[精品]2019高中数学第一章不等关系与基本不等式2.1绝对值不等式学案北师大版选修4_6
- 格式:doc
- 大小:5.06 MB
- 文档页数:4
高中数学重点《不等关系与不等式》教案高中数学重点《不等关系与不等式》教案主要关注学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升。
下面就和课件网一起来看看有关高中数学重点《不等关系与不等式》教案。
高中数学必修5《不等关系与不等式》教案1教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的證明二1.若,,則下列不等始終正確的是()2.設a,b為實數,且,則的最小值是()4.求證:對任何式數x,y,z,下述三個不等式不可能同時成立高中数学必修5《不等关系与不等式》教案2整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题(1)回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系(2)在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗(3)数轴上的任意两点与对应的两实数具有怎样的关系(4)任意两个实数具有怎样的关系用逻辑用语怎样表达这个关系活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“ ne;”“ ge;”“ le;”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B 的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x le;6,a+2 ge;0,3 ne;4,0 le;5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃ le;t le;32 ℃.实例3,若用x表示一个非负数,则x ge;0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v le;40 km/h.实例7,f ge;2.5%,p ge;2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f ge;2.5%或p ge;2.3%,这是不对的.但可表示为f ge;2.5%且pge;2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b<0 a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g (x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1 ge;1>0,there4;f(x)>g(x).2.已知x ne;0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x ne;0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a ne;b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=(a+b)2-4ab2(a+b)=(a-b)22(a+b).∵a>0,b>0且a ne;b, there4;a+b>0,(a-b)2>0. there4;(a-b)22(a+b)>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2 ge;0(当且仅当a=b=0时取等号),又a ne;b, there4;(a-b)2>0,2a2+(a+b)2>0. there4;-(a-b)2[2a2+(a+b)2]<0.there4;a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y ne;0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y, there4;x-y>0.当y<0时,x-yy<0,即xy-1<0. there4;xy<1;当y>0时,x-yy>0,即xy-1>0. there4;xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m(b-a)b(b+m)>0,于是a+mb+m>ab.又ab ge;10%,因此a+mb+m>ab ge;10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q ne;1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零, there4;q>0,即1+q>0.又∵q ne;1, there4;(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C 解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2 ge;0,③x2+y2-2xy=(x-y)2 ge;0.there4;只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x .4.若x5.设a>0,b>0,且a ne;b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,there4;(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2 ge;0, there4;(m2-2m+5)-(-2m+5) ge;0. there4;m2-2m+5 ge;-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2 ge;0, there4;a2+2 ge;2>0.there4;a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0, there4;x24>0.there4;(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.there4;-2xy(x-y)>0.there4;(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a ne;b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abb a.综上所述,对于不相等的正数a、b,都有aabb>abba.。
第一章预备知识第3节不等式3.1不等式的性质与相等关系一样,不等关系是数学中最基本的数量关系,作为预备知识,掌握好不等关系和不等式的基本性质,是证明和求解不等式的基础,是解决二次函数和二次不等式问题的前提,通过不等关系和不等式性质的学习,有助于提高学生的数学运算能力和逻辑推理能力,同时为培养学生数学建模能力奠定基础。
(1)知识目标:掌握作差法比较两个实数(代数式)大小的基本方法;掌握不等式的基本性质;熟练运用不等式的基本性质进行不等式的变形、运算和证明。
(2)核心素养目标:通过不等式性质的运用,提高学生数学运算能力和数学建模能力。
(1)作差法比较两个实数(代数式)的大小;(2)不等式的基本性质;(3)熟练运用不等式的基本性质进行不等式的变形、运算和证明。
多媒体课件一、复习引入一天,同学甲问同学乙:“你今年多少岁了?”乙回答说:“16岁了,你呢?”“我满15岁了,哈哈!再过一年,明年我们就一样大了!”乙默然。
这个对话里面包含了什么数学知识呢?提示:两人相差1岁,过一年,两人的年龄同时加1,不可能相等。
思考讨论:高速路上的限速标志,上面的数字是什么意思?提示:车速为v,行车道上的车速应该满足100km/ℎ≤v≤120km/ℎ.二、新知识在生活中,有很多数量关系的问题,它们既有相等关系,又有不等关系。
在数学中,用不等式来表示不等关系。
1、实数大小的比较两个实数a,b,如果a−b>0,那么a>b;如果a−b=0,那么a=b;如果a−b<0,那么a<b.即注意:①这种比较实数大小的方法叫作“作差法”,另外在数轴上可以更加直观的看出两个实数的大小;②比较两个代数式的大小,基本方法也是“作差法”,作差后的结果一般要进行因式分解或配方,然后与0相比较。
如:已知实数a,试比较a2+2与2a的大小.a2+2−2a=a2−2a+1+1=(a−1)2+1>0 ∴a2+2>2a例1.试比较(x+1)(x+5)与(x+3)2的大小.解:作差比较,(x+1)(x+5)−(x+3)2=(x2+6x+5)−(x2+6x+9)=−4<0∴(x+1)(x+5)<(x+3)2例2.试证明:若0<a<b,m>0,则a+mb+m >ab.证明:作差比较,a+mb+m −ab=b(a+m)−a(b+m)b(b+m)=m(b−a)b(b+m)a−b>0⇔a>b a−b=0⇔a=b a−b<0⇔a<b因为a <b ,所以b −a >0,又因a >0,b >0,m >0,所以m(b−a)b (b+m )>0∴a +mb +m >ab2、不等式的基本性质性质 内容备注性质1 如果a >b ,且b >c ,那么a >c 传递性性质2 如果a >b ,那么a +c >b +c 加(减)乘(除)运算性质3如果a >b ,c >0,那么ac >bc如果a >b ,c <0,那么ac <bc性质4 如果a >b ,c >d ,那么a +c >b +d 同向不等式相加 性质5如果a >b >0,c >d >0,那么ac >bd如果a >b >0,c <d <0,那么ac <bd不等式相乘注意:①以上性质均可以利用“作差法”给出证明,下面以性质4为例给出证明,其它,请同学们自行完成.性质4的证明:(a +c )−(b +d )=(a −b )+(c −d)因为a >b ,c >d ,有a −b >0,c −d >0,所以有(a −b )+(c −d )>0 得a +c >b +d②根据性质5,可以得出不等式乘方(开方)的运算性质.即:如果a >b >0,n ∈N +,那么a n >b n如果a >b >0,n ∈N +,那么√a n>√b n③不等式的变形、运算等,务必根据性质进行,避免错误. 如:如果a >b ,那么1a<1b ,对吗?提示:不正确,要由a >b 得到1a <1b ,应该将不等式两边同乘以1ab ,但条件并没有给出ab 的正负,所以结论错误例3. (1)已知a >b ,ab >0,求证:1a <1b ;(2)已知a >b ,c <d ,求证:a −c >b −d .证明:(1)因ab>0,则1ab >0,由不等式的性质3,a·1ab>b·1ab,得1a<1b.(2)因c<d. 由不等式的性质3,−c>−d再由a>b,利用不等式的性质4,同向不等式相加,得a−c>b−d思考讨论(综合练习):(1)已知a>0,b>0,求证:a3+b3≥a2b+ab2;(2)已知2≤x≤4,1≤y≤2,求x−2y的范围;(3)已知1≤a−b≤2,2≤a+b≤3,求2a−4b的范围.提示:(1)作差,(a3+b3)−(a2b+ab2)=(a3−a2b)+(b3−ab2)=a2(a−b)+b2(b−a)=(a−b)2(a+b)因a>0,b>0,(a−b)2≥0,所以(a−b)2(a+b)≥0得a3+b3≥a2b+ab2.(2)由 1≤y≤2得−4≤−2y≤−2,与2≤x≤4不等式相加得−2≤x−2y≤2即x−2y∈[−2,2].(3)设a−b=x,a+b=y,则1≤x≤2, 2≤y≤3,且a=x+y2,b=y−x2所以2a−4b=2·x+y2−4·y−x2=3x−y,与上(2)小题一样得2a−4b∈[0,4].三、课堂练习教材P26,练习1~6.四、课后作业教材P30,习题1-3,A组1~5(1)“作差法”比较大小,是证明不等式的基础,另外还可以采用“作商法”,即如果a>0,b>0,则ba>1⇔b>a;(2)不等式的基本性质是不等式变形、化简、证明的基础,不仅要熟练运用基本性质,还要特别注意性质中的条件.。
