On Boeing 737– 300 Wing Aerodynamics Calculations Based on VLM Theory
- 格式:pdf
- 大小:505.13 KB
- 文档页数:7
B737-300航后工作单参考标准1.01前起落架区域Nose Landing Gear 工时/MH:4 分钟/MIN(1)目视检查前起落架及起落架舱的部件、构件无损伤及异常渗漏。
说明:检查前起落架的部件(详见AMM32-21-00/601):(a)检查前起落架上部部件:1)检查阻力撑杆有无裂纹、损伤以及连接点是否磨损。
2)检查阻力撑杆的转动销磨损和松脱情况。
(详见AMM32-21-21/601)3)检查收上作动筒有无松脱的螺钉和液压接头渗漏情况。
4)检查锁连杆是否有裂纹、损伤及连接点的磨损情况。
5)检查锁连杆弹簧磨损、损伤及连接可靠。
6)检查锁作动筒和液压传动筒有无松脱的螺钉和渗漏。
7)检查轮舱门正确连接。
(详见AMM 32-33-51/601)8)检查门连杆磨损、损伤及连接情况。
(详见AMM 32-33-61/601)9)检查转弯控制钢索破损和腐蚀。
(详见AMM 32-51-31/601)(b)检查前起落架下部部件:1)检查转弯盘无裂纹、松开的连接螺钉、脏物、磨损区域。
转弯作动筒支撑盘的接耳无裂纹和松开的螺钉。
2)检查滑行灯导线束无摩擦及连接可靠。
3)检查安全传感器和所有的导线安装可靠及没有摩擦。
4)检查防扭臂正确连接到减震支柱上,防扭臂无裂纹和松开的螺钉,防扭臂接耳无裂纹。
(详见AMM 32-21-31/601)前起落架检查(2)检查前起落架减震支柱的渗漏和压缩状况,必要时进行勤务。
说明:(1)主、前起落架支柱不允许有液体渗漏。
(2)根据下图对前起落架支柱压缩量进行检查。
(3)目视检查前起落架、减震支柱、机轮组件应无异常。
说明:(1)检查前起落架液压管路和接头无液体渗漏。
(详见AMM 29-00-00/601)(2)用干净抹布清洁减震支柱镜面,检查镜面无裂纹。
(详见AMM 32-00-03/601,32-21-00/601)(3)检查减震支柱无液体渗漏。
减震支柱液压油为BMS3-32.(4)检查轮毂无腐蚀,裂纹,漆层起泡或脱落;能看见的连接螺钉和螺帽不允许出现松脱、损坏或丢失,过热损伤,沿机轮边缘的擦伤。
公司目前有B737-300型固定翼飞机,为保证B737-300型飞机在各个机场的起飞安全,特制订了本手册。
使用本手册提供的起飞重量,可保证飞机在V1速度(决断速度, 目前称行动速度)时临界发动机失效,继续起飞或中断起飞都是安全的。
一、适用机型山东航空股份有限公司B737-300型飞机。
二、功用1.确定性能允许的最大起飞重量。
2.确定减推力起飞时可用的最大假设温度。
3.确定起飞速度。
三、制作的依据B737-300 型飞机的起飞分析工具是波音公司提供的起飞分析软件MARK7J.EXE。
四、起飞安全的要求1.最大允许起飞重量必须保证飞行员有做出飞与不飞决断的能力,尤其在发动机失效时,可保证以下两点:1.1在跑道终点之前停机的能力1.2起飞、爬升和超越任何飞行航道下障碍物的能力2.最大允许起飞重量受六种限制2.1场长限重2.2爬升限重2.3越障能力限重2.4刹车能量限重2.5轮胎速度限重2.6最低操纵速度限制3.最大允许起飞重量的审定要求包括:3.1全发性能3.2一发失效的性能3.3不列入反推力4.场长限重必须保障飞行员能够安全地起飞或终止起飞四发飞机在全发时需要最长的场长双发飞机在单发时需要最长的场长增大场长限重的条件是:4.1增大起飞襟翼设定4.2关闭空调引气5.爬升限重必须保证飞机能够继续安全起飞增大爬升限重的条件是:5.1减小起飞襟翼设定5.2关闭空调引气5.3采用改进爬升6.越障能力限重必须保证飞机能够继续安全起飞和安全越过起飞航道下的所有障碍物7.刹车能量限重必须保证飞机能够安全地终止起飞7.1制动器须能吸收停住飞机所需的能量7.2刹车能量限重不保证有足够的跑道停住飞机8.轮胎速度限重必须保证飞机能在地面上安全运行直至取得所要求的离地速度。
9.起飞速度V1是:起飞过程中在这个速度时,如果飞行员启动第一项减速装置,飞机可以在"加速--停止"距离内停下来。
或者,如果关键发动机在Vef处失效而飞机继续起飞,飞机可以在起飞距离内达到所要求的高度。
机电部份21-1 一般介绍 1B733.21.CH.0001 组件活门控制A 到空调系统的气流B用于发动机起动的空气体积;C: 用于大翼热防冰前来自发动机的气流;D.双引气电路。
B733.21.CH.0053 驾驶舱的空调气来自于:A 左组件B 右组件C 主分配总管B733.21.CH.0071飞机正常飞行中,使人有压耳感觉的主要因素是A 飞机的飞行速度B 飞机的飞行高度C 座舱高度的变化率过大D 飞机的内外压差过大B733.21.EQ.0002 飞机为什么要增压,它是通过什么来实现的答:在所有飞机高度提供一个安全舒适的座舱压力,增压系统通过调节从机身流过排气活门的空气流量来控制座舱高度B733.21.EQ.0009 设备冷却系统的作用答:向电子舱内的电气电子设备提供清洁冷却的空气21-2 部件位置1B733.21.CH.0036 设备冷却系统低流量传感器位于A、电子舱B、前电子设备舱C、驾驶舱D、前货舱B733.21.CH.0054 主分配总管位于A前货舱B后货舱C前电子舱D客舱顶部B733.21.CH.0066 拆装设备冷却排气风扇从下面哪个部位接近A 后货舱前壁板B 电子舱C 前货舱后壁板D 前货舱前壁板B733.21.CH.0077 设备冷却供气风扇位于A 前电子舱B EE 舱C 前货舱D 驾驶舱21-3 一般维护、操作 1B733.21.CH.0015 空调管道过热后如何复位:A.通过进行一次检查并将控制器复位;B.通过循环相关的温度选择器;C.在管道冷却后自动复位;D.用P5板上的复位按钮在管道冷却后按压复位。
B733.21.CH.0026 设备冷却供气系统低流量传感器接通,则:A 驾驶舱P5板设备冷却供气“OFF”灯亮;B 表示设备冷却供气系统供气量不足;C 如果飞机在地面,IRU工作,19秒后地面喇叭响;D 以上都对。
