三冲量控制系统在锅炉汽包液位的应用
- 格式:pdf
- 大小:147.84 KB
- 文档页数:2
串级三冲量控制系统在汽包液位控制的应用锅炉是重要的动力设备,汽包液位是锅炉运行中的一个重要监控参数,它反映了锅炉负荷与给水的平衡关系,汽包液位的控制质量优劣将在很大程度上影响着锅炉的生产安全及经济效益。
1、汽包液位控制的重要性在锅炉稳定运行过程中,汽包液位(以下简称液位)的控制是最重要的环节之一。
液位过高会影响汽水分离的效果,产生蒸汽带液现象;液位过低会破坏水循环,严重时会烧坏锅炉。
当蒸汽负荷突然增大时,锅炉会出现暂时的压力下降,水的沸腾加剧,导致液位上升,这就产生了虚假液位。
这时本应把给水量加大,但如果采用简单的单冲量调节系统,就会根据这个假液位而错误地把锅炉给水调节阀关小,减少给水量,等到汽水达到新的动态平衡时,液位就下降了许多,远离给定值,甚至使锅炉发生危险。
如果蒸汽负荷骤降,它的变化过程和结果与上述相反,从而使汽包液位发生较大的波动。
由此可以看出,影响液位的主要因素是锅炉的汽水平衡。
为了克服负荷变化引起的液位大幅度波动,消除假液位的影响,提前消除蒸汽流量对液位的干扰,除了主调节回路的液位变量以外,还引入了作前馈信号的蒸汽流量和作串级副回路测量信号的给水流量两个辅助变量。
而主调节回路(以下简称主回路)、副调节回路(以下简称副回路)及前馈控制构成了锅炉汽包的串级三冲量控制系统,其中三冲量分别指汽包液位、蒸汽流量和给水流量这三个变量。
2、串级三冲量控制系统原理串级三冲量控制系统结构见图1。
串级三冲量控制系统由主回路和副回路及前馈控制组成。
副回路由流量测量元件(图1中用孔板表示)、给水流量变送元件、分流器、副调节器、执行器、给水调节阀构成,主回路由液位测量变送元件、主调节器、加法器和副回路的相关部分构成,前馈控制由流量测量元件(图1中用喷嘴表示)、差压变送器构成。
图1 串级三冲量控制系统结构从图1可以看出,主、副调节器串联使用,共同排除干扰,稳态时保持液位为给定值。
由给水流量反馈形成的副回路,其任务是及时反映调节效果和迅速消除给水流量的自发性扰动。
三冲量汽包水位控制原理及应用教程本文详细介绍汽包水位三冲量控制系统的原理及控制策略,文章内容通俗易懂、图文并茂,可作为三冲量汽包水位控制系统设计和应用教程使用。
锅炉汽包水位是锅炉生产过程的主要工艺指标,同时也是保证锅炉安全运行的主要条件之一。
汽包水位过高,使蒸汽产生带液现象,不仅降低蒸汽的产量和质量,而且还会使过热器结垢,或使汽轮机叶片损坏;当汽包水位过低时,轻则影响水汽平衡,重则烧干锅炉,严重时会导致锅炉爆炸事故的发生。
所以锅炉水位是一个极为重要的被控变量。
在具体工艺生产过程中,常常由于蒸汽负荷的波动和给水流量的变化打破汽包内的平衡状态,对汽包水位造成干扰,最终导致假液位。
所谓“冲量”实际就是变量,多冲量控制中的冲量,是指引入系统的测量信号。
在锅炉控制中,主要冲量是水位。
辅助冲量是蒸汽负荷和给水流量,它们是为了提高控制品质而引入的。
1、三冲量控制的引入目前锅炉汽包水位调节常采用单冲量、双冲量及三冲量等三种调节方案,现分别对它们的基本原理和特性加以讨论。
①单冲量水位调节系统单冲量水位调节系统的原理如图1所示。
由图1可知,这种类型的水位调节系统,是一个典型的单回路调节系统,被调参数是汽包水位,调节参数是锅炉的给水量。
它适用于停留时间较长(亦即蒸发量与汽包的单位面积相比很小),负荷变化小的小型锅炉(一般为10t/h以下)。
但对于停留时间较短,负荷变化大的系统就不适应了。
图1 单冲量水位调节原理 图2 单冲量水位调节系统控制策略从图2可以看出:单冲量水位调节系统控制策略由汽包水位测量差压变送器、PID调节器和调节阀(或变频器)构成。
当蒸汽负荷突然大幅度增加时,由于汽包内蒸汽压力瞬间下降,水的沸腾加剧,汽泡量迅速增加,汽泡不仅出现于水的表面,而且出现于水面以下,由于汽泡的体积比水的体积大许多倍,结果形成汽包内液位升高的现象。
因为这种升高的液位不代表汽包内储液量的真实情况,所以称为“假液位”。
此时PID 调节器会错误地认为测量值升高,从而关小给水调节阀,减小给水量。
锅炉汽包液位采用什么方式控制,有何特点?
