23个数学分析问题(挑战你的极限)_湖南师大
- 格式:pdf
- 大小:470.69 KB
- 文档页数:5
数学分析试题库--证明题--答案数学分析题库(1-22章)五.证明题1.设A ,B 为R 中的非空数集,且满足下述条件:(1)对任何B b A a ∈∈,有b a <;(2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A =证由(1)可得B A inf sup ≤.为了证B A inf sup =,用反证法.若B A inf sup π,设B y A x A B ∈∈?=-,,sup inf 0ε,使得0ε≥-x y .2.设A ,B 是非空数集,记B A S ?=,证明:(1){}B A S sup ,sup max sup =;(2){}B A S inf ,inf min inf =证(1)若A ,B 中有一集合无上界,不妨设A 无上界,则S 也是无上界数集,于是+∞=+∞=S A sup ,sup ,结论成立.若A ,B 都是有上界数集,且A B sup sup ≤,现设法证明:sup sup A S = (ⅰ)S x ∈?,无论A x ∈或B x ∈,有;sup A x ≤ (ⅱ)000,,sup ,x A x A εε??∈->>于是,0S x ∈0sup .x A >同理可证(2). 3. 按N -ε定义证明352325lim 22=--+∞→n n n n 证 35232522---+n n n )23(3432-+=n n≤2234n n(n>4) n32=,取?+=4,132max εN ,当n>N 时,35232522---+n n n <ε. 注扩大分式是采用扩大分子或缩小分母的方法.这里先限定n>4,扩大之后的分式nn G 32)(=仍是无穷小数列. 4.如何用ε-N 方法给出a a n n ≠∞→lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列.答a a n n ≠∞→lim 的正面陈述:0ε?>0,+∈?N N ,n '?≥N ,使得|a a n -'|≥0ε数列{n a }发散?R a ∈?,a a n n ≠∞→lim .(1)a n a n ?=.2,0ε?=41,+∈?N N ,只要取+='N a n ,21max ,便可使||2a n -'≥||2a n -'≥||212a a -??? ?+≥41,于是{2n }为发散数列.(2)n n a )1(-=. 若a=1,0ε?=1,取n '为任何奇数时,有2|1|=-'n a >0ε.若a=-1,0ε?=1,取n '为任何偶数时,有2|)1(|=--'n a >0ε. 若a ≠±1,0ε?=|}1||,1min{|21-+a a ,对任何n ∈+N ,有|a a n -|≥0ε. 故|n )1(-|为发散数列.5.用δε-方法验证:3)23(2lim 221-=+--+→x x x x x x . 解(1)消去分式分子、分母中当1→x 时的零化因子(x-1):)2(2)2)(1()1)(2()23(2)(22-+=---+=+--+=x x x x x x x x x x x x x x f .(2)把)3()(--x f 化为1)(-?x x ?,其中)(x ?为x 的分式:|1||2||23|)2(2533)2(23)(22---=-+-=+-+=+x x x x x x x x x x x x f ,其中xx x x 223)(2--=. (3)确定10=x 的邻域0<|x-1|<η,并估计)(x ?在此邻域内的上界:取21=η,当0<|x-1|<21时,可得 23-x ≤251|1|3<+-x ,43|)1(1||2|22>--=-x x x ,于是 3104325|2||23|2=<--x x x . (4)要使|1||2||23||3)(|2---=+x x x x x f ≤ε<-|1|310x ,只要取ε103|1|<-x .于是应取 ?=103,21min εδ,当0<|x-1|<δ时,ε<--|)3()(|x f . 6 用M -ε方法验证:211lim2-=-+-∞→xx x x . 解)1(21211222x x x x x x x-+++=---+22)1(21x x -+=注意到当∞→n 时,上式可以充分小,但是直接解不等式ε<-+22)1(21x x ,希望由此得到x<-M ,整个过程相当繁复,现用放大法简化求M 的过程.因为由ε<=-?≤-+222281)2(121)1(21x x x x ,便可求得ε812>x ,考虑到-∞→x 所需要的是ε81-?M ,当x<-M 时,ε---+2112x x x.7 设a x x x =→)(lim 0,在0x 某邻域);(10δx U ?内a x ≠)(?,又.)(lim A t f at =→证明A x f x x =→))((lim 0. (1)解由A t f at =→)(lim ,);(,0,00ηηεx U t ?∈?>?>?时,ε<-A t f )(.又因为a x x x =→)(lim 0,故对上述0,0>?>δη(不妨取1δδ<),当);(0δx U x ?∈时,η?<-a x )(.由此可得:,0,0>?>?δε当);(0δx U x ?∈时ε?<-A x f ))((,即A x f x x =→))((lim 0.注称(1)为复合求极限法,(1)不仅对0x x →型的极限成立,且对于-+→→∞→-∞→+∞→00,,,,x x x x x x x 都成立.8.设)(x f 在点0x 的邻域内有定义.试证:若对任何满足下述条件的数列{}n x ,)(0x U x n ?∈,0x x n →,0010x x x x n n -<-<+,(2)都有A x f n n =∞→)(lim ,则A x f x x =→)(lim 0.分析由归结原则可知:上述结论不仅是充分的,而且是必要的.本题可看作函数极限归结原则的加强形式,即子列{}n x 只要满足(2)的加强条件就可以了.注意下面证明中选子列的方法.证用反证法.若A x f x x ≠→)(lim 0,则);(,0,000δδεx U x ?∈'?>?>?,使得0)(ε≥-'A x f .取11=δ,);(101δx U x ?∈?,使得01)(ε≥-A x f .取?-=012,21min x x δ,);(202δx U x ?∈?,使得02)(ε≥-A x f ;…………取?-=-01,1min x x n n n δ,);(0n n x U x δ?∈?,使得0)(ε≥-A x f n 与A x f xx =→)(lim 0相矛盾.所以A x f x x =→)(lim 0成立.9. 证明函数=为无理数为有理数x ,x x x f ,0,)(3 在00=x 处连续,但是在00≠x 处不连续.证 00=x 时,因为3)(0x x f ≤≤,于是0)(lim 0=→x f x ,即)(x f 在x=0处连续.00>x 时,0,2300>?=?δεx ,在);(0δx U +?中取x '为有理数,取x ''为无理数,于是030321)()(ε=>'=''-'x x x f x f .由函数极限柯西准则的否定形式可知)(x f 在点0x 处极限不存在,这样)(x f 在点0x 处不连续.00<="">10.设)(x f 在(0,1)内有定义,且函数)(x f e x 与)(x f e -在(0,1)内是递增的,试证)(x f 在(0,1)内连续.