B733.21.CH.0074 增压系统故障会点亮主警告牌上哪个灯A AIR CONTB OVERHEADC ENGD FUELB733.21.CH.0061 如果后外流活门故障在关闭位,什么将保护飞机机身不致过压损坏?A 前外流活门B 安全释压活门C 负压释压活门D 吹出板24-1 电源系统概述2B733.24.CH.0209APU的GB的位置位于()A P6板后B 前轮舱C 电子舱D APU舱B733.24.CH.0212当出现电流负载过大时,( )负载将会自动被卸荷。
贝迪克凌云第300架飞机维修工作圆满完成作者:来源:《航空维修与工程》2022年第03期贝迪克凌云第300架飞机维修工作圆满完成3月1日,由贝迪克凌云(宜昌)航空工程有限公司完成维修工作的一架波音737-800飞机,正式交付海南航空,这是贝迪克凌云承接的第300架飞机。
目前,贝迪克凌云已具备4条定检生产线、1条喷漆线(宽体机喷漆能力),取得737NG和A320-8C能力、737CL能力、E145和MA60深度检能力。
Ameco杭州分公司首次完成老构型飞机ADS-B改装最近,Ameco杭州分公司首次完成了国航老构型飞机的ADS-B改装工作,飞机顺利出场。
虽然在此之前杭州分公司定检中队完成过一架新构型飞机的改装工作,但由于此次老构型的飞机走线更为复杂,工作内容更加繁琐,完成此次任务可谓是极大地深化了杭州分公司的维修品质,提升了人员的专业技能,为接下来2022年计划完成的19架次ADS-B改装工作奠定了良好的基础。
(王海亮崔浩)西安东航赛峰起落架完成其首次厂内A320起落架大修近日,西安东航赛峰起落架系统维修有限公司(XIESA)庆祝其首套A320起落架厂内大修完工。
这是XIESA继2021年9月和2021年12月分别获得中国民用航空局(CAAC)和欧洲航空安全局(EASA)针对空客A320起落架维修和大修颁发的维修许可证之后取得的又一大成就。
这也是对XIESA于2019年和2021年分别获得CAAC和EASA颁发的波音737飞机起落架维修许可证的补充。
首套A320起落架厂内大修的完工是XIESA维修能力发展上迈出的重要一步。
在此之前,XIESA尚未实施过A320的维修和大修业务。
2022年期间XIESA的大修量预计将增长4倍,之后将逐年扩大规模。
安胜ACCEL与华明航电签署战略合作备忘录3月4日,安胜(天津)飞行模拟系统有限公司与安徽华明航空电子系统有限公司宣布签署战略合作备忘录,建立长期的战略合作框架。
如题,从300~900,NG和老一代的737好区分,通过第二舷窗下有没有金属片就能办到。
可是老一代的300、400、500和NG的600、700、800、900应该如何区分呢?尤其是800和900,感觉都比较长,翼上都有两个逃生门。
望指教。
[这个贴子最后由foryouever 在2007-09-07 09:24:21 重新编辑]特价:找免费机票?特价机票?看特价飞报!andylwwp1010动力伞级[相册] 送礼B732andylwwp1010动力伞级[相册] 送礼[引用] [编辑帖子] [编辑图片] [举报] [奖飞机] 查看本帖所有图片| 版权声明:请遵守《C网民航图片版权管理规定》动力伞级[相册] 送礼动力伞级[相册] 送礼andylwwp1010动力伞级[相册] 送礼andylwwp1010动力伞级[相册] 送礼[引用] [编辑帖子] [编辑图片] [举报] [奖飞机] 查看本帖所有图片| 版权声明:请遵守《C网民航图片版权管理规定》andylwwp1010动力伞级[相册] 送礼动力伞级[相册] 送礼B737[这个贴子最后由andylwwp1010 在2007-09-07 23:31:06 重新编辑]动力伞级[相册] 送礼andylwwp1010动力伞级[相册] 送礼[引用] [编辑帖子] [编辑图片] [举报] [奖飞机] 查看本帖所有图片| 版权声明:请遵守《C网民航图片版权管理规定》andylwwp1010动力伞级[相册] 送礼[引用] [编辑帖子] [编辑图片] [举报] [奖飞机] 查看本帖所有图片| 版权声明:请遵守《C网民航图片版权管理规定》andylwwp1010动力伞级[相册] 送礼[引用] [编辑帖子] [编辑图片] [举报] [奖飞机] 查看本帖所有图片| 版权声明:请遵守《C网民航图片版权管理规定》ponychang动力伞级[相册] 送礼[引用] [编辑帖子] [举报] [奖飞机] 736和737有什么区别呢?都是NG系列动力伞级[相册] 送礼翔伞级[中国模拟飞行组织成员] 送礼love-interC172级送礼[引用] [编辑帖子] [举报] [奖飞机] 400和800怎么分别呀?CRJ200级[相册] 送礼国航奥运是B737-700,B-5027才是B737-600B737-100/200 与300/400/500的区别主要看发动B737-300是B737系列的第二代标准型,400是300的延长型,500是300的缩短型,400中间中间有2个紧急出口.B737-600/700/800/900 统为B737NG(NEW GENERAL),为第三代B737, 与300/400/500的区别在与B737NG的第2-4排的舷窗下有一个小的观察窗,另外,飞机的翼展长度也不一样,B737NG要大一些.B737-700是B737NG的标准型,600为缩短型,800为延长型,900为增长型.(类似于空客A318/A319/A320/A321),多种衍生型供客户根据需要选择购买.Lufthansa-HLCRJ200级[相册] 送礼。
目录21章空调―――――――――――――――――――2 22章自动飞行控制―――――――――――――――3 23 通讯系统―――――――――――――――――――5 24章电源―――――――――――――――――――6 26章防火―――――――――――――――――――8 29章液压―――――――――――――――――――9 30章防冰―――――――――――――――――――11 32章起落架――――――――――――――――――13 34章导航――――――――――――――――---――15 36章引气―――――――――――――――――――17 70~80章发动机―――――――――――――――――1821章空调一、故障现象:客舱空调在自动和人工位制冷效果比较差分析总结:一般是由于双温活门、35度华氏度控制器及控制活门引起的,ACM性能下降也有可能,冲压空气系统可能行较小。