2.1 绝对值不等式1.理解含有绝对值的不等式的性质.2.掌握绝对值不等式的定理及绝对值的几何意义. 3.能利用绝对值不等式证明不等式及求最值等简单问题,并认识不等式证法的多样性、灵活性.1.实数的绝对值的概念 (1)定义:|a |=⎩⎪⎨⎪⎧a ,a =,a(2)|a |的几何意义:|a |表示数轴上实数a 对应的点与原点之间的______. (3)两个重要性质:(Ⅰ)①|ab |=______;②⎪⎪⎪⎪⎪⎪a b =______;(Ⅱ)|a |<|b |⇔a 2____b 2.(4)|x -a |的几何意义:数轴上实数x 对应的点与实数a 对应的点之间的______,或数轴上表示x -a 的点到______的距离.(5)|x +a |的几何意义:数轴上实数x 对应的点与实数-a 对应的点之间的____,或数轴上表示x +a 的点到原点的____.【做一做1】解不等式|x +1|>|2x -3|-2. 2.绝对值不等式的定理(1)定理:对任意实数a 和b ,有|a +b |≤______,当且仅当ab ≥0时,等号成立. (2)定理的另一种形式:对任意实数a 和b ,有|a -b |≤|a |+|b |,当且仅当______时,等号成立.(1)绝对值不等式的完整形式: ①|a |-|b |≤|a ±b |≤|a |+|b |; ②||a |-|b ||≤|a ±b |≤|a |+|b |. (2)绝对值不等式的一般形式:|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |(n ∈N +).【做一做2】已知|x -a |<c 2,|y -b |<c2,求证:|(x +y )-(a +b )|<c .3.|a +b |≤|a |+|b |的几何意义(1)如图所示,当a ,b 同号时,它们位于原点的同一边,此时a 与-b 的距离____它们到原点的距离____.(2)如图所示,当a ,b 异号时,它们分别位于原点的两边,a 与-b 的距离____a 与b 到原点的距离____.【做一做3】若不等式|x -4|-|x -3|≤a 对一切x ∈R 恒成立,则实数a 的取值范围是__________.答案:1.(1)a 0 -a (2)距离 (3)(Ⅰ)①|a ||b | ②|a ||b |(Ⅱ)< (4)距离 原点 (5)距离 距离【做一做1】分析:解含有绝对值的不等式,利用|a |=⎩⎪⎨⎪⎧a a,-a a ,将不等式中的绝对值符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解. 解:令x +1=0,得x =-1.令2x -3=0,得x =32,如图.(1)当x ≤-1时,原不等式可化为-(x +1)>-(2x -3)-2, 解得x >2,与条件矛盾,无解.(2)当-1<x ≤32时,原不等式可化为x +1>-(2x -3)-2,解得x >0,故0<x ≤32.(3)当x >32时,原不等式可化为x +1>2x -3-2,解得x <6,故32<x <6.综上,原不等式的解集为{x |0<x <6}. 2.(1)|a |+|b | (2)ab ≤0【做一做2】分析:利用不等式的性质证明即可.证明:|(x +y )-(a +b )|=|(x -a )+(y -b )|≤|x -a |+|y -b |.① ∵|x -a |<c 2,|y -b |<c2,∴|x -a |+|y -b |<c 2+c2=c .②由①②,得|(x +y )-(a +b )|<c . 3.(1)等于 之和 (2)小于 之和【做一做3】[1,+∞) 设f (x )=|x -4|-|x -3|,则f (x )≤a 对一切x ∈R 恒成立,只需a ≥f (x )max .因为|x -4|-|x -3|≤|(x -4)-(x -3)|=1, 当且仅当x ≤3时等号成立,即f (x )max =1, 所以a ≥1.1.对绝对值不等式的理解 剖析:绝对值不等式实质是两个实数的和差的绝对值与绝对值的和差的关系,我们可以类比得到另外一种形式:|a |-|b |≤|a -b |≤|a |+|b |.和差的绝对值与绝对值的和差的关系是由ab >0,ab <0,ab =0三种情况来确定的,其本质是叙述两个实数的符号在各种情形下得到的结果,即这个定理本身就是一个分类讨论问题.“数”分正、负、零等不同情况讨论,往往在所难免,因此,对绝对值的认识要有分类讨论的习惯.2.绝对值不等式的几何意义剖析:用向量a ,b 替换实数a ,b 时,问题就从一维扩展到二维,当向量a ,b 不共线时,a +b ,a ,b 构成三角形,有|a +b|<|a|+|b|.当向量a ,b 共线时,a ,b 同向(相当于ab ≥0)时,|a +b|=|a|+|b|;a ,b 异向(相当于ab <0)时,|a +b|<|a|+|b|,这些都是利用了三角形的性质定理,如两边之和大于第三边等,这样处理,可以形象地描绘绝对值三角不等式,更易于记忆,并有利于定理的应用.题型一 利用绝对值不等式证明不等式【例1】设m 等于|a |,|b |和1中最大的一个,当|x |>m 时,求证:⎪⎪⎪⎪⎪⎪a x +b x 2<2.分析:本题的关键是对题设条件的理解和运用.判断|a |,|b |和1这三个数中哪个最大.如果两两比较大小,将十分复杂,但我们可以得到一个重要的信息:m ≥|a |、m ≥|b |、m ≥1.从而利用这一条件证题.反思:分析题目时,题目中的语言文字是我们解题信息的重要来源与依据,而解题时的数学符号语言也往往需要从文字语言“翻译”转化而来,那么准确理解题目中的文字语言,适时准确地进行转化也就成了解题的关键,如本题中题设条件中的文字语言“m 等于|a |,|b |和1中最大的一个”转化为符号语言“m ≥|a |,|m |≥|b |,m ≥1”,这是证明本题的关键.题型二 利用绝对值不等式求最值【例2】求函数y =|x +1|-|x -4|的最大值和最小值.分析:可以利用绝对值不等式的性质进行变形来解,也可以把绝对值号去掉,转化成分段函数,分别求出最值,最后取并集.反思:对于含有两个及两个以上的绝对值代数式,把其利用各零点转化成分段函数,再利用分段函数的性质分别进行分析是很好的方法.答案:【例1】证明:∵|x |>m ≥|a |,|x |>m ≥|b |,|x |>m ≥1,∴|x |2>|b |.∴⎪⎪⎪⎪⎪⎪a x +b x 2≤⎪⎪⎪⎪⎪⎪a x +⎪⎪⎪⎪⎪⎪b x 2=|a ||x |+|b ||x |2<|x ||x |+|x |2|x |2=2. 故原不等式成立. 【例2】解:解法一:|||x +1|-|x -4|≤||x +-x -=5, ∴-5≤|x +1|-|x -4|≤5.当且仅当⎩⎪⎨⎪⎧ x +1≥0,x -4≥0,即x ≥4时,|x +1|-|x -4|≤5中的等号成立.当且仅当⎩⎪⎨⎪⎧x +1≤0,x -4≤0,即x ≤-1时,|x +1|-|x -4|≥-5中的等号成立. ∴y max =5,y min =-5.解法二:把函数看作分段函数y =|x +1|-|x -4|=⎩⎪⎨⎪⎧-x ≤-,2x --1<x,x ,当-1<x <4时,-5<2x -3<5.∴y ∈[-5,5],∴y max =5,y min =-5.1若|x -a |<m ,|y -a |<n ,则下列不等式一定成立的是( ).A .|x -y |<2mB .|x -y |<2nC .|x -y |<n -mD .|x -y |<n +m2设ab >0,下面四个不等式中,正确的是( ).①|a +b |>|a |;②|a +b |<|b |;③|a +b |<|a -b |;④|a +b |>|a |-|b |. A .①和② B .①和③ C .①和④ D .②和④3若a ,b ∈R ,且满足|a -2b |<|b |,则下列各式中正确的是( ). A .a <3b B .a >b C .|a |<|b | D .|b |<|a |<3|b |4求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.答案:1.D |x -y |=|x -a -(y -a )|≤|x -a |+|y -a |<m +n . 2.C ∵ab >0,∴a ,b 同号, ∴|a +b |=|a |+|b |, ∴①和④正确.3.D |b |>|a -2b |>|a |-2|b |, ∴|a |<3|b |.又∵|a -2b |=|2b -a |,∴|b |>|2b -a |>2|b |-|a |. ∴|a |>|b |.综上,知|b |<|a |<3|b |.4.证明:(1)当|a +b |=0时,显然原不等式成立. (2)当|a +b |≠0时,∵0<|a +b |≤|a |+|b |,∴1|a +b |≥1|a |+|b |. ∴|a +b |1+|a +b |=11+1|a +b |≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b | ≤|a |1+|a |+|b |1+|b |. ∴原不等式成立.。
第一章预备知识第3节不等式3.2基本不等式(一)本节之前,学生已经可以解决一些常见函数的最值和“作差法”证明不等式等问题,但对于一些复杂函数(如分式类型的函数)、具有实际背景的函数模型的最值问题以及一些不等式的证明等问题,还需要用到基本不等式(均值不等式),基本不等式是高中阶段不等式证明的重要工具,也是求解函数最值问题的重要方法之一。
(1)知识目标:熟练掌握基本不等式(均值不等式)的内容、不等式成立的条件和等号成立的条件;灵活运用基本不等式进行不等式的证明和函数求最值。
(2)核心素养目标:通过基本不等式的几何证明,让学生掌握“数形结合”这一重要数学数学方法,通过基本不等式的应用,提高学生数学运算能力和数学建模能力。
(1)基本不等式(均值不等式)的内容、字母的范围以及等号成立的条件;(2)利用基本不等式进行不等式的证明和函数求最值。
多媒体课件一、复习引入上一节课,教材26页练习题第2题,如图得到一个不等式:a 2+b22≥ab,当a=b时,取“=”。
思考讨论:如图,是2002年在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,由四个直角三角形拼合而成,正方形的边长为直角三角形的斜边长.直角三角形两条直角边为a,b,由面积得到不等式a2+b2≥2ab,当a=b时,取“=”。
试证明不等式:x 2+y22≥xy,当x=y时,取“=”。
提示:作差法证明二、新知识在上述不等式中,取x=√a,y=√b,得a+b2≥√ab,当a=b时,取“=”。
基本不等式:两个实数a,b,a≥0,b≥0,则:a+b2≥√ab,当且仅当a=b时等号成立.注意:①a+b2称为实数a,b的算数平均数,√ab称为实数a,b的几何平均数,上述基本不等式又叫“均值不等式”,即“两个非负实数的算数平均数大于或等于几何平均数”;②务必注意均值不等式“a+b2≥√ab”中的字母为非负数,等号成立的条件为a=b;③均值不等式的各种形式:a+b2≥√ab、a+b≥2ab、a2+b22≥ab、a2+b2≥2ab,特别还有(a+b2)2≥ab 、(a+b)2≥4ab等等;④均值不等式的另一个几何解释:如图:半圆上一点D,DC垂直于直径AB于C由初中几何知识,OD≥DC即a+b2≥√ab.例4.已知a>0,b>0,c>0,求证:a+b+c≥√ab+√bc+√ac.证明:a>0,b>0,c>0由均值不等式a+b2≥√ab,b+c2≥√bc,a+c2≥√ac三式相加,得a+b+c≥√ab+√bc+√ac 思考讨论(综合练习):(1) 已知a>0,b>0,c>0,求证:bca +acb+abc≥a+b+c;(2) 已知正实数x,y,且x+y=1,求1x +1y的最小值;(3) 已知x>−1,求函数 y=x+1x+1的最小值;(4) 若0<x<2,求u=x(2−x)的最大值.提示:(1) a>0,b>0,c>0由均值不等式,bc a +acb+abc=12(bca+acb)+12(bca+abc)+12(acb+abc)≥12·2√bca·acb+12·2√bca·abc+12·2√acb·abca b=a +b +c得bc a+ac b+ab c≥a +b +c(2) x >0,y >0,由x +y =1和均值不等式,1x +1y =(x +y)(1x +1y )=2+y x +x y ≥2+2√y x ·xy=4 x +y =1 当yx=xy,即x =y =12时,1x+1y的最小值为4.(3)由x >−1,即x +1>0,所以y =x +1x+1=(x +1)+1x+1−1≥2√(x +1)·1x+1−1=1当(x +1)=1x+1即x =0时,函数y =x +1x+1取得最小值1. (4)由0<x <2,则 2−x >0,所以u =x (2−x )≤(x+(2−x )2)2=1当x =2−x 即x =1时,u =x(2−x)的最大值为1. (该题也可以直接用二次函数的知识求解)注意:①在用均值不等式时,务必注意不等式的条件,即a+b 2≥√ab ,当a >0,b >0才成立;如综合练习(3)题:函数y =x +1x+1,如果去掉条件“x >−1”,解答就要分情况 当x >−1时,x +1>0,则y =x +1x+1=(x +1)+1x+1−1≥2√(x +1)·1x+1−1=1当x <−1时,−(x +1)>0,则y =x +1x+1=−[−(x +1)+1−(x+1)]−1≤−2√[−(x +1)]·1−(x+1)−1=−3 即函数y =x +1x+1,在x >−1时函数有最小值1,在x <−1时函数有最大值−3。