锅炉液位控制不比其它储罐或槽罐等液位控制,因为锅炉液位最明显的特征就是容易产生虚假液位,所以在控制过程中得用复杂控制。
虚假液位的产生主要有运行中负荷或燃烧状况变化、给水量的增加或减少及安全阀动作和突然熄火都会引起锅炉汽包虚假液位产生。
虽然在锅炉液位控制方面有单冲量、双冲量、三冲量控制,但是考虑到虚假液位常用的是双冲量甚至三冲量控制。
锅炉液位液位双冲量控制图
锅炉汽包液位采用双冲量控制的特点
如上图,双冲量是在单冲量基础上引入汽包出口蒸汽流量作前馈信号。
其实把蒸汽流量引入的目的就是为了消除虚假液位影响控制器的调节。
锅炉汽包液位采用双冲量控制的特点是缩短控制过程的时间,而
且还改善了控制系统的静态特性,提高控制质量。
上面说到锅炉运行中由于负荷变化较频繁,因此双冲量也能很好的完成控制任务。
锅炉汽包液位三冲量控制图
锅炉汽包液位三冲量控制
如上图,三冲量控制它是在双冲量控制基础上引入汽包液位的给水量作信号,因此由汽包液位是、汽包蒸汽出口流量、汽包给水量组成三冲量。
图中的三冲量控制,主冲量为汽包液位、辅助冲量为蒸汽流量、给水量,因此三冲量控制可以理解为前馈加反馈形成的复杂控制系统。
锅炉汽包液位控制采用双冲量或三冲量控制,一般在小型锅炉汽包液位控制采用双冲量,而在大型锅炉汽包液位控制采用三冲量,由于大型锅炉控制比小型锅炉控制更加复杂,而三冲量控制系统的多种组合形式刚好能满足锅炉汽包液位的控制需求。
三冲量调节在转炉汽包给水系统中的应用摘要:转炉是化工生产中重要的动力设备。
汽包液位是转炉运行中的一个重要监控参数,它反映了转炉负荷与给水的平衡关系。
汽包液位过高会造成蒸汽带水影响过热器运行,影响汽水分离效果;水位过低会造成转炉水循环的破坏,影响省煤器运行,容易使水全部汽化烧坏转炉甚至爆炸。
这就要求汽包液位在一定范围内,适应各种工况的运行。
影响汽包液位的因素除了加热汽化这一正常因素外,还有蒸汽负荷和给水流量的波动。
当负荷突然增大,汽包压力突然降低,水就会急剧汽化,出现大量气泡,形成了“虚假液位”。
Abstract: Converter is an important chemical production in the power equipment. Drum Level Converter is an important operation of the monitoring parameters, it reflects the converter load and the balance between water supply. Drum level will cause excessive steam superheater impact with the water running, the impact separator effect the water level is too low will cause damage to the water cycle converter impact economizer operation, and this tends to water vaporization burn all converter even explosive. This requires a certain level of the drum, to the status of the various operations. Drum factors affecting the level of vaporization addition to the normal heating elements, but also water and steam load flow volatility. When the load suddenly increased pressure Drum suddenly reduced, the water will dramatically vaporization, a large number of bubbles, and formed a "false level."关键词:转炉汽包液位水循环虚假液位Key words: Drum Level Converter water cycle false Level宁波炼钢厂自2007年5月1日转炉投产以来,炼钢生产的一级控制采用了PLC控制方式。