处理措施:人工测试双温活门工作是否正常,如果正常,检查冲压空气系统是否工作正常,如果冲压系统工作正常,检查35华氏度控制器和控制活门是否正常或测试ACM制冷效果是否正常。
二、故障现象:P5面板上PACK OFF灯亮分析总结:管道过热电门、涡轮进口过热电门、压气机出口过热电门性能衰减造成,有时也有可能由于空调真实过热造成,譬如ACM、冲压空气系统、混合活门、发动机预冷系统、热交换器等;线路和空调附件组件也有可能。
处理措施:检查双发引气是否存在剪刀差;地面可以检查冲压空气系统是否作动正常(拔出、闭合空地跳开关),ACM和热交换器的工作可以通过把空调电门打到高流量来(手册要求低于6度)检查制冷效果是否正常;对于电门的故障,可以考虑和飞机另侧的空调对调传感器。
三、故障现象:冲压空气灯亮分析总结:热交换器过脏,冲压空气作动筒或控制器、230华氏度温度传感器故障。
处理措施:检查冲压空气作动筒是否工作正常,如果正常建议和其他空调系统互串温度传感器或作动筒控制器,同时通过检查窗口检查热交换器是否堵塞或者参照手册检查其制冷性能。
94Frontiers of Mechatronical Engineering (2019) Volume 1 Issue 1 doi:10.18282/fme.v1i1.604On Boeing 737 – 300 Wing Aerodynamics Calculations Based on VLM TheoryJacob NaglerMaynooth, Ireland School of Mechanical Engineering, University of Tel-Aviv, Tel-Aviv 69978, Israel, E-mail: syank-itx@In this paper, aerodynamics coefficients of Boeing 737 - 300 are calculated using VLM (vortex lattice method) theory. The wing was divided into N panels of the size: 6X6. The wing was assumed to be planar and the panels are in the trapezoid shape. Aerodynamics lifting and moment coefficients were calculated. Also, center of pressure location was found using data from VLM and wing geometry. Comparisons between literature, finite wing theory and VLM theory were done. It was found that maximum lifting coefficient error between literature and VLM is about 4.0%. Moreover, the maximum lifting coefficient error between finite wing theory and VLM is about 2.2%. Center of pressure location error between finite wing theory and VLM is about 0.5%.Keywords: VLM; Finite Wing Theory; Lifting Coefficient; Moment Coefficient; Center of Pressure1.IntroductionVLM (vortex lattice method) is a numerical method which aims to solve flow around wing bodies. The method is based on lifting line theory which brought by Prandtl [1] and considered to be an extended of that method. However, compared to the lifting line theory which assumes one horseshoe vortex per wing, VLM theory utilizes a lattice of horseshoe vortices, as described by Falkner [2]. The number of vortices used varies with the required pressure distribu-tion resolution, and with required accuracy in the computed aerodynamic coefficients. Detailed description of VLM theory in the context of aerodynamics is displayed by Katz & Plotkin [3], Bertin & Smith [4] and others [5,10-12].The vortex lattice method is based on ideal flow theory (known as Potential flow) which supposed to model real flow; however, this simplified model representation is good enough for most engineering applications. VLM theory neglects all viscous effects. Likewise, turbulence, dissipation and boundary layer effects are not considered at all. Nev-ertheless, induced drag can be estimated together with or without special cases of stall phenomena.In this current study, VLM theory is applied on Boeing 737 – 300 wings with comparison to finite-wing theory and relevant literature. 