第一章不等关系与基本不等式章末复习学习目标 1.梳理本章的重要知识要点,构建知识网络.2.进一步强化对平均值不等式的理解和应用,尤其注意等号成立的条件.3.巩固对绝对值不等式的理解和掌握,进一步熟练绝对值不等式的应用.4.熟练掌握不等式的证明方法.1.实数的运算性质与大小顺序的关系:a>b⇔a-b>0,a=b⇔a-b=0,a<b⇔a-b<0,由此可知要比较两个实数的大小,判断差的符号即可.2.不等式的4个基本性质及5个推论.3.绝对值不等式(1)绝对值不等式的解法解含绝对值的不等式的基本思想是通过去掉绝对值符号,把含绝对值的不等式转化为一元一次不等式或一元二次不等式.去绝对值符号常见的方法有:①根据绝对值的定义;②分区间讨论(零点分段法);③图像法.(2)绝对值三角不等式①|a|的几何意义表示数轴上的点到原点的距离,|a-b|的几何意义表示数轴上两点间的距离;②|a+b|≤|a|+|b|(a,b∈R,ab≥0时等号成立);③|a-c|≤|a-b|+|b-c|(a,b,c∈R,(a-b)(b-c)≥0时等号成立);④||a|-|b||≤|a+b|≤|a|+|b|(a,b∈R,左边“=”成立的条件是ab≤0,右边“=”成立的条件是ab≥0);⑤||a|-|b||≤|a-b|≤|a|+|b|(a,b∈R,左边“=”成立的条件是ab≥0,右边“=”成立的条件是ab≤0).4.平均值不等式(1)定理1:若a,b∈R,则a2+b2≥2ab(当且仅当a=b时取“=”).(2)定理2:若a,b∈R+,则a+b2≥ab(当且仅当a=b时取“=”).(3)定理3:若a,b,c∈R+,则a3+b3+c3≥3abc(当且仅当a=b=c时取“=”).(4)定理4:若a ,b ,c ∈R +,则a +b +c3≥3abc (当且仅当a =b =c 时取“=”).(5)推论:若a 1,a 2,…,a n ∈R +,则a 1+a 2+…+a n n≥na 1a 2…a n .当且仅当a 1=a 2=…=a n 时取“=”.5.不等式的证明方法(1)比较法.(2)分析法.(3)综合法.(4)反证法.(5)几何法.(6)放缩法.类型一 绝对值不等式的解法 例1 解下列关于x 的不等式. (1)|x +1|>|x -3|; (2)|x -2|-|2x +5|>2x . 解 (1)方法一 |x +1|>|x -3|,两边平方得(x +1)2>(x -3)2,∴8x >8,∴x >1. ∴原不等式的解集为{x |x >1}. 方法二 分段讨论:当x ≤-1时,有-x -1>-x +3,此时x ∈∅; 当-1<x ≤3时,有x +1>-x +3, 即x >1, ∴此时1<x ≤3;当x >3时,有x +1>x -3,∴x >3. ∴原不等式解集为{x |x >1}. (2)分段讨论:①当x <-52时,原不等式变形为2-x +2x +5>2x ,解得x <7,∴不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-52. ②当-52≤x ≤2时,原不等式变形为2-x -2x -5>2x ,解得x <-35,∴不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52≤x <-35. ③当x >2时,原不等式变形为x -2-2x -5>2x ,解得x <-73,∴原不等式无解.综上可知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-35. 反思与感悟 含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间的符号,转化为不含绝对值的不等式去解.这种方法通常称为零点分段法.跟踪训练1 已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|,得-2x +6≥4,解得x ≤1; 当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|,得2x -6≥4,解得x ≥5. 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a -12=1,a +12=2,解得a =3.类型二 不等式的证明 例2 已知a >b >c >d ,求证:1a -b +1b -c +1c -d ≥9a -d. 证明 ∵a >b >c >d ,∴a -b >0,b -c >0,c -d >0,∴⎝⎛⎭⎪⎫1a -b +1b -c +1c -d (a -d )=⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d ·[(a -b )+(b -c )+(c -d )]≥331a -b ·1b -c ·1c -d·33(a -b )(b -c )(c -d )=9. ∴1a -b +1b -c +1c -d ≥9a -d. 反思与感悟 不等式证明的基本方法是比较法,分析法,综合法,在证明时注意对所证不等式恰当分组,选择适当的方法进行证明.跟踪训练2 已知a ,b ,c ∈R +,且ab +bc +ca =1,求证: (1)a +b +c ≥3; (2)a bc +b ac +cab≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c ∈R +, 因此只需证(a +b +c )2≥3,即证a 2+b 2+c 2+2(ab +bc +ca )≥3,根据条件,只需证a 2+b 2+c 2≥1=ab +bc +ca , 由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时取等号可知, 原不等式成立. (2)abc +b ac+c ab =a +b +c abc, 在(1)中已证a +b +c ≥3, ∴要证原不等式成立, 只需证1abc≥a +b +c ,∵ab +bc +ca =1,即证a bc +b ac +c ab ≤1=ab +bc +ca . ∵a ,b ,c ∈R +,a bc =ab ·ac ≤ab +ac2,b ac ≤ab +bc 2,c ab ≤ac +bc2,∴a bc +b ac +c ab ≤ab +bc +ca (当且仅当a =b =c =33时取等号)成立, ∴原不等式成立.类型三 利用平均值不等式求最值例3 已知x ,y ,z ∈R +,x -2y +3z =0,则y 2xz的最小值为______.答案 3解析 由x -2y +3z =0,得y =x +3z2,则y 2xz =x 2+9z 2+6xz 4xz ≥6xz +6xz 4xz=3, 当且仅当x =3z 时取“=”.反思与感悟 利用基本不等式求最值问题一般有两种类型 (1)当和为定值时,积有最大值.(2)当积为定值时,和有最小值,在具体应用基本不等式解题时,一定要注意适用的范围和条件:“一正、二定、三相等”.跟踪训练3 当0<x <π2时,函数f (x )=1+cos2x +8sin 2x sin2x 的最小值为________.答案 4解析 f (x )=2cos 2x +8sin 2x 2sin x cos x =cos x sin x +4sin xcos x,∵x ∈⎝⎛⎭⎪⎫0,π2,∴cos x >0,sin x >0.故f (x )=cos x sin x +4sin xcos x ≥2cos x sin x ·4sin x cos x =4,当且仅当tan x =12时取“=”. 类型四 恒成立问题例4 设函数f (x )=|x +1|+|x -4|-a . (1)当a =1时,求函数f (x )的最小值;(2)若f (x )≥4a+1对任意的实数x 恒成立,求实数a 的取值范围.解 (1)当a =1时,f (x )=|x +1|+|x -4|-1≥|x +1+4-x |-1=4,∴f (x )min =4.(2)f (x )≥4a+1对任意的实数x 恒成立⇔|x +1|+|x -4|-1≥a +4a对任意的实数x 恒成立⇔a +4a≤4.当a <0时,上式成立;当a >0时,a +4a≥2a ·4a=4,当且仅当a =4a,即a =2时上式取等号,此时a +4a≤4成立.综上,实数a 的取值范围为(-∞,0)∪{2}.反思与感悟 不等式恒成立问题,通常是分离参数,将其转化为求最大、最小值问题.当然,根据题目特点,还可能用变更主次元、数形结合等方法.跟踪训练4 已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若|f (x )-2f ⎝ ⎛⎭⎪⎫x 2|≤k 恒成立,求k 的取值范围.解 (1)由|ax +1|≤3,得-4≤ax ≤2, ∵f (x )≤3的解集为{x |-2≤x ≤1}, ∴当a ≤0时,不合题意. 又当a >0时,-4a ≤x ≤2a,∴a =2.(2)令h (x )=f (x )-2f ⎝ ⎛⎭⎪⎫x 2=|2x +1|-|2x +2|,∴h (x )=⎩⎪⎨⎪⎧1,x ≤-1,-4x -3,-1<x <-12,-1,x ≥-12,∴|h (x )|≤1,∴k ≥1,即k 的取值范围是[1,+∞).1.给出下列四个命题:①若a >b ,c >1,则a lg c >b lg c ;②若a >b ,c >0,则a lg c >b lg c ;③若a >b ,则a ·2c>b ·2c;④若a <b <0,c >0,则c a >cb. 其中正确命题的个数为( ) A .1B .2C .3D .4 答案 C解析 ①正确,c >1,lg c >0;②不正确,当0<c ≤1时,lg c ≤0;③正确,2c>0;④正确,由a <b <0,得0>1a >1b ,故c a >cb.2.设a ,b 为正实数,以下不等式恒成立的是( ) ①ab >2ab a +b ;②a >|a -b |-b ;③a 2+b 2>4ab -3b 2;④ab +2ab>2. A .①③ B .①④ C .②③ D .②④答案 D解析 ①不恒成立,因为a =b 时取“=”;②恒成立,因为a ,b 均为正数; ③不恒成立,当a =2,b =1时,a 2+b 2=5,4ab -3b 2=5,a 2+b 2=4ab -3b 2. ④是恒成立的,因为ab +2ab≥22>2.3.若a =lg22,b =lg33,c =lg55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 C解析 a =3lg 26=lg 86,b =2lg 36=lg 96,∵9>8,∴b >a .b =lg 33=lg 3515,c =lg 55=lg 5315,∵35>53,∴b >c .a =lg 2510=lg 3210,c =lg 2510,∵32>25,∴a >c .∴b >a >c ,故选C.4.求不等式⎪⎪⎪⎪⎪⎪1+x +x 22<1的解集.解 ⎪⎪⎪⎪⎪⎪1+x +x 22<1⇔-1<1+x +x 22<1⇔⎩⎪⎨⎪⎧x 2+2x +4>0⇒x ∈R ,x 2+2x <0⇒-2<x <0.∴原不等式的解集为(-2,0).5.若不等式|x -a |+|x -2|≥1对任意实数x 恒成立,求实数a 的取值范围. 解 设y =|x -a |+|x -2|,则y min =|a -2|. 因为不等式|x -a |+|x -2|≥1对任意x ∈R 恒成立. 所以|a -2|≥1,解得a ≥3或a ≤1.1.本章的重点是平均值不等式、绝对值不等式和不等式的证明方法.要特别注意含绝对值不等式的解法.2.重点题型有利用不等式的基本性质、平均值不等式、绝对值不等式证明不等式或求函数最值问题;解绝对值不等式.3.重点考查利用不等式的性质、平均值不等式求函数的最值,含参数的绝对值不等式有解、解集是空集或恒成立问题.4.证明不等式的基本方法及一题多证:证明不等式的基本方法主要有比较法、综合法、分析法、反证法、放缩法等.