三冲量控制系统在大硫磺锅炉中的应用摘要:本文主要从工艺简介、三冲量控制原理和调节过程、常见故障及处理措施等几个方面阐述了三冲量液位控制系统在大硫磺废热锅炉中的实际应用关键字:冲量前馈反馈调节一、工艺控制要求与简介1、汽包液位是一个重要的工艺参数,同时也是表征锅炉安全运行的一个重要指标。
汽包液位过高不仅会产生蒸汽带液现象,影响蒸汽的产量和质量,同时也容易使锅炉严重结垢;液位过低轻则影响水蒸汽平衡,重则容易烧干锅炉,更为严重的会导致锅炉爆炸,容易引发人员伤害事故,损坏设备。
因此说汽包液位的好坏直接关系着企业生产的“安”“稳”“长”持续发展战略。
2、冲量的概念及具体含义:所谓“冲量”,实际就是“变量”,多冲量控制中的“冲量”,是指引入系统的测量信号。
在大硫磺酸性气燃烧炉废热锅炉汽包液位控制系统中,三冲量是指汽包液位LRC2503、蒸汽流量FRQ2504、和给水流量FRC2503三个测量信号,其中,汽包液位LRC2503是主要冲量。
大硫磺酸性气燃烧炉废热锅炉汽包液位控制设置为双套液位检测回路LRC2503/LRC2504,两个液位测量点通过切换开关,可有选择性使用。
3、引入三冲量的主要原因:汽包液位LRC2503、蒸汽流量FRQ2504、和给水流量FRC2503三个测量信号,经过一定运算后,共同控制一个给水阀;汽包信号是被控变量,是反映锅炉工作状态的主要指标,也是保证锅炉安全运行的必要指标;引入蒸汽流量信号,是为了及时消除蒸汽流量波动对汽包液位的影响,并有效地防止“假液位”现象引起控制系统误动作;引入给水流量信号的目的是将给水流量信号作为“副变量”,利用串级控制系统中副回路克服干扰快速性来及时地克服给水压力变化对汽包液位的影响。
二、锅炉三冲量控制原理及调节过程原理:三冲量控制实质上是前馈+串级控制系统,前馈控制系统与反馈控制系统的区别在于:反馈控制系统的依据使被控变量与给定值的偏差,检测信号是被控变量,控制作用发生是在偏差出现以后;而前馈控制的依据是干扰的变化,检测的信号是干扰量的大小,控制作用的瞬间而不需要等到偏差出现以后。
《过程控制》课程设计报告题目: 锅炉汽包液位的三冲量调节姓名: 学号:姓名: 学号:姓名: 学号:2010年12月10日《过程控制》课程设计任务书指导教师签字:系(教研室)主任签字:2010年12 月4 日1 问题重述锅炉汽包液位是锅炉运行中一个重要的监控参数,反映了锅炉负荷与给水的平衡关系,要求汽包液位控制在一定范围内。
锅炉汽水系统结构如图1 所示。
图1锅炉汽水系统1—给水泵;2—给水母管;3—调节阀;4—省煤器5—锅炉汽包;6—下降管;7—上升管;8—蒸汽母管汽包液位过高会造成蒸汽带水,影响汽水分离效果;水位过低容易使水全部被汽化烧坏锅炉。
影响汽包液位的因素,除了加热汽化外,还有蒸汽负荷和给水流量的波动,当负荷突然增大、汽包压力突然降低时,水就会被急剧汽化,出现大量气泡,形成“虚假液位”。
单冲量控制系统的负荷一旦急剧变化就会出现虚假液位,因液位升高,调节器就会关小供水阀门而造成事故。
双冲量控制系统,是在单冲量控制系统的基础上加上一个蒸汽冲量,以克服虚假液位。
三冲量调节系统,它是在双冲量控制系统上再加上一个给水流量的冲量。
由蒸汽流量、给水流量前馈与汽包液位反馈所组成的三冲量控制系统,如下图所示。
三冲量控制系统框图D W H a a a 、、分别为蒸汽流量变送器、给水流量变送器、差压变送器的转换系数。