需证)(),1,0(0x f x ∈?在点0x 连续,即)()0()0(000x f x f x f =-=+.因为)(x f e -在(0,1)内的递增性保证了)(x f 在(0,1)内是递减的,所以为了证明)0(0+x f 的存在性,很自然地想到利用函数极限的单调有界定理.证因为)(x f e -在(0,1)内递增,所以)(x f 在(0,1)内递减.)1,0(0∈?x ,首先来证明)0(0+x f =)(0x f .当0x x >时,)(x f ≤)(0x f ,由函数极限的单调有界定理)(lim 0x f x x +→存在.又由函数极限保不等式性质,有)0(0+x f =)(lim 0x f x x +→≤)(0x f .另外,由于)(x f e x 在(0,1)内递增,因此当0x x >时,)(00x f e x ≤)(x f e x ,令+→0x x ,有)(00x f e x ≤)0(00+x f e x即)0(0-x f =)(0x f ,由0x 在(0,1)中的任意性,可得)(x f 在(0,1)内连续. 说明其中应用了基本初等函数x e 的连续性. 11 . 试证函数2sin x y =,在),0[+∞上是不一致连续的.分析需确定0,00>?>δε,可找到x x ''',满足δ<''-'x x ,但|)()(|x f x f ''-'≥0ε. 由于2sin x 在任意闭区间[]a ,0(a>0)上一致连续,因此当δ很小时,必须在)(+∞U 中寻找x x ''',,这是证明中的困难之处.现不妨取πππn x n x =''+=',2,nn n n n x x ππππππππ212220<++=-+=''-'<,当n 充分大时,x x ''',能满足δ<''-'x x ,但|)()(|x f x f ''-'≥1.证0,10>?=?δε,取2ππ+='n x ,πn x ='',当24δπ>n 时,使δ<''-'x x ,但1|sin sin |22=''-'x x ≥0ε,即2sin x 在),0[+∞上不一致连续.12. 设函数)(x f 在(a,b )内连续,且)(lim x f a x +→=)(lim x f b x -→=0,证明)(x f 在(a,b )内有最大值或最小值.分析因为)(lim x f a x +→=)(lim x f b x -→=0,于是可把)(x f 延拓成[a,b]上的连续函数,然后可以应用连续函数的最大、最小值定理.证人先把函数)(x f 延拓成[a,b]上的函数F(x),设=∈=.,,0),,(),()(b a x b a x x f x F易知)(x F 为[a,b]上的连续函数,这是因为)(lim x F a x +→=)(lim x f a x +→=0=)(a F ,)(lim x F b x -→=)(lim x f b x -→=0=)(b F .在[a,b]上对)(x F 应用连续函数的最大、最小值定理,即1ξ?,2ξ],[b a ∈,)(x F 在1ξ,2ξ分别取得最大值和最小值.若a =1ξ,b =2ξ,则)(x f 在(a,b )内恒为零,显然)(x f 在(a,b )内同样能取得最大值和最小值;若1ξ,2ξ中有一个数在(a,b )内,则)(x f 在(a,b )内取得最大值或最小值.13. 证明:若在有限区间(a,b )内单调有界函数)(x f 是连续的,则此函数在(a,b )内是一致连续的.分析因为)(x f 是(a,b )内的单调有界函数,所以由函数极限的单调有界定理,可得存在)0(+a f ,)0(-b f .证明本题的合理途径是把)(x f 延拓成闭区间[a,b]上的连续函数)(x F 在[a,b]上应用一致连续性定理.证因为)(x f 是(a,b )内的单调有界函数,所以由函数极限的单调有界定理,)(lim x f a x +→与)(lim x f b x -→都存在,应用范例1中的方法,可把)(x f 延拓为[a,b]上的连续函数)(x F ,即=∈==-+→→.),(lim ),,(),(,),(lim )(b x x f b a x x f a x x f x F bx a x由一致连续性定理,可得)(x F 在[a,b]上一致连续,于是)(x f 为(a,b )内的一致连续函数.14. 证明:若)(x f 在点a 处可导,f (x )在点a 处可导.分析一般情况下,若)(x f 在点0x 处可导,)(x f 在点0x 处不一定可导.例如0)(0==x x x f 在处可导,但x x f =)(在点0处不可导,反之,若)(x f 在点0x 处可导,一般也不能推得f (x )在点x 0处可导.例如{为理数为无理数x x x f ,1,1)(-=01)(0==x x f 在点处可导,但0)(0=x x f 在点处不连续,因而不可导,然而,若)(x f 在点a处连续,则由)(x f 在点a 处可导就可保证f (x )在点a 处可导.若0)(≠a f ,由连续函数局部保号性,)(a U ?,在其中)(x f 保持定号,因而由f 在点a 处可导可推得)(x f 在点a 处也可导.若0)(=a f ,且f 在点a 处可导,因为点a 为f 的极值点,所以应用费马定理可以得到0)(='a f ,再由此又可证得0)(='a f .证若0)(≠a f ,由连续函数局部保号性,)(a U 邻域?,)(x f 在)(a U 中保持定号,于是)(x f 在点a 处可导,即为)(x f 在点a 处可导.若0)(=a f ,则点a 函数)(x f 的极小值点,因)(x f 在点a 处可导,由费马定理有0)(='a f即0)()(lim=?--?+→?xa f x a f x因为0)(=a f ,所以0)()(lim 0=?--?+→?xa f x a f x于是0)(='a f .15. 设函数),()(b a x f 在内可导,在[a,b]上连续,且导函数)(x f '严格递增,若)()(b f a f =证明,对一切),(b a x ∈均有()()()f x f a f b =<证:用反证法,若)()()(),(00b f a f x f b a x =≥∈?在区间],[],,[00b x x a 上分别应用拉格朗日中值定理,121002,,,a x x b ξξξξ?<<<<使得()()(,0)()()(002001≤--='≥--='x b x f b f f a x a f x f f ξξ这与)(x f '为严格递增相矛盾.16. 设函数)(x f 在],[+∞a 内可导,并且()0f a <,试证:若当),(+∞∈a x 时,有()0f x c '>>则存在唯一的),(+∞∈a ξ使得0)(=ξf ,又若把条件()f x c '>减弱为/()0()f x a x ∞><<+,所述结论是否成立?分析因为0)(?a f ,若可以找到某点a x ?,使得0)(?x f 则由)(x f 的严格递增性,并应用连续函数的介值定理便可证明存在唯一的ξ,使得0)(=ξf证 x a ?>在],[x a 上应用拉格朗日中值定理,,a x ξξ?<<,使得))(()()(a x f a f x f -'=-ξ于是)()())(()()(a x c a f a x f a f x f -+?-'+=ξ由于0c >,因此当x 充分大时总可使得不妨设11,()0x a f x c >>>,所以],[)(+∞a x f 在上严格递增;在],[1x a 上应用连续函数的介值定理,则1,a x ξξ?<<,且ξ是唯一的.假设)(x f 满足/()0f x >,结论可能不成立,例如函数)()()(?