证明不等式时既可探索新的证明方法,培养创新意识,也可一题多证,开阔思路,活跃思维,目的是通过证明不等式发展逻辑思维能力,提高数学素养.一、选择题1.a,b∈R+,那么下列不等式中不正确的是( )A.ab+ba≥2 B.b2a+a2b≥a+bC.ba2+ab2≤a+babD.1a2+1b2≥2ab答案 C解析A满足基本不等式;B可等价变形为(a-b)2(a+b)≥0,正确;B选项中不等式的两端同除以ab,不等式方向不变,所以C选项不正确;D选项是A选项中不等式的两端同除以ab 得到的,D正确.2.设0<x<1,则a=2x,b=x+1,c=11-x中最大的是( )A.c B.bC.a D.随x取值不同而不同答案 A解析∵0<x<1,∴b=x+1>2x>2x=a,∵11-x-(x+1)=1-(1-x2)1-x=x21-x>0,∴c>b>a.3.“a<4”是“对任意实数x,|2x-1|+|2x+3|≥a成立”的( ) A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件答案 B解析 ∵|2x -1|+|2x +3|≥|2x -1-(2x +3)|=4, ∴当a <4时⇒|2x -1|+|2x +3|≥a 成立,即充分条件;对任意实数x ,|2x -1|+|2x +3|≥a ⇒a ≤4,不能推出a <4,即必要条件不成立. 4.若关于x 的不等式|x +1|≥kx 恒成立,则实数k 的取值范围是( ) A .(-∞,0] B .[-1,0] C .[0,1] D .[0,+∞)答案 C解析 作出y =|x +1|与l 1:y =kx 的图象如图所示,当k <0时,直线一定经过第二、四象限,从图看出明显不恒成立; 当k =0时,直线为x 轴,符合题意;当k >0时,要使|x +1|≥kx 恒成立,只需k ≤1. 综上可知k ∈[0,1].5.设a =(m 2+1)(n 2+4),b =(mn +2)2,则( ) A .a >b B .a <b C .a ≤b D .a ≥b答案 D解析 ∵a -b =(m 2+1)(n 2+4)-(mn +2)2=4m 2+n 2-4mn =(2m -n )2≥0,∴a ≥b . 6.已知a ,b ,c ,d 为实数,ab >0,-c a <-d b,则下列不等式中成立的是( ) A .bc <ad B .bc >ad C.a c >b d D.a c <b d答案 B解析 将-c a <-d b两边同乘以正数ab ,得-bc <-ad ,所以bc >ad . 二、填空题7.已知不等式|x +2|-|x |≤a 的解集不是空集,则实数a 的取值范围是________. 答案 [-2,+∞)解析 ∵||x +2|-|x ||≤|x +2-x |=2, ∴2≥|x +2|-|x |≥-2,∵不等式|x +2|-|x |≤a 的解集不是空集,∴a ≥-2. 8.当x >1时,x 3与x 2-x +1的大小关系是________.答案 x 3>x 2-x +1解析 ∵x 3-(x 2-x +1)=x 3-x 2+x -1=x 2(x -1)+(x -1)=(x -1)(x 2+1),且x >1, ∴(x -1)(x 2+1)>0. ∴x 3-(x 2-x +1)>0, 即x 3>x 2-x +1.9.定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________. 答案2解析 因为x ⊗y =x 2-y 2xy ,所以(2y )⊗x =4y 2-x22xy.又x >0,y >0,故x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy =x 2+2y 22xy ≥22xy2xy=2,当且仅当x =2y时等号成立. 10.若f (x )=2|x +1|-|x -1|且f (x )≥22,则x 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫34,+∞解析 ∵f (x )=2x是增函数,∴f (x )≥22,即|x +1|-|x -1|≥32,①⎩⎪⎨⎪⎧ x ≥1,2≥32,∴x ≥1,②⎩⎪⎨⎪⎧-1<x <1,2x ≥32,∴34≤x <1, ③⎩⎪⎨⎪⎧x ≤-1,-2≤32,无解.综上x ∈⎣⎢⎡⎭⎪⎫34,+∞. 11.已知函数f (x )=|x -a |,若不等式f (x )≤3的解集为{x |-1≤x ≤5},则实数a 的值为________. 答案 2解析 由f (x )≤3,得|x -a |≤3, 解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2,所以实数a 的值为2.三、解答题12.已知函数f (x )=1+x 2,a ≠b ,设a ,b ∈R ,求证:|f (a )-f (b )|<|a -b |. 证明 方法一 |f (a )-f (b )|<|a -b |⇔|1+a 2-1+b 2|<|a -b | ⇔|1+a 2-1+b 2|2<|a -b |2⇔2+a 2+b 2-2(1+a 2)(1+b 2)<a 2-2ab +b 2⇔1+ab <(1+a 2)(1+b 2).① 当1+ab ≤0时,①式显然成立.当1+ab >0时,①⇔(1+ab )2<[(1+a 2)(1+b 2)]2⇔1+2ab +a 2b 2<1+a 2+b 2+a 2b 2 ⇔2ab <a 2+b 2, ∵a ≠b ,∴2ab <a 2+b 2成立.∴①式成立.综上知,原不等式成立.方法二 当a =-b 时,原不等式显然成立.当a ≠-b 时, ∵|1+a 2-1+b 2|=|(1+a 2)-(1+b 2)|1+a 2+1+b 2<|a 2-b 2||a |+|b |≤|a +b |·|a -b ||a +b |=|a -b |, ∴原不等式成立.13.(2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎪⎫|x |-322+54≤54. 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54, 故m 的取值范围是⎝⎛⎦⎥⎤-∞,54. 四、探究与拓展14.设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明 (1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,又a +b =c +d ,ab >cd ,所以(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得a +b >c +d . ②若a +b >c +d ,则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd ,于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |. 综上,a +b >c +d 是|a -b |<|c -d |的充要条件.15.(2018·全国Ⅰ)已知f (x )=|x +1|-|ax -1|.(1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解 (1)当a =1时,f (x )=|x +1|-|x -1|,即f (x )=⎩⎪⎨⎪⎧ -2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >12. (2)当x ∈(0,1)时,|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时,|ax -1|<1成立.若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 0<x <2a , 所以2a≥1,故0<a ≤2. 综上,a 的取值范围为(0,2].。
§1不等式的性质[对应学生用书P1][自主学习]1.实数大小的比较2.不等式的性质(1)性质1(对称性):如果a >b ,那么b <a ; 如果b <a ,那么a >b .(2)性质2(传递性):如果a >b ,b >c ,那么,a >c . (3)性质3(加法性质):如果a >b ,那么a +c >b +c . ①移项法则:如果a +b >c ,那么a >c -b .②推论(加法法则):如果a >b ,c >d ,那么a +c >b +d . (4)性质4(乘法性质):如果a >b ,c >0,那么ac >bc , 如果a >b ,c <0,那么ac <bc .①推论1(乘法法则):如果a >b >0,c >d >0,那么ac >bd . ②推论2(平方法则):如果a >b >0,那么a 2>b 2.③推论3(乘方法则):如果a >b >0,那么a n>b n (n 为正整数). ④推论4(开方法则):如果a >b >0,那么a 1n >b 1n(n 为正整数).[合作探究]1.怎样比较两个代数式的大小?提示:整式、分式一般用求差的方法来比较大小;而算式则一般用求商的方法来比较大小.2.两个不同向不等式的两边可以分别相减或相除吗?提示:不可以,两个不同向不等式的两边不能分别相减,也不能分别相除,在需求差或商时,可利用不等式性质化为同向不等式相加或相乘,例如:a >b 且c <d ⇒a >b 且-c >-d ,⇒a -c >b -d .3.若a >b >0,当n <0时,a n>b n成立吗? 提示:不成立,如当a =3,b =2,n =-1时, 3-1=13<12=2-1.[对应学生用书P1][例1] (1)比较a 4-(2)设a >0,b >0,求证:a a b b≥(ab )a +b2.[思路点拨] 本题考查求差比较法及求商比较法在比较代数式大小中的应用,同时考查了运算及转化能力,解答此题(1)需要用求差的方法比较,解答(2)需要用求商的方法证明.[精解详析] (1)a 4-b 4-4a 3(a -b ) =(a -b )(a +b )(a 2+b 2)-4a 3(a -b ) =(a -b )[(a +b )(a 2+b 2)-4a 3] =(a -b )(a 3+ab 2+ba 2+b 3-4a 3)=(a -b )[(ab 2-a 3)+(ba 2-a 3)+(b 3-a 3)] =(a -b )(a -b )[-a (a +b )-a 2-(a 2+b 2+ab )] =-(a -b )2(3a 2+2ab +b 2) =-(a -b )2[(3a +b3)2+23b 2]≤0(当且仅当a =b 时取等号). ∴a 4-b 4≤4a 3(a -b ). (2)证明:∵a a b b>0,(ab )2a b +>0,∴a ab b ab2a b +=a2a b -·b2b a -=⎝ ⎛⎭⎪⎫a b 2a b -.①当a =b 时,显然有(a b )a -b2=1, ②当a >b >0时,a b>1,a -b2>0, ③当b >a >0时,0<a b<1,a -b2<0.由指数函数的单调性,②③均有⎝ ⎛⎭⎪⎫a b a -b 2>1. 综上可知,对任意正数a ,b ,都有a a b b≥(ab )a +b2.比较大小的常用方法及步骤:1.求差法:a ≥b ⇔a -b ≥0,a ≤b ⇔a -b ≤0. 一般步骤是:作差→变形→判号→定论.变形是作差法的关键,配方和因式分解是常用的变形手段.2.求商法:当a >0,b >0时,把比较a ,b 的大小转化为比较a b与1的大小关系,此即为作商比较法.理论依据是不等式的性质:若a >0,b >0,则a b ≥1⇔a ≥b ,a b≤1⇔a ≤b . 一般步骤为:作商→变形→与1比较大小→定论.1.已知x ≠0,求证:(x 2-1)2<x 4+x 2+1. 证明:(x 2-1)2-(x 4+x 2+1) =x 4-2x 2+1-x 4-x 2-1 =-3x 2<0,∴(x 2-1)2<x 4+x 2+1.2.设a >b >0,求证:a 2-b 2a 2+b 2>a -ba +b .证明:法一:a 2-b 2a 2+b 2-a -ba +b=a -ba +b 2-a 2+b 2a 2+b 2a +b=2ab a -ba 2+b 2a +b>0,所以原不等式成立. 法二:∵a >b >0,故a 2>b 2>0. 故左边>0,右边>0.∴左边右边=a +b 2a 2+b 2=1+2ab a 2+b2>1.∴原不等式成立.