2.VLM ModelBoeing 737-300 aircraft wing geometry is illustrated in Figure 1.While technical data of the airplane has been obtained using Boeing Commercial Airplanes[6]. In orde to use VLM theory properly wing extension was done as shown in Figure 2. VLM model assumptions are as follows:∙The flow field is incompressible, inviscid and irrotational.∙Lifting surfaces are thin.∙The angle of attack and the angle of sideslip are both small.∙Planar wing.∙Symmetrical wing shape around x-z axis, so it can be assumed that:Copyright © 2019 Jacob Nagler doi: 10.18282/fme.v1i1.604 This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License (/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the originalwork is properly cited.95∙Panel shape is trapezoid.∙Trail vortexes are released in the wing plan, velocity direction or in the intermediate state since trail angleinfluence can be neglected.Moreover, due to symmetry assumption all calculations were made on the right wing side. In other words, total numbers of equations are for N/2 collocation points. However, B.C. was calculated with both wing side vortexes. In more detailed describe, the wing was divided into two main trapezoids such as each trapeze was divided into six parts in x direction and three parts in y direction, as shown in Figure 2. Now, VLM algorithm will be elaborated as follows: ∙The Wing was divided into N panels of the size 6×6.∙Horseshoe vortexes were placed as shown in Fig. 2 inside each panel according the following order:-Coupled vortexes were placed at 1/4 panel chord point in y-axis direction such as symmetry profile fulfills that -Traced vortexes were placed at the panels boundaries.-Half infinity vortexes were placed in x-axis direction.-Collocation points were placed at 3/4 panel chord in the middle of the chord.∙Induced velocity on each collocation point in case of planar wing will be given according to Biot -Savart law [5] bythe following equation which brought by Spurk and Aksel [7]:96While ()()()1122,,,,,n n n n m m x y x y x y represent A (initial point of the left half infinity vortex), B (initial point of the right half infinity vortex), C coordinates, respectively.