-+?a x c a f x f],0[,2arctan )(+∞∈-=x x x f π,满足02)0(?-=πf ,2()01f x x '=+>,但因)(x f 恒小于0,故在),0(+∞中不存在ξ,使得)(ξf =017. 证明不等式21(0)2x x e x x >++>证令2()12xx f x e x =---, 0x >, ()1,x f x e x '=--0x > ()10 , 0,x f x e x ''=->> 且(0)(0)0,f f '== 当0x >时有()0f x ''>,所以()f x '严格递增,又()f x '在0x =处连续,所以()(0)0, 0f x f x ''>=>,所以()f x 严格递增, 又()f x 在0x =处连续,所以()(0)0f x f >=, 0x >, 即 21,2xx e x >++0x >. 18. 设f 为(,)-∞+∞上的连续函数,对所有,()0x f x >,且lim x →+∞()f x lim x →-∞=()0f x =,证明()f x 必能取到最大值.证由题设(0)0f >, 取(0)=2f ε, 由limx →+∞()f x limx →-∞=()0f x =,0, ||,X x X ?>>当时()(0)f x f ε<<.又f 在[,]X X -上连续, 由闭区间上连续函数的最大、最小值定理知, f 在[,]X X -能取到最大值,且此最大值为f 在(,)-∞+∞上的最大值.19.若函数()f x 在[0,1]上二阶可导, 且(0)0f =,(1)1f =,(0)(1)0f f ''==,则存在(0,1)c ∈使得|()|2f c ''≥.证法一:(0,1)x ?∈, 把()f x 在0, 1两点处分别进行泰勒展开到二阶余项, 有2122()()(0)(0)(0),2!()()(1)(1)(1)(1),2!f f x f f x x f f x f f x x ξξ'''=+-+'''=+-+- 1201x ξξ<<<<,上两式相减, 有2212()()1(1)22f f x x ξξ''''=--. 记12|()|max{|()|,|()|}f c f f ξξ''''''=,则有2211|()|[(1)]2f c x x ''≤+- 2111|()|2222f c x ??''=-+?? ??????1|()|2f c ''≤, 即存在(0,1)c ∈使得|()|2f c ''≥. 证法二:在[0,1]上对()f x 应用拉格朗日中值定理有()(1)(0)1f f f ξ'=-=,01ξ<<.当120ξ<≤时,在[0,]ξ上对()f x '应用拉格朗日中值定理有1()(0)()f f f c ξξ''''=-=,1|()|()2f c f c ξ''''?==≥,(0,)(0,1)c ξ∈?.当121ξ<<时,在[,1]ξ上对()f x '应用拉格朗日中值定理有1()(1)()(1)f f f c ξξ''''=-=-,1|()|21f c ξ''?=≥-,(,1)(0,1)c ξ∈?.综上证明知存在(0,1)c ∈使得|()|2f c ''≥. 20.应用函数的单调性证明2sin ,(0,);2xx x x ππ<<∈ 证明:设sin ,(0,]()sin ,(),20, 0xx f x x x g x x x π?∈?=-=??=?则 2()1cos 0,(0,),2cos (tan )()0,(0,)2f x x x x x xg x x x ππ'=->∈-'=<∈,而函数单调性定理知(),()f x g x 在(0,)2π上分别为严格递增和严格递减函数,再由结论知函数(),()f x g x 在[0,]2π也分别为严格递增和严格递减函数.由于2(0)0,(),2f g ππ==所以有(0,)2x π∈,有()sin (0)0,sin 2()(),2f x x x f x g x g x ππ=->==>=从而有2sin ,(0,).2xx x x ππ<<∈21.设函数=≠=0,00,1sin )(x x xx x f m(m 为实数),试问:(1)m 等于何值时,f 在0x =连续;(2)m 等于何值时,f 在0x =可导;(3)m 等于何值时,f '在0x =连续;解:(1)要使函数()f x 在0x =点连续,即需0lim ()(0)x f x f →=,而当0m ≥时,10()sinm m f x x x x≤=≤,有0lim ()0x f x →=,从而0lim ()0(0)x f x f →==,即函数在0x =点连续.(2) 当1m ≥时,1001sin1(0)limlim sin 0m m x x x x f x x x-?→?→?-?'==?=??,由复合函数求导法则可得1211sin cos ,0()0, 0m m mx x x f x x xx --?-≠?'=??=?,即1m ≥时函数在0x =点可导.(3)由(2)的求解过程可知要使()f x '在0x =点连续,首先要求1m ≥,此时要使()f x '在0x =的极限存在并且等于(0)0f '=,即需要120011lim ()lim(sin cos )(0)m m x x f x mxx f x x--→→''=-=,类似于(1)中的证明需要2m ≥,即当2m ≥时,函数的导函数在0x =点连续.————3分22.设()f x 在[0,1]上具有二阶导数,且满足条件()f x a ≤,()f x b ''≤,其中,a b 都是非负常数,c 是(0,1)内的任一点,证明()22b f证因()f x 在[0,1]上具有二阶导数,故存在1(0,)c ξ∈使得211(0)()()(0)()(0)2f f c f c c f c ξ''=+-+- 同理存在2(,1)c ξ∈使得221(1)()()(1)()(1)2f f c f c c f c ξ''=+-+- 将上面的两个等式两边分别作差,得222111(1)(0)()()(1)()22f f f c f c f c ξξ'''-=+--即222111()(1)(0)()(1)()22f c f f f c f c ξξ'''=---+因此222111()(1)(0)()(1)()22f c f f f c f c ξξ'''≤++-+222(1)22b b ac c ≤+-+而222(1)2212(1)11c c c c c c -+=-+=-+≤,故()22b fc a '≤+23. 设函数],[)(b a x f 在上连续,在(a,b )内二阶可导,则存在),(b a ∈ξ使得)(4ξf a b a f b a f b f ''-=++-分析本题可以利用柯西中值定理证明,设两个函数F ,G 为4)()(),()2(2)()(2a x x G a f a x f x f x F -=++-=有0)()(==a G a F 然后在[a,b]上对F,G 应用柯西中值定理,本题也可用拉格朗日中值定理证明,下面分别给出两种证法.证[证法一] 设],[,4)()(),()2(2)()(2b a x a x x G a f a x f x f x F ∈-=++-=有4)()(),(2(2)()(,0)()(2a b b G a f b a f b f b F a G a F -=++-===2)(),2()()(a x x G a x f x f x F -='+'-'=' F (x ),G(x)在[a,b]上连续,在(a,b )内可导,)(),(),()(x G x F a G b G ''≠不同时为零,于是可以应用柯西中值定理,),(1b a ∈?ξ,使得2)()2()()()()()(111a af f a G b G a F b F -+'-'=--ξξξ再在)(],[],2[11x f b a a'?+上对ξξ应用格朗日中值定理,) ,(),2(11b a a+∈?ξξξ使得)(2)2()(2)2()(1111111ξξξξξξξf a s af f aaf f ''=+-+'-'=-+'-'于是有。