[(1)若a >b ,则ac <bc ; (2)若ac 2>bc 2,则a >b ; (3)若a <b <0,则a 2>ab >b 2; (4)若a <b <0,则|a |>|b |; (5)若c >a >b >0,则ac -a >bc -b.[思路点拨] 本题考查不等式性质的应用及逻辑推理能力.解答此题需要依据实数的基本性质,实数的符号的运算法则以及不等式性质,然后经过合理逻辑推理即可判断.[精解详析] (1)由于c 的符号未知,因而不能判断ac ,bc 的大小关系,故该命题是假命题.(2)由ac 2>bc 2知c ≠0,而c 2>0, ∴a >b ,故该命题是真命题.(3)⎩⎪⎨⎪⎧ a <b ,a <0⇒a 2>ab ;又⎩⎪⎨⎪⎧a <b ,b <0⇒ab >b 2,∴a 2>ab >b 2,故该命题是真命题.(4)两个负实数,较小的离原点远,其绝对值反而大,故该命题是真命题. (5)⎭⎪⎬⎪⎫a >b >0⇒-a <-b <0 c >a >b >0⇒0<c -a <c -b⇒⎭⎪⎬⎪⎫1c -a >1c -b >0 a >b>0⇒ac-a >bc -b,故该命题是真命题.在利用不等式性质判断不等式真假时,关键是依据题设条件,正确恰当地选择使用不等式的性质,当否定一个结论时只需举一个反例即可;有时也可采用特殊方法比较判断.3.若a >b >c ,则下面不等式中一定成立的是( ) A .a |c |>b |c | B .ab >ac C .a -|c |>b -|c |D.1a <1b <1c解析:选项A 需要c ≠0,选项B 需要a >0,选项D 需要a ,b ,c 同号. 答案:C4.利用不等式的性质判断下列各命题是否成立,并简述理由. (1)a >b ⇒2-x·a >2-x·b . (2)a >b ,c >d ⇒a -c >b -d . (3)a >b ,c <d ,cd ≠0⇒a c >b d. (4)a <b <0⇒1a -b >1a. 解:(1)成立.因为2-x>0,由性质(4)知2-x·a >2-x·b .(2)不成立.令a =5,b =4,c =3,d =1,有a -c <b -d . (3)不成立.当a >b >0,c <0,d >0时显然有a c <b d. (4)不成立. 1a -b -1a =b aa -b ,由a <b <0,可得1a -b <1a.[例3] 已知60<x <84,28<y <33,则x -y 的取值范围为________,y的取值范围为________.[思路点拨] 利用不等式性质,先求-y 和1y 的取值范围,再求x -y 和xy的取值范围.[精解详析] x -y =x +(-y ), 所以需先求出-y 的取值范围;x y =x ×1y ,所以需先求出1y的取值范围. ∵28<y <33,∴-33<-y <-28,133<1y <128.又60<x <84,∴27<x -y <56,6033<x y <8428.即2011<xy<3. [答案] 27<x -y <562011<x y<3本题不能直接用x 的取值范围去减或除y 的取值范围,应严格利用不等式的基本性质去求得取值范围;其次在有些题目中,还要注意整体代换的思想,即弄清要求的与已知的“取值范围”间的联系.如已知20<x +y <30,15<x -y <18,要求2x +3y 的取值范围,不能分别求出x ,y 的取值范围,再求2x +3y 的取值范围,应把已知的“x +y ”“x -y ”视为整体,即2x +3y =52(x +y )-12(x -y )来求2x +3y 的取值范围,或根据线性规化知识求目标函数z =2x +3y 的取值范围.5.已知①-1≤a +b ≤1,②1≤a -b ≤3,求3a -b 的取值范围. 解:设3a -b =x (a +b )+y (a -b )=(x +y )a +(x -y )b .∴⎩⎪⎨⎪⎧x +y =3,x -y =-1,∴⎩⎪⎨⎪⎧x =1,y =2.由①+②×2得:-1+2≤(a +b )+2(a -b )≤1+3×2, 即1≤3a -b ≤7.[例4] 若(1)ea -c >eb -d;(2)e a -c2>e b -d2.[思路点拨] 本题考查不等式性质的应用及逻辑推理能力.解答本题可先比较a -c 与b -d ,(a -c )2与(b -d )2的大小,进而判断1a -c 与1b -d ,1a -c2与1b -d2的大小,再两边同乘以负数e ,得出要证明的结论.[精解详析] ∵c <d <0,∴-c >-d >0, ∵a >b >0,∴a -c >b -d >0. (*) (1)由(*)式知1a -c <1b -d.又∵e <0,∴ea -c >eb -d.(2)由(*)式知(a -c )2>(b -d )2>0, ∴1b -d2>1a -c2.又∵e <0,∴e b -d 2<e a -c2.即e a -c2>e b -d2.利用不等式的性质证明不等式,一定要建立在记准、记熟不等式性质的基础之上,如果能由不等式的性质直接进行推理论证,则严格按不等式性质成立的条件论证;否则可以先分析需要证明的不等式的结构,再利用不等式的性质进行逆推,寻找使其成立的充分条件.6.已知a >b >c >d >0,且a b =cd,求证:a +d >b +c . 证明:∵a b =c d ,∴a -b b =c -dd. ∴(a -b )d =(c -d )b . 又∵a >b >c >d >0,∴a -b >0,c -d >0,b >d >0且bd>1, ∴a -bc -d =bd>1, ∴a -b >c -d ,即a +d >b +c .本课时内容是不等式的基础,是高考的重要考点,主要考查比较大小问题,不等式正误的判断以及利用不等式性质确定代数式的取值范围问题.一般与函数、方程等知识交汇命题.[考题印证](江苏高考)设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是________.[命题立意]本题主要考查不等式的性质与函数的最大值的概念的综合应用及函数方程思想、转化分类及运算求解能力.[自主尝试]由题设知,实数x ,y 均为正实数, 则条件可化为lg 3≤lg x +2lg y ≤lg 8, lg 4≤2lg x -lg y ≤lg 9,令lg x =a ,lg y =b ,则有⎩⎪⎨⎪⎧lg 3≤a +2b ≤3lg 2,2lg 2≤2a -b ≤2lg 3.又设t =x 3y4,则lg t =3lg x -4lg y =3a -4b ,令3a -4b =m (a +2b )+n (2a -b ), 解得m =-1,n =2.即lg t =-(a +2b )+2(2a -b )≤-lg 3+4lg 3=lg 27.∴x 3y4的最大值是27. 另解:将4≤x 2y ≤9两边分别平方得,16≤x 4y2≤81,①又由3≤xy 2≤8可得,18≤1xy 2≤13,②由①×②得,2≤x 3y 4≤27,即x 3y4的最大值是27.[答案] 27[对应学生用书P4]一、选择题1.若a <0,-1<b <0,则有( ) A .a >ab >ab 2B .ab 2>ab >a C .ab >a >ab 2D .ab >ab 2>a解析:∵a <0,-1<b <0,∴ab >0,b -1<0,1-b >0,0<b 2<1, ∴1-b 2>0,ab -a =a (b -1)>0. ∴ab >a .又ab -ab 2=ab (1-b )>0, ∴ab >ab 2.又a -ab 2=a (1-b 2)<0, ∴a <ab 2.故ab >ab 2>a .答案:D2.设a >b >1,c <0,给出下列三个结论: ①c a >c b;②a c <b c;③log b (a -c )>log a (b -c ). 其中,正确结论的序号是( ) A .① B .①② C .②③D .①②③解析:由a >b >1,c <0得,1a <1b ,c a >c b;幂函数y =x c (c <0)是减函数,所以a c <b c;因为a-c >b -c ,所以log b (a -c )>log a (a -c )>log a (b -c ),①②③均正确.答案:D3.设角α,β满足-π2<α<β<π2,则α-β的范围是( )A .-π<α-β<0B .-π<α-β<πC .-π2<α-β<0D .-π2<α-β<π2解析:∵-π2<α<β<π2,∴-π2<-β<-α<π2.∴-π<α-β<β-α<π, 且α-β<0.∴-π<α-β<0. 答案:A4.若a >b >0,则下列各式中恒成立的是( ) A.2a +b a +2b >a b B.b 2+1a 2+1>b 2a2 C .a +1a >b +1bD .a a>b b解析:选取适当的特殊值,若a =2,b =1,可知2a +b a +2b =54,ab =2,由此可知选项A 不成立.利用不等式的性质可知,当a >b >0时,1a <1b,由此可知,选项C 不恒成立.取a =12,b =14,则a >b >0,则a a =b b,故选项D 不恒成立.故选B. 答案:B 二、填空题5.设a ≥b >0,P =3a 3+2b 3,Q =3a 2b +2ab 2,则P 与Q 的大小关系是________.解析:P -Q =3a 3+2b 3-(3a 2b +2ab 2)=3a 2(a -b )+2b 2(b -a )=(3a 2-2b 2)(a -b ). 因为a ≥b >0,所以a -b ≥0,a 2≥b 2>0. 所以3a 2≥3b 2>2b 2,即3a 2-2b 2>0. 从而(3a 2-2b 2)(a -b )≥0, 即3a 3+2b 3≥3a 2b +2ab 2,即P ≥Q . 答案:P ≥Q6.若a ,b ∈R ,且a >b ,下列不等式: ①b a >b -1a -1;②(a +b )2>(b +1)2;③(a -1)2>(b -1)2.其中不成立的是________. 解析:①b a -b -1a -1=ab -b -ab +a a a -=a -ba a -.因为a -b >0,a (a -1)符号不确定,①不成立;②取a =2,b =-2,则(a +b )2=0,(b +1)2>0,②不成立;③取a =2,b =-2,则(a -1)2=1,(b -1)2=9,③不成立. 答案:①②③ 7.有以下四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0. 其中能使1a <1b成立的有________个条件.解析:①∵b >0,∴1b>0.∵a <0,∴1a <0.∴1a <1b.②∵b <a <0,∴1b >1a .③∵a >0>b ,∴1a>0,1b<0.∴1a >1b.④∵a >b >0,∴1a <1b.综上知,①②④均能使1a <1b成立.答案:38.若1<a <3,-4<b <2,则a -|b |的取值范围是________. 解析:∵-4<b <2,∴0≤|b |<4,∴-4<-|b |≤0又∵1<a <3,∴-3<a -|b |<3.答案:(-3,3)三、解答题9.当a ≠0时,比较(a 2+2a +1)(a 2-2a +1)与(a 2+a +1)(a 2-a +1)的大小. 解:∵(a 2+2a +1)(a 2-2a +1)=[(a 2+1)+2a ][(a 2+1)-2a ]=(a 2+1)2-2a 2=a 4+2a 2+1-2a 2=a 4+1,(a 2+a +1)(a 2-a +1)=[(a 2+1)+a ][(a 2+1)-a ]=(a 2+1)2-a 2=a 4+2a 2+1-a 2=a 4+a 2+1,∴(a 2+2a +1)(a 2-2a +1)-(a 2+a +1)(a 2-a +1)=(a 4+1)-(a 4+a 2+1)=-a 2. ∵a ≠0,∴a 2>0,∴-a 2<0,∴(a 2+2a +1)(a 2-2a +1)<(a 2+a +1)(a 2-a +1).10.已知a >b >c ,求证:1a -b +1b -c +1c -a>0. 证明:原不等式变形为:1a -b +1b -c >1a -c . 又∵a >b >c ,∴a -c >a -b >0.从而有1a -b >1a -c , 又∵1b -c >0,∴1a -b +1b -c >1a -c . 即1a -b +1b -c +1c -a>0. 11.已知一次函数f (x )=ax +b ,且-1≤f (-1)≤2,-2≤f (2)≤3,求f (3)的取值范围.解:法一:(不等式基本性质)∵⎩⎪⎨⎪⎧ -1≤-a +b ≤2, ①-2≤2a +b ≤3. ②又∵f (3)=3a +b =-13(-a +b )+43(2a +b ), ∴-103≤f (3)≤133.法二:(线性规划)因为⎩⎪⎨⎪⎧ -1≤-a +b ≤2,-2≤2a +b ≤3,所以点(a ,b )所表示的区域如图阴影所示,又∵f (3)=3a +b ,所以由线性规划知识可知,当(a ,b )在D⎝ ⎛⎭⎪⎫43,13位置时f (3)取得最大值;在B ⎝ ⎛⎭⎪⎫-43,23位置时f (3)取得最小值, ∴-103≤f (3)≤133. 法三:(利用斜率公式)∵P 1(-1,f (-1)),P 2(2,f (2)),P 3(3,f (3))三点共线,∴kP 1P 2=kP 1P 3. ∴f -f -2--=f -f -3--.∴f (3)=-13f (-1)+43f (2). 又∵-1≤f (-1)≤2,-2≤f (2)≤3,∴-103≤f (3)≤133.。