已知某供汽量为120t/h 的锅炉,给水流量与水位的传递函数1()G S ,蒸汽流量与水位的传递函数2()G S 分别为:1()0.0529()()(8.51)H S G S ==W S S S + (1)22() 2.6130.0747()()(6.71)H S G S D S S S ==-+ (2)D W H a a a 、、分别为:0.0667,0.0667及0.0333。
调节阀采用线性阀,增益为15。
试用PID 、模糊PID 控制等方法实现对锅炉液位的控制。
要求:1、超调小、调节时间短,对扰动的抑制效果好;2、给出控制策略和选定参数,并详细说明参数整定过程;3、给出MATLAB 下的仿真曲线。
机两部分,上位机实现人机交互功能,下位机实现信号处理和控制功能。
CX1000控制器采用Windows 操作系统,支持使用Microsoft公司eMbedded Visual C++(简称EVC)自行开发HMI应用程序。
系统控制全都通过画面操作进行,包括参数输入与调整,设备运行方式、设备运行状态的控制等。
飞剪过钢的情况、设备的运行状态也在画面中显示。
改造后,实现了倍尺钢长度的自动测量和电机启动参数的自动计算和控制,自动化程度得到提高,降低了操作工的劳动强度,减少了冷床冲钢次数,提高了棒材的生产效率和区域成材率。
X10.10-02〔水城钢铁(集团)有限责任公司轧钢厂谈震、陈国年、岳连智供稿贵州六盘水市钟山区553028〕⑧油浸式变压器片式散热器滚压生产线主要由开卷机、滚压机、片端油压机和输出辊道组成。
开卷机使用磁粉制动器作为阻尼,通过调节供给磁粉制动器的直流电流控制阻力矩。
滚压机具有上下光滚和前后两套上下槽型滚,上滚固定,下滚使用液压控制升降,光滚上升,槽型滚下降时压出无槽部分,使用两套槽型滚可有效减少更换产品型号时的换滚辅助时间。
变频器控制材料送进速度,光电旋转编码器检测材料送进长度。
材料前进至合适长度,驱动电机停止,片端油压机切断材料并压出片头、片尾槽后,单片由输出辊道输送出生产线并计数。
片式散热器滚压生产线电气控制系统采用深圳易能EDS1000系列变频器、三菱FX2N-32MR PLC和F940型触摸屏。
PLC对变频器的监控采用RS-485协议,可有效减少线路连接的复杂性,避免现场各种电磁干扰。
PLC通过自由通信口方式和易能变频器通信,控制变频器运行,读取变频器自身电压、电流、频率和过压、过流、过负荷等全部报警信息以及模拟输入口反映的液压系统压力等参数,节省PLC的I/O端口和模拟量模块。
在触摸屏窗口可进行配方的编辑和修改,设定滚压线参数,显示工艺流程、运行状态和报警,打印实时数据曲线和数据报表。
锅炉控制系统中三冲量的应用及仪表选型摘要本文着重从工艺简介、锅炉生产使用中常见问题、三冲量控制的概念及具体含义、引入三冲量的主要原因、三冲量控制原理、系统控制方框图、三冲量控制的构成与控制关系、调节阀的选择与调节器正反作用的确定、三冲量控制的调节过程、三冲量控制在DCS系统中的应用、DCS系统PID参数设置与调节规律、PID参数在DCS上的设置、仪表的选型、常见故障问题和处理措施等方面对三冲量在锅炉中应用进行阐述。
关键词:冲量、前馈、反馈、干扰、调节。
目录第1章绪论 (3)1.1 锅炉汽包工艺流程图 (3)1.2 锅炉生产使用中常见问题 (3)1.3 三冲量控制的概念及具体含义 (4)1.4引入三冲量的主要原因 (4)第2章三冲量控制系统构成与作用形式选择 (6)2.1 三冲量控制系统构成 (6)2.1.1三冲量控制原理 (6)2.1.2 系统控制方框图 (6)2.1.3方框图点描述 (7)2.1.4三冲量控制的构成与控制关系 (7)2.2 调节阀的选择与调节器正反作用的确定 (8)2.2.1 调节阀的选择 (8)2.2.2 副调节器的选择 (8)2.2.3 主调节器的选择 (8)2.3 三冲量控制的调节过程 (9)第3章三冲量控制在DCS系统中的应用 (11)3.1 三冲量控制DCS系统控制图 (11)3.1.1DCS功能块描述 (11)3.1.2 DCS系统控制描述 (12)3.2 DCS系统PID参数设置与调节规律 (14)3.2.1 PID的含义 (14)3.2.2 PID参数的调节规律 (14)3.2.3 常用的调节方法:临界比例法 (15)3.2.4 PID参数在DCS上的设置 (16)第4章仪表的选型 (17)4.1 双室平衡容器的工作原理 (17)4.2 差压的计算 (18)4.3 电动浮筒与调校 (19)4.3.1 电动浮筒 (19)4.3.2 电动浮筒“零位”及“量程”调整 (20)4.3.3电动浮筒的优点 (20)第5章常见故障问题和处理措施 (21)5.1 常见故障问题 (21)5.1.1 蒸汽负荷扰动对水位的影响 (21)5.1.2 炉膛热负荷的扰动对水位的影响 (21)5.2 处理措施 (22)第6章结论 (23)参考文献 (24)致谢 (25)第1章绪论1.1 锅炉汽包工艺流程图1.2 锅炉生产使用中常见问题锅炉是化工生产中重要的动力设备,汽包液位是锅炉运行中的一个重要监控参数,它反映了锅炉负荷与给水的平衡关系。
小议锅炉汽包液位三冲量调节系统的设计分析摘要:在锅炉的生产运行中,汽包液位的控制是一重要环节,其控制质量的优劣程度将在很大程度上影响到锅炉生产的安全以及经济效益。
本文对锅炉汽包液位控制进行全面分析,探讨三冲量调节系统的设计方法及应用。
关键词:锅炉汽包液位三冲量调节系统设计应用锅炉是化工生产中的重要动力设备。
在锅炉的生产运行中,汽包液位是一个非常重要的监控参数,它反映了锅炉负荷与给水的平衡关系,也是保证锅炉安全的重要条件。
汽包液位过高,影响水、汽分离效果,产生蒸汽带液现象,降低蒸汽的产量和质量,也会造成过热蒸汽结垢甚至使气轮机叶片损坏;如果液位过低,会破坏水循环,影响汽、水平衡,烧坏锅炉导致爆炸。
因此,必须将汽包液位控制在一个正常的范围之内,对汽包液位进行自动调节十分必要。
1 锅炉汽包液位三冲量调节系统的设计1.1 调节方案的选择分析汽包液位是很重要的参数,锅炉蒸汽量的增加、产汽压力的提高以及外界对汽包液位的干扰性增强,使得汽包液位调节系统也由简单发展到复杂,即由单冲量、双冲量发展到三冲量的调节。
单冲量调节,它仅是以汽包水位作为系统输入量来进行的调节,适应于汽包容积较大且负荷变化比较小的场合。
单冲量控制系统的负荷如果急剧变化,就会出现“虚假液位”,调节器就会关小供水阀门,从而造成事故。
双冲量控制,它是在单冲量的基础上加一个蒸汽冲量,以克服“虚假液位” 的形成,适合于锅炉容积不大、给水压力波动较小的场合。
双冲量调节系统实际上是前馈和反馈调节结合在一起的调节系统。
负荷突然变化时,蒸汽的流量信号通过加法器,结果使它的作用与水位信号的作用相反;出现假液位时,液位信号要关小给水阀,而蒸汽信号则是开大给水阀,加法器输出是液位信号—蒸汽信号,以此来抵消虚假液位的影响。
但如果给水压力本身出现波动情况,双冲量控制系统也不能够很好地克服给水量波动对汽包液位的影响。
因此,发展三冲量调节系统,在双冲量控制系统的基础上再加一个给水流量的冲量,使它与液位信号的作用方向保持一致。
汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水流量三个信号作用于调节器上,即三个被控变量对应一个调节器;工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量, 