数学分析十讲习题册、课后习题答案_数学分析十讲习题册、课后习题答案习题1-1 1.计算下列极限(1), 解:原式= == (2);解:原式(3)解:原式(4),解:原式(5)解:原式= (6),为正整数;解:原式2.设在处二阶可导,计算. 解:原式3.设,,存在,计算. 解:习题1-2 1.求下列极限(1); 解:原式,其中在与之间(2); 解:原式===,其中在与之间(3)解:原式,其中在与之间(4)解:原式,其中其中在与之间2.设在处可导,,计算. 解:原式习题1-3 1.求下列极限(1), 解:原式(2); 解:(3); 解:原式(4); 解:原式2. 求下列极限(1); 解:原式(2); 解:原式习题1-4 1.求下列极限(1);解:原式(2)求;解:原式(3);解:原式(4);解:原式此题已换3.设在处可导,,.若在时是比高阶的无穷小,试确定的值. 解:因为,所以从而解得:3.设在处二阶可导,用泰勒公式求解:原式4. 设在处可导,且求和. 解因为所以,即所以习题1-5 1. 计算下列极限(1) ; ; 解:原式(2) 解:原式2.设,求(1) ;解:原式(2) ,解:由于,所以3.设,求和. 解:因为,所以且从而有stolz定理,且所以,4.设,其中,并且,证明:. 证明:因,所以,所以,用数学归纳法易证,。
又,从而单调递减,由单调有界原理,存在,记在两边令,可得所以习题1-6 1. 设在内可导,且存在. 证明: 证明:2. 设在上可微,和存在. 证明:. 证明:记(有限),(有限),则从而所以 3. 设在上可导,对任意的, ,证明:. 证明:因为,所以,由广义罗必达法则得4.设在上存在有界的导函数,证明:. 证明:,有界,,所以习题2-1 (此题已换)1. 若自然数不是完全平方数,证明是无理数. 1.证明是无理数证明:反证法. 假若且互质,于是由可知,是的因子,从而得即,这与假设矛盾2. 求下列数集的上、下确界. (1)解:(2)解:(3)解:(4). 解:3.设,验证. 证明:由得是的一个下界. 另一方面,设也是的下界,由有理数集在实数系中的稠密性,在区间中必有有理数,则且不是的下界.按下确界定义, . 4.用定义证明上(下)确界的唯一性. 证明:设为数集的上确界,即.按定义,有.若也是的上确界且 .不妨设,则对有即矛盾. 下确界的唯一性类似可证习题2-2 1.用区间套定理证明:有下界的数集必有下确界. 证明:设是的一个下界,不是的下界,则. 令,若是的下界,则取;若不是的下界,则取. 令,若是的下界,则取;若不是的下界,则取;……,按此方式继续作下去,得一区间套,且满足:是的下界,不是的下界. 由区间套定理,且. 下证:都有,而,即是的下界. 由于,从而当充分大以后,有.而不是的下界不是的下界,即是最大下界2. 设在上无界.证明:存在, 使得在的任意邻域内无界. 证明:由条件知,在上或上无界,记使在其上无界的区间为;再二等分,记使在其上无界的区间为,……,继续作下去,得一区间套,满足在上无界. 根据区间套定理,,且. 因为对任意的,存在,当时,有,从而可知在上无界3.设,在上满足,,若在上连续, 在上单调递增. 证明:存在,使. 证明:记且二等分.若,则记若则记. 类似地,对已取得的二等分,若,则记;若,则记按此方式继续下去,得一区间套,其中根据区间套定理可知,且有 . 因为在上连续,所以注意到可得,再由可知, . 习题2-3 1. 证明下列数列发散. (1), 证因为,所以发散.(2), 证明:因为所以发散. 2.证明:单调数列收敛的充要条件是其存在一个收敛子列. 证明:由收敛数列与子列的关系,结论显然不妨假设数列单调递增,且存在收敛子列,由极限定义对任意给定的,总存在正整数,当时,,从而有;由于,对任意,存在正整数,当时,,取,则任意时,所以,即3. 设极限存在,证明:. 证明:记由海茵定理,取,得取,得取,得,解得(此题取消)4. 数列收敛于的充要条件是:其偶数项子列和奇数项子列皆收敛于(此题改为4)5. 已知有界数列发散,证明:存在两个子列和收敛于不同的极限. 证明:因为有界,由致密性定理,必有收敛的子列,设. 又因为不收敛,所以存在,在以外,有的无穷多项,记这无穷多项所成的子列为,显然有界.由致密性定理,必有收敛子列,设,显然 . 习题2-5 1. 用柯西收敛准则判定下列数列的收敛性(1) 解:所以,对,即为柯西列(2) . 解:所以,对,即为柯西列2. 满足下列条件的数列是不是柯西列? (1) 对任意自然数,都有解:不是柯西列,如,对任意的自然数,但数列不收敛。
第1篇一、面试题目1. 请简述数学分析中极限的定义和性质。
解析:数学分析中,极限是指当自变量x趋向于某一点a时,函数f(x)的值趋向于某一点L。
具体来说,如果对于任意给定的正数ε,都存在一个正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε,则称函数f(x)当x趋向于a时极限为L,记作lim(x→a)f(x)=L。
2. 请解释数学中的导数的概念及其几何意义。
解析:导数是描述函数在某一点处的局部变化率。
对于函数y=f(x),在点x0处的导数表示为f'(x0)。
几何意义上,导数表示曲线在该点的切线斜率。
3. 请简述多元函数偏导数的概念及其几何意义。
解析:多元函数偏导数是指多元函数在某一点处,仅考虑一个变量变化时,函数的导数。
对于多元函数z=f(x,y),在点(x0,y0)处的偏导数表示为f_x'(x0,y0)和f_y'(x0,y0)。
几何意义上,偏导数表示曲线在该点的切线斜率。
4. 请解释定积分的概念及其物理意义。
解析:定积分是指将一个函数在一个区间上的无穷小分割,然后求和并取极限的过程。
物理意义上,定积分可以表示曲线下方的面积、物理量在某段时间内的累积量等。
5. 请简述多元函数的积分概念及其物理意义。
解析:多元函数的积分是指将一个多元函数在一个区域上的无穷小分割,然后求和并取极限的过程。
物理意义上,多元函数的积分可以表示空间曲面的面积、物理量在某区域内的累积量等。
6. 请解释数学中的级数收敛的概念。
解析:级数收敛是指一个无穷级数的各项之和趋向于某个确定的值。
如果对于任意给定的正数ε,都存在一个正整数N,使得当n>N时,级数的部分和S_n与该确定值L之差的绝对值小于ε,则称该级数收敛。
7. 请简述线性代数中矩阵的概念及其运算。
解析:矩阵是一种由数字组成的矩形阵列,表示线性变换、线性方程组等。
矩阵的运算包括加法、数乘、乘法等。
8. 请解释线性代数中行列式的概念及其性质。
首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。
为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。
函数的性质表现在各个方面:首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。