1.2 不等式的性质学习目标 1.理解不等式的性质,并掌握不等式的性质.2.能运用不等式的性质证明简单的不等式、解决不等式的简单问题.知识点 不等式的性质(1)性质1(对称性):如果a >b ,那么b <a ; 如果b <a ,那么a >b .(2)性质2(传递性):如果a >b ,b >c ,那么a >c . (3)性质3(加法性质):如果a >b ,那么a +c >b +c . ①移项法则:如果a +b >c ,那么a >c -b .②推论(加法法则):如果a >b ,c >d ,那么a +c >b +d . (4)性质4(乘法性质):如果a >b ,c >0,那么ac >bc ; 如果a >b ,c <0,那么ac <bc .①推论1(乘法法则):如果a >b >0,c >d >0,那么ac >bd . ②推论2(平方法则):如果a >b >0,那么a 2>b 2.③推论3(乘方法则):如果a >b >0,那么a n>b n (n 为正整数). ④推论4(开方法则):如果a >b >0,那么1na >1nb (n 为正整数).类型一 不等式的性质的应用例1 判断下列命题是否正确,并说明理由. (1)若a >b >0,则1a <1b;(2)若c >a >b >0,则ac -a >bc -b;(3)若a c >b d,则ad >bc ;(4)设a ,b 为正实数,若a -1a <b -1b,则a <b .解 (1)正确.因为a >b >0,所以ab >0.两边同乘以1ab ,得a ·1ab >b ·1ab ,得1b >1a.(2)正确.因为c -a >0,c -b >0, 且c -a <c -b ,所以1c -a >1c -b >0. 又a >b >0,所以a c -a >bc -b.(3)不正确.因为a c >b d ,所以a c -b d>0, 即ad -bccd>0, 所以⎩⎪⎨⎪⎧ad -bc >0,cd >0或⎩⎪⎨⎪⎧ad -bc <0,cd <0,即ad >bc 且cd >0或ad <bc 且cd <0.(4)正确.因为a -1a<b -1b,且a >0,b >0,所以a 2b -b <ab 2-a ⇒a 2b -ab 2-b +a <0⇒ab (a-b )+(a -b )<0⇒(a -b )(ab +1)<0,所以a -b <0,即a <b . 反思与感悟 (1)利用不等式的性质判断命题真假的技巧 ①要判断一个命题为真命题,必须严格证明;②要判断一个命题为假命题,或者举反例,或者由题中条件推出与结论相反的结果.其中,举反例在解选择题时用处很大.(2)运用不等式的性质判断命题真假的三点注意事项 ①倒数法则要求两数同号;②两边同乘以一个数,不等号方向是否改变要视此数的正负而定; ③同向不等式可以相加,异向不等式可以相减. 跟踪训练1 下列命题中正确的是________.(填序号) ①若a >b >0,c >d >0,那么ad <b c; ②若a ,b ∈R ,则a 2+b 2+5≥2(2a -b ); ③若a ,b ∈R ,a >b ,则a 2>b 2; ④若a ,b ∈R ,a >b ,则a c 2+1>bc 2+1. 答案 ②④解析 对于①,∵c >d >0,∴1d >1c>0,∴a d >b c >0,∴a d >bc,∴①不对;对于②,a 2+b 2+5-(4a -2b )=a 2-4a +b 2+2b +5=(a -2)2+(b +1)2≥0, ∴a 2+b 2+5≥2(2a -b ),∴②对;对于③,由于a >b 不能保证a ,b 同时大于0, ∴a 2>b 2不成立,∴③不对; 对于④,∵c 2+1>0,∴由a >b ,可得a c 2+1>bc 2+1, ∴④正确.类型二 利用不等式的性质证明不等式 例2 已知a >b >0,c <d <0,求证:ba -c <ab -d.证明 ∵c <d <0, ∴-c >-d >0. 又a >b >0, ∴a -c >b -d >0, ∴0<1a -c <1b -d. 又0<b <a , ∴ba -c <ab -d.引申探究1.若本例条件不变,求证:3a d<3b c. 证明 ∵c <d <0, ∴-c >-d >0, ∴0<1-c <1-d .∴a -d >b-c>0, ∴3a-d>3b-c,即-3a d>-3b c, ∴3a d<3b c. 2.若本例条件不变,求证:ac a -c <bd b -d. 证明 ∵a >b >0,∴1b >1a>0.又∵c <d <0, ∴-c >-d >0, ∴1-d >1-c>0. ∴1b +1-d >1a +1-c >0, 即d -b bd >c -aac >0, ∴ac c -a >bd d -b >0, ∴ac a -c <bd b -d. 反思与感悟 进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.跟踪训练2 已知a >0,b >0,求证:b 2a +a 2b≥a +b .证明 b 2a +a 2b -(a +b )=⎝ ⎛⎭⎪⎫b 2a -a +⎝ ⎛⎭⎪⎫a 2b -b =(b +a )(b -a )a +(a +b )(a -b )b =(a -b )(a +b )·⎝ ⎛⎭⎪⎫1b -1a =1ab(a -b )2(a +b ), ∵a >0,b >0,∴1ab (a -b )2(a +b )≥0,即b 2a +a 2b≥a +b .类型三 利用不等式的性质求代数式范围例3 设f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,求f (-2)的取值范围. 解 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数), 即4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a -(m -n )b ,于是,得⎩⎪⎨⎪⎧m +n =4,m -n =2,解得⎩⎪⎨⎪⎧m =3,n =1.∴f (-2)=3f (-1)+f (1). ∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10.反思与感悟 (1)应用同向不等式相加性质时不能多次使用,否则范围将会扩大. (2)整体代换思想,是解这类问题常用的方法.跟踪训练3 已知①-1≤a +b ≤1,②1≤a -b ≤3,求3a -b 的取值范围. 解 设3a -b =x (a +b )+y (a -b )=(x +y )a +(x -y )b .∴⎩⎪⎨⎪⎧x +y =3,x -y =-1,∴⎩⎪⎨⎪⎧x =1,y =2.由①+②×2,得-1+2≤(a +b )+2(a -b )≤1+3×2, 即1≤3a -b ≤7.1.若a <b <0,则下列结论不正确的是( ) A .a 2<b 2B .ab <a 2C.b a +ab>2 D .|a |-|b |=|a -b |答案 A解析 ∵a <b <0,∴-a >-b >0, 即(-a )2>(-b )2,∴a 2>b 2.2.设p :x <3,q :-1<x <3,则p 是q 成立的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件 答案 C解析 ∵q ⇒p ,∴p 是q 的必要条件.但p ⇏q ,∴p 不是q 的充分条件. 3.若a <0,-1<b <0,则有( ) A .a >ab >ab 2B .ab 2>ab >a C .ab >a >ab 2 D .ab >ab 2>a答案 D解析 ∵-1<b <0, ∴b <b 2<1. ∵a <0, ∴ab >ab 2>a .4.下列命题中不正确的是( )A .若3a >3b ,则a >bB .若a >b ,c >d ,则a -d >b -cC .若a >b >0,c >d >0,则a d >bcD .若a >b >0,ac >bd ,则c >d 答案 D解析 只有当c >0且d >0时,才有a >b >0,ac >bd ⇒c >d .5.设角α,β满足-π2<α<β<π2,则α-β的取值范围是( )A .-π<α-β<0B .-π<α-β<πC .-π2<α-β<0D .-π2<α-β<π2答案 A解析 ∵-π2<α<β<π2,∴-π2<-β<π2且α-β<0,∴-π<α-β<0.1.不等式的性质是不等式变形的依据,每一步变形都要做到有根有据,严格按照不等式的性质进行.2.利用不等式的性质证明不等式,一定要建立在记准、记熟不等式性质的基础之上,如果能由不等式的性质直接进行推理论证,则严格按不等式的性质成立的条件论证;否则可以先分析需要证明的不等式的结构,再利用不等式的性质进行逆推,寻找使其成立的充分条件.一、选择题1.已知a >0>b ,c <d <0,给出下列不等式:(1)ad >bc ;(2)a -c >b -d ;(3)a (d -c )>b (d -c ).其中成立的个数是( ) A .0B .1C .2D .3 答案 C解析 因为a >0,b <0,c <d <0,所以ad <0,bc >0,故(1)不成立; 因为a >b ,c <d <0,所以-c >-d ,所以a -c >b -d ,故(2)成立; 由c <d <0,知d -c >0,又a >0>b ,所以a (d -c )>b (d -c ),故(3)成立. 2.已知实数a ,b ,c 同时满足下列条件:(1)abc >0;(2)ab +bc +ca <0;(3)a >b >c . 有下列判断:①a >0;②b >0;③c >0;④bc >0. 其中正确的个数为( ) A .1B .2C .3D .4 答案 B解析 ∵abc >0,a >b >c , ∴a >0,bc >0.又∵ab +bc +ca <0,∴b <0,c <0. 3.已知a ,b 为实数,则“a >b >1”是“1a -1<1b -1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件 答案 A解析 ∵a >b >1,∴a -1>b -1>0, ∴1a -1<1b -1. 取a =-1,b =2,有1a -1<1b -1, 但不满足a >b >1. ∴“a >b >1”是“1a -1<1b -1”的充分不必要条件,故选A. 4.设a >1>b >-1,则下列不等式中恒成立的是( ) A.1a <1bB.1a >1bC .a >b 2D .a 2>2b答案 C解析 ∵-1<b <1,∴b 2<1<a . 5.已知a ,b ,c ∈(0,+∞),若ca +b <ab +c <bc +a,则( )A .c <a <bB .b <c <aC .a <b <cD .c <b <a答案 A解析 由c a +b<a b +c<b c +a,可得c a +b+1<a b +c+1<b c +a+1,即a +b +c a +b <a +b +cb +c<a +b +cc +a.又a ,b ,c ∈(0,+∞),所以a +b >b +c >c +a .由a +b >b +c ,可得a >c ;由b +c >c +a ,可得b >a ,于是有c <a <b .6.设a ,b ∈(-∞,0),则“a >b ”是“a -1a >b -1b”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 C解析 a ,b ∈(-∞,0), ∵a >b ,∴1a <1b ,即-1a >-1b,∴a -1a>b -1b,∴“a >b ”是“a -1a >b -1b”成立的充分条件.又由a -1a >b -1b ⇒a -b +1b -1a >0⇒(a -b )+a -b ab >0⇒(a -b )·ab +1ab>0⇒a -b >0⇒a >b .∴“a >b ”又是“a -1a >b -1b”成立的必要条件.故“a >b ”是“a >1a >b -1b”成立的充要条件.