∙In order to fulfill edge conditions, which means that normal velocity at the boundaries is zero, Neumann B.C. isapplied such as:while ,,αδφare attack angle, deflection angle and dihedral local angles, respectively. Also,n n n v w u ,,are the in-duced velocities in the normal directions, respectively. Where ∞U is the free stream speed. In our case of planar wing with no dihedral angle, where 0δφ==, set of N equations is obtained, by the form: ∙Aerodynamics coefficients for planar wing are calculated as follows:-Lifting coefficient per unit span function is of the form:while c( y) is the chord function location.-Total lifting coefficient function is of the form:while j y ∆is local surface cell width.w S is the wing area including the unexposed area.-Pitch moment coefficient per unit span around wing vertex is calculated by:while ,o j x is the distance between apex and vortex center.-Total pitch moment coefficient around wing vertex is calculated by:Where the reference chord is the aerodynamic average chord and calculated by:While b is the total chord length.Center of pressure location is calculated using previous aerodynamic coefficients:While calculation was done according to Figure 3 around the theoretical point – wing apex (0,0).In favor of completing this section, main geometrical parameters will be calculated using Boeing data sheet[6]. Af-ter measuring length chord, calculating wing trapezoid surface area and averaged aerodynamic chord together with rearward sweep angle, we got the following geometrical parameters:while the total rearward sweep angle is dependent on y coordinate only. As a result, the angle calculation was based on simple triangle calculation. From here, Finite wing theory will be brought about by the current context.97983.Finite wing theoryIn the first step, finite-wing theory which are based on lifting line theory will be presented:•Finite span.•Vortices are being produced at the wing tips of the finite wing, which trail downstream.•Downwash velocity.•Mach number fulfills:00.7M ≤≤.•Aspect ratio should fulfill 4AR >.However, lift-curve slope in case of swept wing is given by Kuchemann [8]:While e is the taper ratio (also known as Oswald efficiency factor). Here, nominal Oswald efficiency (e ( is equal to 0.95 and Mach number (M ) is equal to zero since we deal with in compressible flow. Additionally, taper ratio was calculated using Figure 4 as follows:Figure 4. Swept wing geometry.Where taper ratio is defined by:Next section, final results and comparison to finite-wing theory and literature will be presented and discussed. 