镍铬-康铜补偿导线;JX铁-康铜补偿导线;TX铜-铜镍补偿导线都存不在这个问题,根据热电偶的中间导体定律,这种补偿导线温度不受限制。
还有一些热电偶比如:B分度的铂铑30-铂铑6,这种热电偶没有补偿导线,在400度以下不计精度用普通双芯铜线即可。
从热电偶测温基本公式可以看到, 对某一种热电偶来说热电偶产生的热电势只与工作端温度t 和自由端温度t0有关, 即: EAB(t, t0)=e AB(t)-eAB(t0)
热电偶的分度表是以t0=0℃作为基准进行分度的, 而在实际使用过程中, 参考端温度往往不为0℃, 那么工作端温度为t时, 分度表所对应的热电势EAB (t, 0)与热电偶实际产生的热电势EAB(t, t0)之间的关系可根据中间温度定律得到下式
EAB(t, 0)= EAB(t, t0)+ EAB(t0, 0)
由此可见, EAB(t, 0) 是参考端温度t0的函数, 因此需要对热电偶参考端温度进行处理。
1.补偿导线法
课程:传感器原理及应用 10~11学年第_2_学期第 7 周 4 月 8日
教学内容备注
在实际测温时, 需要把热电偶输出的电势信号传输到远离现场数十米的控制室里的显示仪表或控制仪表, 这样参考端温度t0也比较稳定。
热电偶一般做得较短需要用导线将热电偶的冷端延伸出来。
工程中采用一种补偿导线, 它通常由两种不同性质的廉价金属导线制成, 而且在
0~100℃温度范围内, 要求补偿导线和所配热电偶具有相同的热电特性。
2. 冷端温度修正法
采用补偿导线可使热电偶的参考端延伸到温度比较稳定的地方, 但只要参考端温度不等于0℃, 需要对热电偶回路的电势值加以修正, 修正值为EAB(t0,0)。
经修正后的实际热电势, 可由分度表中查出被测实际温度值。
可得热电偶热电势的计算公式:
E(t,0)=E(t,t0 )+E(t0 ,0)
E(t,0)-表示冷端为零度,热端为t时的热电势
E(t,t0 )-表示冷端为t0,热端为t时的热电势,实测值
E(t0 ,0)-表示冷端为零度,热端为t0时的热电势
例:用镍铬一镍硅热电偶测炉温时,其冷端温度to=30℃,在直流电位差计上测得的电动势EAB(t,30)=38.500mV,求炉温为多少?
镍铬一镍硅热电偶分度表(自由端温度为0 ℃)
解:①查镍铬一镍硅热电偶K分度表得:
②根据中间温度定律得:
课程:传感器原理及应用 10~11学年第_2_学期第 7 周 4 月 8日
教学内容备注
③查镍铬一镍硅热电偶K分度表得:
3.电桥补偿法
补偿电桥法是利用不平衡电桥产生的不平衡电压作为补偿信号, 来自动补偿热电偶测量过程中因参考端温度不为0℃或变化而引起热电势的变化值。
不平衡电桥由三个电阻温度系数较小的锰铜丝绕制的电阻R1、 R2 、R3、电阻温度系数较大的铜丝绕制的电阻RCU 和稳压电源组成。
补偿原理:将带有铜热电阻的补偿电桥与被补偿的热电偶串联,铜与热电偶的冷端置于同一温度场。
室温时,电桥输出为零,当冷端温度变化时,铜电阻阻值变化造成电桥不平衡输出。
此不平衡输出电压对热电偶输出变化有抵消作用。
4.冰浴法
课程:传感器原理及应用 10~11学年第_2_学期第 7 周 4 月 8日
教学内容备注
四、热电偶测温线路
热电偶测温时, 它可以直接与显示仪表(如电子电位差计、数字表等)配套使用, 也可与温度变送器配套, 转换成标准电流信号, 下图为典型的热电偶测温线路。
如用一台显示仪表显示多点温度时, 可按下图连接, 这样可节约显示仪表和补偿导线。
课程:传感器原理及应用 10~11学年第_2_学期第 7 周 4 月 8日
教学内容备注
特殊情况下, 热电偶可以串联或并联使用, 但只能是同一分度号的热电偶, 且参考端应在同一温度下。
如热电偶正向串联, 可获得较大的热电势输出和提高灵敏度。
在测量两点温差时, 可采用热电偶反向串联。
利用热电偶并联可以测量平均温度。
五、小结:
热电偶的主要特性、热电偶测量原理、热电偶的冷端补偿方式。
六、布置作业:P30 2、3
课程:传感器原理及应用 10~11学年第_2_学期第 7 周 4 月 8日
教学内容备注
七、板书安排
黑板分为三个部分:左边为标题,不擦除。
中部为具体讲解,更新擦除。
右边以图形为主,
也可以写临时性内容。