故“a >b ”是“a -1a >b -1b”成立的充要条件.二、填空题7.已知a ,b ,c 是实数,则a 2+b 2+c 2与ab +bc +ca 的大小关系是__________. 答案 a 2+b 2+c 2≥ab +bc +ca解析 ∵a 2+b 2+c 2-ab -bc -ca =12(2a 2+2b 2+2c 2-2ab -2bc -2ca )=12[(a -b )2+(b -c )2+(c -a )2]≥0,当且仅当a =b =c 时,等号成立,∴a 2+b 2+c 2≥ab +bc +ca . 8.若a ,b ,c 均为实数,下列四个条件: ①ac 2>bc 2;②a c >bc;③a 3>b 3;④a -c >b -c .其中能成为a >b 的充分不必要条件的序号是________. 答案 ①解析 ①由ac 2>bc 2⇒a >b ,反之不成立,∴ac 2>bc 2是a >b 的充分不必要条件; ②∵a c >b c ,∴a c -b c =a -bc>0.∵c 的符号不能确定, ∴a ,b 的大小关系不确定; ③a 3>b 3是a >b 的充要条件; ④a -c >b -c 是a >b 的充要条件. 9.在以下四个条件中:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0. 其中能使1a <1b成立的序号为________.答案 ①②④解析 ①∵b >0>a ,∴1b >0>1a;②∵0>a >b ,∴1a <1b <0;③∵a >0>b ,∴1a>0>1b;④∵a >b >0,∴1b >1a>0.10.已知三个不等式:①ab >0;②c a >d b;③bc >ad .以其中两个作为条件,剩下一个作为结论,则可组成________个正确命题. 答案 3解析 若ab >0,bc >ad 成立, 不等式bc >ad 两边同除以ab ,得c a >d b, 即ab >0,bc >ad ⇒c a >d b;若ab >0,c a >d b 成立,c a >d b两边同乘以ab , 得bc >ad ,即ab >0,c a >d b⇒bc >ad ; 若c a >d b ,bc >ad 成立,由于c a -d b =bc -adab >0,又bc -ad >0,故ab >0,所以c a >d b,bc >ad ⇒ab >0.综上,任两个作为条件都可推出第三个成立,故可组成3个正确命题. 三、解答题11.已知a >b >c >d >0,且a b =c d,求证:a +d >b +c . 证明 ∵a b =c d ,∴a -b b =c -dd. ∴(a -b )d =(c -d )b .又∵a >b >c >d >0,∴a -b >0,c -d >0,b >d >0且bd>1, ∴a -bc -d =bd>1,∴a -b >c -d ,即a +d >b +c . 12.已知a ,b ,c 是正实数,求证:a 2b 2+b 2c 2+c 2a 2≥b a +c b +ac.证明 由⎝ ⎛⎭⎪⎫a b -b c 2+⎝ ⎛⎭⎪⎫b c -c a 2+⎝ ⎛⎭⎪⎫c a -a b 2≥0,得2⎝ ⎛⎭⎪⎫a 2b 2+b 2c 2+c 2a 2-2⎝ ⎛⎭⎪⎫b a +c b +a c ≥0. 所以a 2b 2+b 2c 2+c 2a 2≥b a +c b +a c.13.若a >b >0,c <d <0,e <0,求证:e (a -c )2>e(b -d )2.证明 ∵c <d <0,∴-c >-d >0. ∵a >b >0,∴a -c >b -d >0, ∴(a -c )2>(b -d )2>0,∴1(a -c )2<1(b -d )2. 又∵e <0,∴e (a -c )2>e(b -d )2.四、探究与拓展14.设x ,y ∈R ,判定下列各题中,命题A 与命题B 的充分必要关系.(1)命题A :⎩⎪⎨⎪⎧ a >0,b >0;命题B :⎩⎪⎨⎪⎧a +b >0,ab >0.(2)命题A :⎩⎪⎨⎪⎧x >2,y >2;命题B :⎩⎪⎨⎪⎧x +y >4,xy >4.解 (1)若a >0且b >0,由实数的性质可知,a +b >0,且ab >0.若ab >0⇒a ,b 同号,又a +b >0⇒a ,b 同正,即a >0,b >0.所以命题A 是命题B 的充要条件.(2)因为⎩⎪⎨⎪⎧x >2>0,y >2>0⇒x +y >4,xy >4.(不等式的性质)反之不然,如反例,当x =6,y =1时,有x +y =6+1=7>4,xy =6>4,但x >2,y <2,即x >2,且y >2不成立,所以命题A 是命题B 的充分不必要条件.15.已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围.解 设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b ,∴⎩⎪⎨⎪⎧ λ1+λ2=1,λ1-2λ2=3,解得λ1=53,λ2=-23. ∴-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23, ∴-113≤a +3b ≤1,即a +3b 的取值范围为⎣⎢⎡⎦⎥⎤-113,1.。
活页作业(三) 绝对值不等式的解法一、选择题1.如果1x <2和|x |>13同时成立,那么实数x 的取值范围是( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-13<x <12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-13,或x >13解析:解不等式1x <2,得x <0或x >12.解不等式|x |>13,得x >13或x <-13.∴实数x 的取值范围为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13.答案:B2.不等式2<|2x +3|≤4的解集为( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x ≤12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x <12C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x <-52或-12<x ≤12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x ≤-52或-12<x ≤12解析:由2<|2x +3|≤4,可得2<2x +3≤4或 -4≤2x +3<-2.解得-12<x ≤12或-72≤x <-52.答案:C3.关于x 的不等式⎪⎪⎪⎪⎪⎪ax -1x >a 的解集为集合M ,且2∉M ,则实数a 的取值范围为( ) A .⎝ ⎛⎭⎪⎫14,+∞ B .⎣⎢⎡⎭⎪⎫14,+∞ C .⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎦⎥⎤0,12 解析:因为2∉M ,所以2∈∁R M .所以⎪⎪⎪⎪⎪⎪2a -12≤a ,即-a ≤2a -12≤a .解得a ≥14.答案:B4.不等式|3-x |+|x +4|>8的解集是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >72 C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92或x >72 D .R解析:|3-x |+|x +4|>8⇔⎩⎪⎨⎪⎧x ≤-4,3-x -x -4>8或⎩⎪⎨⎪⎧-4<x <3,3-x +x +4>8或⎩⎪⎨⎪⎧x ≥3,x -3+x +4>8⇔⎩⎪⎨⎪⎧x ≤-4,-1-2x >8或⎩⎪⎨⎪⎧-4<x <3,7>8或⎩⎪⎨⎪⎧x ≥3,2x >7.∴x <-92或x >72.∴原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-92或x >72.答案:C 二、填空题5.若关于x 的不等式|ax -2|<3的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-53<x <13,则a =________. 解析:由原不等式的解集,可知-53,13为原不等式对应的方程|ax -2|=3的根,即⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪-53a -2=3,⎪⎪⎪⎪⎪⎪13a -2=3.解得a =-3. 答案:-36.已知函数f (x )=|2x -1|+x +3,若f (x )≤5,则实数x 的取值范围是________. 解析:由已知,有|2x -1|+x +3≤5,即|2x -1|≤2-x .所以x -2≤2x -1≤2-x ,即⎩⎪⎨⎪⎧2x -1≤2-x ,2x -1≥x -2,即⎩⎪⎨⎪⎧x ≤1,x ≥-1.所以-1≤x ≤1.答案:[-1,1]三、解答题7.已知一次函数f (x )=ax -2. (1)当a =3时,解不等式|f (x )|<4; (2)解关于x 的不等式|f (x )|<4;(3)若关于x 的不等式|f (x )|≤3对任意x ∈[0,1]恒成立,求实数a 的取值范围. 解:(1)当a =3时,f (x )=3x -2,所以|f (x )|<4⇔|3x -2|<4⇔-4<3x -2<4⇔ -2<3x <6⇔-23<x <2.所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23<x <2. (2)|f (x )|<4⇔|ax -2|<4⇔-4<ax -2<4⇔-2<ax <6.当a >0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -2a <x <6a ; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪6a <x <-2a . (3)|f (x )|≤3⇔|ax -2|≤3⇔-3≤ax -2≤3⇔-1≤ax ≤5⇔⎩⎪⎨⎪⎧ax ≤5,ax ≥-1.因为x ∈[0,1], 所以-1≤a ≤5.所以实数a 的取值范围为[-1,5].8.已知对区间⎝ ⎛⎦⎥⎤0,54内的一切实数a ,满足关于x 的不等式|x -a |<b 的x 也满足不等式|x -a 2|<12,试求实数b 的取值范围.解:设A ={x ||x -a |<b },B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪|x -a 2|<12, 则A ={x |a -b <x <a +b ,b >0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a 2-12<x <a 2+12. 由题意,知当0<a ≤54时,A ⊆B .所以⎩⎪⎨⎪⎧a -b ≥a 2-12,a +b ≤a 2+12,0<a ≤54.所以b ≤-a 2+a +12且b ≤a 2-a +12.因为0<a ≤54,所以-a 2+a +12=-a -122+34∈⎣⎢⎡⎦⎥⎤316,34,a 2-a +12=⎝ ⎛⎭⎪⎫a -122+14∈⎣⎢⎡⎦⎥⎤14,1316.所以b ≤316且b ≤14.从而b ≤316.故实数b 的取值范围为⎝ ⎛⎦⎥⎤0,316.一、选择题1.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R },若A ⊆B ,则实数a ,b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3解析:由|x -a |<1,得a -1<x <a +1. 由|x -b |>2,得x <b -2或x >b +2. ∵A ⊆B ,∴a -1≥b +2或a +1≤b -2. ∴a -b ≥3或a -b ≤-3.∴|a -b |≥3. 答案:D2.若关于x 的不等式|2x +1|-|x -4|≥m 恒成立,则实数m 的取值范围为( ) A .(-∞,-1] B .⎝ ⎛⎦⎥⎤-∞,-52C .⎝⎛⎦⎥⎤-∞,-92 D .(-∞,-5] 解析:设F (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3,-12≤x ≤4,x +5,x >4.如图所示,F (x )min =-32-3=-92.