极限分为一般极限,还有个数列极限,(区别在于数列极限是发散的,是一般极限的一种)。
解决极限的方法如下:(我能列出来的全部列出来了!你还能有补充么?)1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E 的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。
为了求出一个函数在某一点的极限,需要使用合适的方法。
下面介绍16种常用的求极限方法,以及一般题型解题思路。
一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。
例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。
二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。
例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。
三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。
如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。
例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。
四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。
例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。
五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。
根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。
数学分析课本(华师大三版)-习题及答案第六章第六章 微分中值定理及其应用一、 填空题1.若0,0>>b a 均为常数,则=⎪⎪⎭⎫⎝⎛+→xx x x b a 32lim ________。
2.若21sin cos 1lim 0=-+→x x b x a x ,则=a ______,=b ______。
3.曲线x e y =在0=x 点处的曲率半径=R _________。
4.设2442-+=x x y ,则曲线在拐点处的切线方程为___________。
5.=-+→xex xx 10)1(lim___________。
6.设)4)(1()(2--=x xx x f ,则0)(='x f 有_________个根,它们分别位于________区间;7.函数x x x f ln )(=在[]2,1上满足拉格朗日定理条件的__________=ξ;8.函数3)(x x f =与21)(x x g +=在区间[]2,0上满足柯西定理条件的_____=ξ;9.函数x y sin =在[]2,0上满足拉格朗日中值定理条件的____=ξ; 10.函数2)(xe xf x=的单调减区间是__________;11.函数x x y 33-=的极大值点是______,极大值是A.没有实根B.有两个实根C.有无穷多个实根D.有且仅有一个实根5.已知)(x f 在0=x 处某邻域内连续,2cos 1)(lim 0=-→xx f x ,则在0=x 处)(x f ( )。
A.不可导B.可导且2)0('=fC.取得极大值D.取得极小值6.设函数)(x f 在区间[)+∞,1内二阶可导,且满足条件0)1()1(='=f f ,1>x 时0)(<''x f ,则xx f x g )()(=在[)+∞,1内( )A .必存在一点ε,使0)(=εfB .必存在一点ε,使0)(='εfC .单调减少 D. 单调增加7.设)(x f 有二阶连续导数,且0)0(='f ,1)(lim 0=''→xx f x ,则( )A .)0(f 是)(x f 的极大值 B.)0(f 是)(x f 的极小值 C .())0(,0f 是曲线)(x f y =的拐点D .)0(f 不是)(x f 的极值,())0(,0f 也不是曲线)(x f y =的拐点8.若)(x f 和)(x g 在0x x =处都取得极小值,则函数)()()(x g x f x F +=在0x x =处( )A .必取得极小值 B.必取得极大值 C.不可能取得极值 D.是否取得极值不确定 9.设)(x y y =由方程03223=+-by y ax x 确定,且1)1(=y ,1=x 是驻点,则( )A.3==b aB.25,23==b aC.21,23==b a D.3,2-=-=b a 10.曲线22)3()1(--=x x y 的拐点的个数为( ) A.0 B.1 C.2 D.3 11.)(),(x g x f 是大于0的可导函数,且0)(')()()('<-x g x f x g x f ,则当b x a <<时有( )A .)()()()(x g b f b g x f > B.)()()()(x g a f a g x f > C.)()()()(b g b f x g x f > D.)()()()(a g a f x g x f > 12.曲线()()211arctan212+-++=x x x x e y x的渐近线有( )A .1条 B.2条 C.3条 D.4条 13.q x x x f ++=2)(3的O 点的个数为( ) A .1 B.2 C.3 D.个数与q 有关 14.曲线⎪⎪⎩⎪⎪⎨⎧+==111t b t x 则曲线( )A .只有垂直渐近线 B.只有水平渐近线 C .无渐近线 D.有一条水平渐近线和一条垂直渐近线15.设)(x f y =为0sin =-'+''x e y y 的解,且0)(0='x f ,则)(x f 有( )A .0x 的某个邻域内单调增加B .0x 的某个邻域内单调减少C .0x 处取得极小值D .0x 处取得极大值 16. 罗尔定理中的三个条件;)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =是)(x f 在),(b a 内至少存在一点ξ,使得0)(='ξf 成立的( ).)(A 必要条件)(B 充分条件)(C 充要条件 )(D 既非充分也非必要17. 下列函数在],1[e 上满足拉格朗日中值定理条件的是( ). )(A );ln(ln x)(Bxln ;)(Cxln 1;)(D)2ln(x -;18. 若)(x f 在开区间),(b a 内可导,且21,x x 是),(b a 内任意两点,则至少存在一点ξ使得下式成立( ). )(A )()()()(2112ξf x x x f x f '-=- ),(b a ∈ξ; )(B)()()()(2121ξf x x x f x f '-=- 21x x <<ξ)(C )()()()(1221ξf x x x f x f '-=- 21x x <<ξ )(D)()()()(1212ξf x x x f x f '-=-21x x <<ξ19. 设)(x f y =是),(b a 内的可导函数,x x x ∆+,是),(b a 内的任意两点,则( ) . )(A x x f y ∆'=∆)()(B 在x x x ∆+,之间恰有一个ξ,使得x f y ∆'=∆)(ξ )(C 在x x x ∆+,之间至少存在一点ξ,使得x f y ∆'=∆)(ξ )(D 对于x 与x x ∆+之间的任一点ξ,均有x f y ∆'=∆)(ξ20.