使水位恢复到给定值;蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作;给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用;锅炉汽包水位三冲量调节系统是火电厂锅炉核心控制之一;汽包水位三冲量调节系统的给水调节阀动作频繁,锅炉水位对给水调节阀执行机构的动作比较敏感,稍有不慎就可能出现严重的危险情况,汽包水位三冲量调节系统关系到整个机组的安全运行:若汽包水位过高,会造成蒸汽带水;若汽包水位过低,会造成锅炉“干锅”,可能严重烧坏锅炉设备;汽包水位三冲量调节系统的重要性由此可见一斑,所以汽包水位的相关保护要完善可靠、汽包水位自动调节系统运行要平稳;目前,汽包水位三冲量自动调节控制策略已经相当成熟,但在实际锅炉运行中会各种原因导致水位自动调节系统投入困难,甚至自动不能投入;这种现象让人对串级三冲量调节系统的调节能力和控制策略产生疑问;为此云润与大家交流运用心得,对级三冲量调节系统进行定性分析,并对一些异常情况的处理办法进行探讨;1、水位三冲量调节控制策略汽包水位三冲量调节系统使用的三个冲量分别是汽包水位、给水流量和蒸汽流量;汽包水位作为主调PID调节器的输入信号,去抑制水位本身的偏差;副调外给定调节器使用了一个反馈信号给水流量和一个前馈信号蒸汽流量,以消除扰动和虚假水位;各种介绍汽包水位三冲量调节系统的书籍中,都有对传递函数的计算,这些计算对系统设计很重要;如果用经验调节法对于系统维护,则完全可以抛开理论计算;在此只对其物理意义进行定性思考和作一番揣测;反馈信号反馈信号指给水流量信号,也叫内扰;水位三冲量调节系统中被调量发生变化的时候,PID经过运算,去控制执行机构进行合理的动作,执行机构改变给水调节阀的开度,阀门控制介质变化,达到控制给水流量的目的;可是给水调节阀执行机构特性、水位三冲量调节系统的运行状况存在很多差异,这些差异主要有:1执行机构线性:执行机构改变开度后,流量随之改变的大小;2执行机构死区:PID输出每变化多少,执行机构才能动作一次;3执行机构空行程:执行机构在改变动作方向的时候,改变多少开度,给水流量才发生变化减去死区的值;4执行机构回差:执行机构进行开、关两个方向的动作的时候,流量变化不相等,这个流量变化绝对值的差叫回差;5执行机构及阀门的特性曲线改变:阀门线性改变,阀门每变化1%,流量变化量与以往不同;6水位三冲量调节系统软故障:偶尔发生的系统故障使得给水流量变化不均匀,或者时有停顿;7系统介质参数发生变化:指因给水压力、蒸汽压力变化导致给水流量变化;上述差异会对系统的调节造成干扰,甚至上述的情况在运行过程中也在变化;介质参数随时发生变化,其它参数可能缓慢发生变化,大家必须关注这些变化因素;在一个中等容量的机组中,一般汽包水位对给水流量的变化非常敏感,流量变化10t/h左右,就会造成水位逐渐上升;通常执行机构动作1%的开度,就足以造成10t/h的流量变化;水位三冲量调节系统主调的输出给副调一个给水量的指令;如果给水流量信号与这个指令不一致,副调的作用使执行机构改变给水调节阀开度,去让流量信号与主调的输出去一致;如果主调输出没有波动,而流量信号有波动,说明执行机构、阀门甚至给水压力等因素发生变化,这些变化的因素叫做内扰;此时若不管这些变化,将最终会影响到汽包水位,等汽包水位变化后主调再进行调节,就会因延误而过调;副调的作用就是快速消除扰动,如果调节合理则有可能让汽包水位不受干扰或者少受干扰;给水流量信号的设立,一个很重要的作用就是消除内扰;前馈信号前馈信号是指蒸汽流量信号;也叫外扰;当机组负荷需求波动会引起燃烧和蒸汽流量的波动;在蒸汽流量波动的时候就应该及时对系统进行调节,若等到汽包水位开始波动的时候再调节给水流量,汽包水位可能因波动速度较快而纠正较慢出现较大波动;为了克服外扰,所以加入蒸汽流量这个信号;假设机组负荷需要增大,蒸汽流量随之增大,此时不等汽包水位降低,在副调里预先增大给水流量,最终使得汽包水位保持平稳;引入蒸汽流量信号是为了为了克服外扰和“虚假水位”;所谓“虚假水位”是指当机组负荷突然增加,锅炉输出蒸汽量突然增大,此时锅炉因蒸发量增加,给水量未来得及变化,此时汽包水位应该降低;但锅炉出汽量突然增大导致蒸汽压力突然降低,使汽包里汽水混合物中的汽泡