4.Results & DiscussionComparisons between VLM specific aerodynamics parameters, Finite-Wing theory and literature as appear in Kuethe andChow [9]are presented in Table 1.99Figure 5. Lifting coefficient Vs. angle of attack using Boeing 737 wing data as given by Kuethe & Chow [9].Slope lifting line calculation as brought by Kuethe & Chow [9] and shown in Figure 5, is calculated by:Kuet1998).Examination of table 4 leads to conclusion that VLM obtained results are coincided with finite-wing theory and literature. Likewise, lift slope error between VLM theory and finite wing theory is about 4%. Also, the error between VLM theory and literature is about 2%. Moreover, center of pressure location error between VLM theory and finite wing theory may also be neglected (about 0.5 %). 5.ConclusionBoeing 737-300 finite wing aerodynamic coefficients were calculated using VLM theory compared to finite wing theory and literature. The wing was divided into N panels of the size: 6X6. The wing was assumed to be planar and the panels are in the trapezoid shape.VLM theory is coincided with finite-wing theory and literature. Likewise, lift slope error between VLM theory and finite wing theory is about 4%. Also, the error between VLM theory and literature is about 2%. Moreover, center of pressure location error between VLM theory and finite wing theory may also be neglected (about 0.5 %). AcknowledgementsThis study was performed using Dr. Joseph Meir Aerodynamics of wings and bodies course notes from Technion – Israel Institute of Technology and RAFAEL Company. Also, I would like to thanks to my colleague Mr. Nitai Stein from RAFAEL Company for his help with the numerical and analytic method on this current study. References1.Prandtl L (1923) Applications of modern hydrodynamics to aeronautics. NACA-TR-116, NASA2.Falkner VM (1943) The Calculations of Aerodynamic Loading on Surfaces of any Shape. R&M, British A.R.C3.Katz J, Plotkin A, (2001) Low-Speed Aerodynamics, 2nd Ed., Cambridge University Press, Cambridge4.Bertin JJ, Smith ML (1998) Aerodynamics for Engineers. 3rd Ed., Prentice Hall, New Jersey5.Anderson Jr JD (1991) Fundamentals of Aerodynamics. 2nd Ed., McGraw-Hill Inc6.Boeing Commercial Airplanes (2013) 737 -Airplane Characteristics for Airport Planning. D6-58325-6: 1–5547.Spurk J, Aksel N (2008) Fluid Mechanics. 2nd Ed., Springer-Verlag, Berlin8.Küchemann D (1978) The Aerodynamic Design of Aircraft, Pergamon Press, Oxford9.Kuethe AM, Chow CY (1998) Foundations of Aerodynamics: Bases of Aerodynamic Design. 5th, Wiley & Sons10.Kuethe AM, Schetzer JD (1959) Foundations of aerodynamics. John Wiley & Sons, 2nd Ed., New York11.Pope A (1951) Basic wing and airfoil theory. McGraw-Hill, New York12.Wissinger J (1947) The lift distribution of swept back wings. NACA TM 1120100。