若)(x f 在开区间),(b a 内可导,且对),(b a 内任意两点21,x x 恒有21212)()()(x x x f x f -≤-,则必有( ). )(A 0)(≠'x f )(Bxx f =')( )(Cxx f =)()(Dcx f =)((常数)21. 已知函数)4)(3)(2)(1()(----=x x x x x f ,则方程)(x f '0=有( ).)(A 分别位于区间)4,3(),3,2(),2,1(内的三个根; )(B 四个根,它们分别为4,3,2,14321====x x x x;)(C 四个根,分别位于);4,3(),3,2(),2,1(),1,0( )(D 分别位于区间)4,1(),3,1(),2,1(内的三个根;22. 若)(x f 为可导函数,ξ为开区间),(b a 内一定点,而且有)()(,0)(≥'->x f x f ξξ,则在闭区间],[b a 上必总有( ).)(A 0)(<x f)(B)(≤x f)(C)(≥x f)(D)(>x f23. 若032<-b a,则方程0)(23=+++=c bx ax xx f ( ).)(A 无实根)(B 有唯一实根)(C 有三个实根 )(D 有重实根24. 若)(x f 在区间],[+∞a 上二次可微,且,0)(,0)(<'>=a f A a f 0)(≤''a f (a x >),则方程0)(=x f 在],[+∞a 上( ).)(A 没有实根)(B 有重实根)(C 有无穷多实根)(D 有且仅有一个实根25. 设)()(lim 0x g x f x x →为未定型, 则)()(lim 0x g x f x x ''→存在是)()(lim 0x g x f x x →也存在的( ).)(A 必要条件)(B 充分条件)(C 充要条件)(D 既非充分也非必要条件26. 指出曲线23x x y -=的渐近线( ).)(A 没有水平渐近线,也没有斜渐近线; )(B3=x 为垂直渐近线,无水平渐近线;)(C 既有垂直渐近线,又有水平渐近线; )(D 只有水平渐近线.27 曲线)2)(1(1arctan212+-++=x x x x ey x的渐近线有( ).)(A 1条 ; )(B 2条 ; )(C 3条 ;)(D 4条 ;28. 函数x x a x f 2cos 21cos )(-=在3π=x 取得极值,则=a( )。
1 如果limx→x0fx存在,则下列极限一定存在的为(A)limx→x0fxα(B)limx→x0fx(C)limx→x0lnfx(D)limx→x0arcsinfx2 设fx在x=0处可导,f0=0,则limx→0x2fx-2fx3x3 =(A)-2f'0(B -f'0(C)f'0(D)03.设fx,gx连续x→0时,fx和gx为同阶无穷小则x→0时,0xfx-tⅆt为01xgxtⅆt 的(A)低阶无穷小(B)高阶无穷小(C)等价无穷小(D)同阶无穷小4.设正数列an 满足limn→∞0anxnⅆx =2则limn→∞an=(A)2 (B)1 (C)0 (D)125.x→1时函数x2-1x-1ⅇ1x-1的极限为(A)2 (B)0 (C)∞(D)不存在,但不为∞6.设fx 在x=0的左右极限均存在则下列不成立的为(A)limx→0+fx= limx→0-f-x(B)limx→0fx2= limx→0+fx (C)limx→0fx = limx→0+fx(D)limx→0fx3 = limx→0+fx 6. 极限limx→∞ⅇsin1x-11+1xα-1+1x=A≠0的充要条件为(A)α>1(B)α≠1(C)α>0(D)和α无关7..已知limx→∞x21+x-ax-b=0,其中a,b为常数则a,b的值为(A)a=l ,b=1(B)a=-1 ,b=1(C)a=1,b=-1(D a=-1,b=-18.当x→0时下列四个无穷小量中比其他三个更高阶的无穷小为(A)x2(B)1-cosx(C)1-x2-1(D)x-tanx9.已知xn+1=xnyn,yn+1=12xn+yn,x1=a>0,y1=b>0(a<b)则数列xn和yn(A)均收敛同一值(B)均收敛但不为同一值(C)均发散(D)无法判定敛散性10. 设α>0,β≠0,limx→∞x2α+xα1α-x2=β则α,β为11. 若limx→x0fx+gx存在,limx→x0fx-gx不存在,则正确的为(A)limx→x0fx不一定存在(B)limx→x0gx不一定存在(C)limx→x0f2x-g2x必不存在(D)limx→x0fx不存在12. 下列函数中在1,+∞无界的为(A)fx=x2sin1x2(B)fx=sinx2+lnx2x(C)fx=xcosx+x2ⅇ-x(D)fx=arctan1xx213. 设fx连续limx→0fx1-cosx =2且x→0时0sin2xftⅆt为x的n阶无穷小则n=(A)3 (B)4 (C)5 (D)614. 当x→0时下列四个无穷小中比其他三个高阶的为(A)tanx-sinx(B)1-cosxln1+x(C)1+sinxx-1(D)0x2arcsintⅆt15. 设x表示不超过x的最大整数,则y=x-x是(A)无界函数(B)单调函数(C)偶函数(D)周期函数16. 极限limx→∞x2x-ax+bx=(A)1 (B)ⅇ (C) ⅇa-b(D)ⅇb-a17. 函数fx=x2-xx2-11+1x2的无穷间断点的个数为(A) 0 (B) 1 (C) 2 (D) 318. 如果limx→01x-1x-aⅇx=1,则a=(A) 0 (B) 1 (C) 2 (D) 319. 函数fx=x-x3sinπx的可去间断点的个数为(A) 1 (B) 2 (C) 3 (D)无穷多个20. 当x→0+时,与x等价的无穷小量是(A) 1-ⅇx(B)ln1+x1-x(C)1+x-1(D)1-cosx21.设函数fx=1ⅇxx-1-1,则(A)x=0,x=1都是fx的第一类间断点(B)x=0,x=1都是fx的第二类间断点(C)x=0是fx的第一类间断点,x=1是fx的第二类间断点(D)x=0是fx的第二类间断点,x=1是fx的第一类间断点22 limn→∞lnn1+1n21+2n2…1+nn2等于(A)12ln2xⅆx (B) 212lnxⅆx (C) 212 ln1+xⅆx (D) 12ln21+xⅆx23.若limx→0sin6x+xfxx3=0,则limx→06+fxx2为(A)0 (B)6 (C)36 (D)∞24.对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有“xn-a≤2ε”是数列收敛于a的(A)充分必要条件(B)充分非必要条件(C)必要非充分条件(D)非充要条件25.设函数fx=limn→∞1+x1+x2n,讨论函数fx的间断点,其结论为(A)不存在间断点(B)存在间断点x=0(C)存在间断点x=1(D)存在间断点x=-126. . limn→∞tanπ4+2nn=27.xsinln1+3x-sinln1+1x =28.已知limx→∞3xfx=limx→∞4fx+5 则limx→∞xfx=29.在0,1上函数fx=nx1-xn的最大值记为Mn则limn→∞Mn =30. 