故m ≤F (x )min =-92.答案:C二、填空题3.已知a ∈R ,若关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,则实数a 的取值范围是________.解析:∵关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,∴Δ=12-4⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪a -14+|a |≥0,即⎪⎪⎪⎪⎪⎪a -14+|a |≤14.根据绝对值的几何意义,知0≤a ≤14.答案:⎣⎢⎡⎦⎥⎤0,14 4.若函数f (x )是R 上的减函数,且函数f (x )的图像经过点A (0,3)和B (3,-1),则不等式|f (x +1)-1|<2的解集是________.解析:∵|f (x +1)-1|<2,∴-2<f (x +1)-1<2,即-1<f (x +1)<3.∴f (3)<f (x +1)<f (0).∵函数f (x )在R 上是减函数, ∴0<x +1<3.解得-1<x <2. 答案:{x |-1<x <2} 三、解答题5.如图所示,点O 为数轴的原点,A ,B ,M 为数轴上三点,C 为线段OM 上的动点.设x 表示点C 与原点的距离,y 表示点C 到点A 的距离的4倍与点C 到点B 的距离的6倍之和.(1)将y 表示为x 的函数;(2)要使y 的值不超过70,实数x 应该在什么范围内取值? 解:(1)依题意,得y =4|x -10|+6|x -20|,0≤x ≤30. (2)由题意,得x 满足⎩⎪⎨⎪⎧4|x -10|+6|x -20|≤70,0≤x ≤30.(*)当0≤x ≤10时,不等式组(*)化为 4(10-x )+6(20-x )≤70,解得9≤x ≤10. 当10<x <20时,不等式组(*)化为 4(x -10)+6(20-x )≤70,解得10<x <20. 当20≤x ≤30时,不等式组(*)化为 4(x -10)+6(x -20)≤70,解得20≤x ≤23. 综上,实数x 的取值范围是[9,23]. 6.已知函数f (x )=|x -a |.(1)若关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若关于x 的不等式f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解:法一 (1)由f (x )≤3,得|x -a |≤3. 解得a -3≤x ≤a +3.又关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5}, 所以⎩⎪⎨⎪⎧a -3=-1,a +3=5.解得a =2.(2)由(1),得a =2,f (x )=|x -2|. 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5; 当-3≤x ≤2时,g (x )=5;当x>2时,g(x)>5.综上,函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].法二(1)同法一.(2)由(1),得a=2,f(x)=|x-2|.设g(x)=f(x)+f(x+5).由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),得函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].。
2.1 绝对值不等式1.理解含有绝对值的不等式的性质.2.掌握绝对值不等式的定理及绝对值的几何意义.3.能利用绝对值不等式证明不等式及求最值等简单问题,并认识不等式证法的多样性、灵活性.1.实数的绝对值的概念 (1)定义:|a |=⎩⎪⎨⎪⎧a ,a =,a(2)|a |的几何意义:|a |表示数轴上实数a 对应的点与原点之间的______. (3)两个重要性质:(Ⅰ)①|ab |=______;②⎪⎪⎪⎪⎪⎪a b=______;(Ⅱ)|a |<|b |⇔a 2____b 2.(4)|x -a |的几何意义:数轴上实数x 对应的点与实数a 对应的点之间的______,或数轴上表示x -a 的点到______的距离.(5)|x +a |的几何意义:数轴上实数x 对应的点与实数-a 对应的点之间的____,或数轴上表示x +a 的点到原点的____.【做一做1】解不等式|x +1|>|2x -3|-2. 2.绝对值不等式的定理(1)定理:对任意实数a 和b ,有|a +b |≤______,当且仅当ab ≥0时,等号成立.(2)定理的另一种形式:对任意实数a 和b ,有|a -b |≤|a |+|b |,当且仅当______时,等号成立.(1)绝对值不等式的完整形式: ①|a |-|b |≤|a ±b |≤|a |+|b |; ②||a |-|b ||≤|a ±b |≤|a |+|b |. (2)绝对值不等式的一般形式:|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |(n ∈N +).【做一做2】已知|x -a |<c 2,|y -b |<c2,求证:|(x +y )-(a +b )|<c .3.|a +b |≤|a |+|b |的几何意义(1)如图所示,当a ,b 同号时,它们位于原点的同一边,此时a 与-b 的距离____它们到原点的距离____.(2)如图所示,当a ,b 异号时,它们分别位于原点的两边,a 与-b 的距离____a 与b 到原点的距离____.【做一做3】若不等式|x -4|-|x -3|≤a 对一切x ∈R 恒成立,则实数a 的取值范围是__________. 答案:1.(1)a 0 -a (2)距离 (3)(Ⅰ)①|a ||b | ②|a ||b |(Ⅱ)< (4)距离 原点 (5)距离 距离【做一做1】分析:解含有绝对值的不等式,利用|a |=⎩⎪⎨⎪⎧a a,-a a ,将不等式中的绝对值符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.解:令x +1=0,得x =-1.令2x -3=0,得x =32,如图.(1)当x ≤-1时,原不等式可化为-(x +1)>-(2x -3)-2, 解得x >2,与条件矛盾,无解.(2)当-1<x ≤32时,原不等式可化为x +1>-(2x -3)-2,解得x >0,故0<x ≤32.(3)当x >32时,原不等式可化为x +1>2x -3-2,解得x <6,故32<x <6.综上,原不等式的解集为{x |0<x <6}. 2.(1)|a |+|b | (2)ab ≤0【做一做2】分析:利用不等式的性质证明即可.证明:|(x +y )-(a +b )|=|(x -a )+(y -b )|≤|x -a |+|y -b |.① ∵|x -a |<c 2,|y -b |<c2,∴|x -a |+|y -b |<c 2+c2=c .②由①②,得|(x +y )-(a +b )|<c . 3.(1)等于 之和 (2)小于 之和【做一做3】[1,+∞) 设f (x )=|x -4|-|x -3|,则f (x )≤a 对一切x ∈R 恒成立,只需a ≥f (x )max . 因为|x -4|-|x -3|≤|(x -4)-(x -3)|=1, 当且仅当x ≤3时等号成立,即f (x )max =1, 所以a ≥1.1.对绝对值不等式的理解 剖析:绝对值不等式实质是两个实数的和差的绝对值与绝对值的和差的关系,我们可以类比得到另外一种形式:|a |-|b |≤|a -b |≤|a |+|b |.和差的绝对值与绝对值的和差的关系是由ab >0,ab <0,ab =0三种情况来确定的,其本质是叙述两个实数的符号在各种情形下得到的结果,即这个定理本身就是一个分类讨论问题.“数”分正、负、零等不同情况讨论,往往在所难免,因此,对绝对值的认识要有分类讨论的习惯.2.绝对值不等式的几何意义剖析:用向量a ,b 替换实数a ,b 时,问题就从一维扩展到二维,当向量a ,b 不共线时,a +b ,a ,b 构成三角形,有|a +b|<|a|+|b|.当向量a ,b 共线时,a ,b 同向(相当于ab ≥0)时,|a +b|=|a|+|b|;a ,b 异向(相当于ab <0)时,|a +b|<|a|+|b|,这些都是利用了三角形的性质定理,如两边之和大于第三边等,这样处理,可以形象地描绘绝对值三角不等式,更易于记忆,并有利于定理的应用.题型一 利用绝对值不等式证明不等式【例1】设m 等于|a |,|b |和1中最大的一个,当|x |>m 时,求证:⎪⎪⎪⎪⎪⎪a x +b x 2<2.分析:本题的关键是对题设条件的理解和运用.判断|a |,|b |和1这三个数中哪个最大.如果两两比较大小,将十分复杂,但我们可以得到一个重要的信息:m ≥|a |、m ≥|b |、m ≥1.从而利用这一条件证题.反思:分析题目时,题目中的语言文字是我们解题信息的重要来源与依据,而解题时的数学符号语言也往往需要从文字语言“翻译”转化而来,那么准确理解题目中的文字语言,适时准确地进行转化也就成了解题的关键,如本题中题设条件中的文字语言“m 等于|a |,|b |和1中最大的一个”转化为符号语言“m ≥|a |,|m |≥|b |,m ≥1”,这是证明本题的关键.题型二 利用绝对值不等式求最值【例2】求函数y =|x +1|-|x -4|的最大值和最小值.分析:可以利用绝对值不等式的性质进行变形来解,也可以把绝对值号去掉,转化成分段函数,分别求出最值,最后取并集.反思:对于含有两个及两个以上的绝对值代数式,把其利用各零点转化成分段函数,再利用分段函数的性质分别进行分析是很好的方法.答案:【例1】证明:∵|x |>m ≥|a |,|x |>m ≥|b |,|x |>m ≥1,∴|x |2>|b |.∴⎪⎪⎪⎪⎪⎪a x +b x 2≤⎪⎪⎪⎪⎪⎪a x +⎪⎪⎪⎪⎪⎪b x 2=|a ||x |+|b ||x |2<|x ||x |+|x |2|x |2=2. 故原不等式成立. 【例2】解:解法一:|||x +1|-|x -4|≤||x +-x -=5, ∴-5≤|x +1|-|x -4|≤5.当且仅当⎩⎪⎨⎪⎧ x +1≥0,x -4≥0,即x ≥4时,|x +1|-|x -4|≤5中的等号成立. 当且仅当⎩⎪⎨⎪⎧x +1≤0,x -4≤0,即x ≤-1时,|x +1|-|x -4|≥-5中的等号成立. ∴y max =5,y min =-5.解法二:把函数看作分段函数y =|x +1|-|x -4|=⎩⎪⎨⎪⎧-x ≤-,2x --1<x,x ,当-1<x <4时,-5<2x -3<5.∴y ∈[-5,5],∴y max =5,y min =-5.1若|x -a |<m ,|y -a |<n ,则下列不等式一定成立的是( ).A .|x -y |<2mB .|x -y |<2nC .|x -y |<n -mD .|x -y |<n +m 2设ab >0,下面四个不等式中,正确的是( ).①|a +b |>|a |;②|a +b |<|b |;③|a +b |<|a -b |;④|a +b |>|a |-|b |. A .①和② B .①和③ C .①和④ D .②和④3若a ,b ∈R ,且满足|a -2b |<|b |,则下列各式中正确的是( ). A .a <3b B .a >b C .|a |<|b | D .|b |<|a |<3|b |4求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.答案:1.D |x -y |=|x -a -(y -a )|≤|x -a |+|y -a |<m +n . 2.C ∵ab >0,∴a ,b 同号, ∴|a +b |=|a |+|b |, ∴①和④正确.3.D |b |>|a -2b |>|a |-2|b |,∴|a|<3|b|.又∵|a-2b|=|2b-a|,∴|b|>|2b-a|>2|b|-|a|.∴|a|>|b|.综上,知|b|<|a|<3|b|.4.证明:(1)当|a+b|=0时,显然原不等式成立.(2)当|a+b|≠0时,∵0<|a+b|≤|a|+|b|,∴1|a+b|≥1|a|+|b|.∴|a+b|1+|a+b|=11+1|a+b|≤11+1|a|+|b|=|a|+|b|1+|a|+|b|=|a|1+|a|+|b|+|b|1+|a|+|b|≤|a|1+|a|+|b|1+|b|.∴原不等式成立.。