设k、L、δ>0则limx→0δk-x+1-δL-x-1x =31.limx→+∞arcsinx2+x-x =32. limx→00x3sint+t2cos1tⅆt1+cosx0xln1+tⅆt =33.limx→+∞1+2x+3x1x+sinx =34. α~β(x→a)则limx→aβαβ2β2-α2 =.limx→00xtsinx2-t2ⅆt1-cosxln1+2x2 =35.limx→0+ⅇx-1-x1lnx =36.fx有连续的导数f0=0,f'0=6,则limx→00x3ftⅆt0xftⅆt3 =37.fx的周期T=3且f'-1=1,则lim h→0h f2-3h-f2 =38.limn→∞2nn!nn =39.设fx在x=1连续且limx→1fx+xx-3x-1 =-3,则f'1=40.极限p=-22limn→∞n2n+x2nⅆx =41.limx→01+tanx1+sinx1x3 =42.limx→+∞lnx1x-1 =43.x→0时fx=ⅇx-1+ax1+bx为x的3阶无穷小则a=,b =44. 极限limx→-∞4x2+x-1+x+1x2+sinx =45.limn→∞1-1221-132⋯1-1n2 =46.limx→+∞6x6+x5-6x6-x5 =47. f''x存在f0=f'0=0,f''x>0,ux为曲线fx在x,fx处切线在x轴的截距则limx→0xux =48. a>0,bc≠0,limx→+∞xaln1+bx-x =c (c≠0)则a= b= c=49.limn→∞sinn2+1π =50.已知x→0时x-a+bcosxsinx为x的5阶无穷小则a = ,b=limx→0 1+x1x ⅇ 1x =35.limx→+∞0xsintⅆtx =36.fx可导对于∀x∈-∞,+∞有fx≤x2则f'0=37.limn→∞01xn1+xⅆx=38.如果limx→∞1+xxax=-∞atⅇtⅆt则a=39.设x→1+时3x2-2x-1lnx与x-1n为同阶无穷小则n=40 .limx→+∞ⅇx1+1x x2 =41.limx→0lnsin2x+ⅇx-xlnx2+ⅇ2x-2x =42. x<1时limn→∞1+x1+x2⋯1+x2n=43. 设极限limx→+∞x5+7x4+2a-x=b(b≠0)则a= b =44. l imx→∞x-x2ln1+1x =45. w=limx→01lnx+1+x2-1ln1+x =46. 设y=yx由y2+xy+x2-x=0确定满足y1=-1的连续函数则limx→1x-12yx+1 =47 .设a1,a2…am为正数(m≥2)则limn→∞a1n+a2n+…+amn1n =48. fx连续x→0时Fx=0xx2+1-costftⅆt为x3的等价无穷小则f0=49. fx连续f0=0,f'0≠0则limx→00x2fx2-tⅆtx301fxtⅆt =50. fx=x2xsinxttⅆt则limx→0fxx2=51. 极限limx→∞x2 a1x+1-a1x =52. 已知fx在x=a可导fx>0 ,n∈N,fa=1,f'a=2则极限limn→∞ fa+1nfa n=53. limx→0cot2x-1x2=54. limx→1lncosx-11-sinπ2x =55. 如果limx→-∞x2+x+1+ax+b=0则a=b=56. limx→0arcsinxx11-cosx =57. 已知曲线y=fx在点(0,0)处切线经过点(1,2)则极限limx→0cosx+0xftⅆt1x2 =58. 已知fx在x=0邻域内可导且limx→0sinxx2+fxx=2 则f0=f'0=limx→0xfx+ⅇx =59. lim x→01+tanx-1+sinxxlnx+1-x2 =60 limx→1lnxln1-x=61. limn→∞12+322+523+…+2n-12n =62. limx→0a x-1x2-a2ln1+ax = (a≠0)63 .limx→0ⅇ1x+1ⅇ1x-1arctan1x=64.设fx在a,b连续则limn→+∞01xnfxⅆx =65. w=limx→0arcsinx-sinxarctanx-tanx =66 . limx→0x+3x-3xx2=67 .limx→+∞1x0x1+t2ⅇt2-x2ⅆt =68. limx→0ⅇ2-x+12xx =69. limx→0x21+xsinx-cosx =70. limn→∞1+12n21+22n2+…+1+n2n21n =71. 设xn=1n2+1+2n2+22+…+nn2+n2 则limn→+∞xn=72 .P=limx→0 ln1+ⅇ2xln1+ⅇ1x+ax 存在求p及a的值.73.limx→+∞0x1+t2ⅇt2ⅆtxⅇx2 =74. limx→0 1ln1+x2-1sin2x =75. limx→+∞x+ⅇx1x =76. limx→1x-xx1-x+lnx =77. limn→∞1.3.5.7…2n-12.4.6.8…2n =78. limn→∞1nnnn-1⋯2n-1 =79. 极限limx→01-cosx1-3cosx…1-ncosx1-cosxn-1 =80. 设fx一阶连续可导且f0=0,f'0=1则下列极限limx→01+fx1arcsinx =81. 函数fx满足f0=0 ,f'0>0则极限limx→0+xfx=82. limx→+∞x+1+x22x =83. limx→+∞π2-arctanx 1lnx =84. limx→01-cosxcos2x3cos3xx2 =85. 函数fx=xln1-x的第一类间断点的个数为86. limx→0cotx2sinx =87.limx→+∞ⅇx-2πx arctanxx+ⅇx =88. limn→∞1n2+1+1n2+22+…+1n2+n2 =89. limx→+∞x2lnarctanx+1-lnarctanx =90. limx→+∞x32x+2-2x+1+x =91 设x≠0时limn→∞cosx2cosx4…cosx2n =92极限w=limx→+∞1+2x1+xarctanx =93. limx→0tanx+1-cosxln1-2x+1-ⅇx2 =94 fx=arcsinx在0,b上用拉格朗日中值定理且中值为ε则limb→0εb =95 已知曲线y=fx与y=sinx在0,0处相切则limn→∞ 1+f2n n =96 limn→∞1n2+n+1+2n2+n+2+…+nn2+n+n =97 limx→+∞ a1x+b1x+c1x3x =98 极限limx→01+x1x-ⅇx =99.设fx 在x=1处可导且在(1,f1)处的切线方程为y=x-1,求极限P =limx→00x2ⅇtf1+ⅇx2-ⅇtⅆtx2lncosx100.如果limx→+∞xn+7x4+1m-x=b(n>4 ,b≠0)求m,n及b的值p。
华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。
A.sin ||xB.ln(1)x -C.11.【答案】D 。
2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。
4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。
5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。
二十三个数学分析问题
By Dachuan Yue
Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers,and we have reason to believe that it is a mystery into which the human mind will never penetrate.
Leonhard Euler(1707-1783)
极限
1.求证lim
x→∞x·
[(
a1x+b1x
2
)x
−
√
ab
]
=
√
ab
8
·ln2a
b
,其中a,b>0.
2.计算lim
n→∞(
1p+2p+···+n p
n p
−n
p+1
)
,其中p>0.
3.计算lim
n→∞1+n+n2
2!
+···+n n
n!
e n
.
4.求证lim
n→∞[
(
1
n
)n+(
2
n
)n+···+(
n
n
)n
]
=
e
e−1
.
5.记C0:=lim
n→+∞{
n
∑
k=1
1
k
−ln(n+1)
}
,试证明:lim
p→0+
(
+∞
∑
n=1
1
n1+p
−1
p
)
=C0.
6.证明:数列u n=√
a1+
√
a2+···+
√
a n收敛⇔lim
n→∞
a2−n
n
<+∞
⇔lim
n→∞n
(
ln ln a n
n
−ln2
)
<+∞.特别地,当lim
n→∞
ln ln a n
n
<ln2时,u n收敛;
当lim
n→∞ln ln a n
n
>ln2时,u n发散.
7.设y0⩾2,y n=y2n−1−2(n∈N+),S n=1
y0
+
1
y0y1
+···+
1
y0y1···y n,证明:lim
n→∞
S n=
y0−√
2
−4
2
.
1
2
微分8.若f(x)在[a,b]上连续,f(x)的广义二阶导数
f′′(x)=lim
h→0+f(x+2h)−2f(x)+f(x−2h)
4h2
存在,且恒为零.试证明:f(x)=ax+b(a,b为常数).
9.设f(x)在(a,+∞)上n阶可导,若lim
x→+∞f(x)和lim
x→+∞
f(n)(x)都存在,则
lim
x→+∞
f(k)(x)=0(k=1,2,...,n).
10.若f(x)在[0,+∞]上连续可微,且lim
x→+∞(f(x)+f′(x))=0,证明:lim
x→+∞
f(x)≡0.
11.设a k>0,k=1,2,...,n.S n=
n
∑
k=1
a k,证明:
n∏
k=1
(1+a k)<
n
∑
k=1
S k
n
k!
.
12.设f(x)在区间[0,1]上可微,f(0)=0,f(1)=1,k1,k2,...,k n为n个正数.证明:在区
间[0,1]内存在一组互不相等的数x1,x2,...,x n使得
n
∑
i=1
k i
f′(x i)
=
n
∑
i=1
k i.
3积分
13.试证明:∫
+∞
01
x
∫x
cos(x−y)−cos x
y
dydx=
+∞
∑
n=1
1
n2
=
π2
6
.
14.证明如下等式:∫
1
0∫1
1
(xy)xy
dxdy=
∫1
1
x x
dx=
+∞
∑
n=1
1
n n
.
特别地,
∫1
0dx
∫1
(xy)xy dy=
∫1
x x dx.
15.设函数f(x)在闭区间[a,b]上有连续导数,证明:
lim n→∞n
[∫
b
a
f(x)dx−
b−a
n
n
∑
k=1
f
(
a+
k(b−a)
n
)]
=
b−a
2
(f(a)−f(b)).
16.证明:设f(x)在[−1,1]上连续,证明lim
h→0+∫1
−1
h
h2+x2
f(x)dx=πf(0).
17.求证
∫+∞
0sin x2dx=
∫+∞
cos x2dx=
1
2
√
π
2
.
18.设数列a n,b n满足递推关系a n+1=a n+b n
2
,b n+1=
√
a n
b n,且a0,b0非负,求证:
lim n→∞a n=lim
n→∞
b n=
π
2G(a,b)
其中G(a,b)=∫π
2
1
√
a2cos2t+b2sin2t
dt.
4
级数
19.设正项级数
∞
∑
n=1
a n收敛,求证:lim
n→∞
n2
1
a1
+1
a2
+···+1
a n
存在.
20.已知Γ(x)=
∫+∞
t x−1e−t dt,证明:
Γ(x)=lim
n→∞
n x n!
x(x+1)···(x+n)
=
1
x
∞
∏
n=1
(1+1
n
)x
1+x
n
.
21.若正项级数
∞
∑
n=1
1
p n
收敛,则级数
∞
∑
n=1
n2
(p1+p2+···+p n)2
p n收敛.
22.设a n正项数列,记S n=
n
∑
k=1
a k,R n=
∞
∑
k=n
a k.证明:
(1)若级数
∞
∑
n=1
a n收敛,则
∞
∑
n=1
a n
S n
收敛;反之亦然.
(2)若级数
∞
∑
n=1
a n收敛,则
∞
∑
n=1
a n
R n
发散.
(3)若级数
∞
∑
n=1
a n发散,讨论级数
∞
∑
n=1
a n
S1+σ
n
(σ>0)的敛散性.
23.证明数列x n=(−1)n
pn+1
(p>0)收敛,且
∞
∑
n=0
x n=
∫1
1
1+t p
dt.
特别地有:
∞
∑
n=0
(−1)n
n+1
=ln2,
∞
∑
n=0
(−1)n
2n+1
=
π
4
,
∞
∑
n=0
(−1)n
3n+1
=
1
3
(
ln(2)+
π
√
3
)
.
5
数学烟云
sin(α+β)=sinαcosβ+cosαsinβ
proofs without words:exercises in visual thinking
推荐阅读书籍:23proofs of Basel problem
大川整理
The1st edition
Play with Mathematics
mathematicsvip@
2015年10月22日。