急剧增加,汽泡鼓动着汽包水位虚增,造成了汽包水位增高的现象;锅炉出现虚假水位时汽包水位增高,主调使得执行机构关小,加剧了水位降低的情况;但是因为前馈信号的存在,蒸汽流量一旦增大,副调的PID命令执行机构开大,抵消了虚假水位造成的影响;因此副调的反馈信号和前馈信号作用非常大,也非常有必要;控制策略图前馈信号和反馈信号的作用相反;请注意PID的正反作用;2、水位三冲量调节常规参数整定规律有人对串级调节系统的参数整定比较生疏;因为串级系统参数较多,比较不容易分析;下面我们分步骤对参数整定方法作个探讨;设置副调流量系数包括给水流量系数和蒸汽流量系数;这两个系数没有固定值;如果副调的比例作用很弱,这两个系数甚至可以取消不用;之所以要设置流量系数,是要提醒读者注意:在调试过程中,切不可先令副调比例作用过强否则有可能造成系统震荡,最终导致安全事故;一般我们预设这个系数为左右,蒸汽流量系数和给水流量系数应该大致相等;设置副调的比例带非常大,积分时间为无穷大比例作用的大小因系统而异;原则上应该先把副调作用放很小,以防止系统或者副调震荡;设置主调的积分时间为零,比例作用比较弱之所以没有给出比例作用的具体数值,是因为根据不同的系统、不同的DCS系统、不同的程序或PID调节器,这个值差异很大;一般来说,副调的比例带可以先设为150-600,主调比例带设为100-200;逐渐降低主调比例带根据观察结果,逐渐增强比例作用,直到系统接近平稳;或者继续增强比例作用,直到系统接近于等幅震荡,然后把此时的比例带除以,基本上接近于可用了;但是对于汽包水位系统,最好不要调到等幅震荡,这样会使系统处于危险的境地;逐渐增强主调积分作用积分作用逐渐增强,能在较短时间10分钟左右内消静差即可;积分作用不能放得很强,切记主调积分作用太强不仅没有好处,还会带来危害;因为在被调量开始强势回调的时候,需要调节器的输出也要快速回调,这样才能使得被调量不会大幅度超调,而这时候如果积分作用很强,积分作用会使得调节器的输出不仅不回调,而且还可能按照原来的趋势继续调节,一直等到被调量和设定值接近相等的时候,才开始回调,此时为时已晚,必然造成大幅度的超调;要记住:主调积分的目的是为了消除静差的;只要系统没有静差,积分作用就不必要增强;不使用微分作用微分作用可以超前调节,但水位三冲量调节系统不使用微分;因为水位、流量信号大多存在着微小的波动,微分作用会将这些波动放大,造成干扰;主调比例带与副调比例带相乘;减弱主调作用,逐渐增强副调作用主调比例带与副调比例带相乘的积,固定一个数,大约增强副调多大幅度,就减弱主调多大幅度,乘积基本保持不变;在修改主、副调参数的时候应该先减弱一个,再增强另一个,以免系统引起震荡;副调比例作用增强到足够抑制给水流量的扰动为止在负荷大幅度改变时,观察副调的曲线,防止震荡的发生这个阶段容易被忽视,但是非常重要负荷大幅度波动时候,流量最容易引起震荡,此时减弱副调的比例作用,直到不发生震荡为止,然后为了安全,再次稍微减弱副调作用;在调节副调的同时,还需要注意改变主调的比例作用;注意修改主调的积分作用在反复整定主调、副调比例参数之后,要记得积分作用也需要修改;如果副调的比例作用减弱,那么积分作用也要相应减弱,因为调节器的输出是比例和积分相权衡的结果;至此水位三冲量调节系统基本调试结束;为了防止副调震荡,还可以对副调的反馈系数和前馈系数进行修改,基本同减弱副调比例带的作用相当;切记在修改系数时一定要把该系统切换为手动运行方式,否则可能对调节器造成较大干扰,甚至危害锅炉安全运行;。
汽包液位的三冲量调节系统工作原理及应用锅炉是化工、电力生产中重要的动力设备。
汽包液位是锅炉运行中的一个重要监控参数,同时也是保证锅炉安全运行的重要条件之一。
它反映了锅炉负荷与给水的平衡关系。
汽包液位过高,汽包蒸汽上部空间减小会造成蒸汽带水,影响过热器运行及汽水分离的效果。
不仅降低了蒸汽的产量和质量,而且会使过热器结垢或使汽轮机叶片损坏;水位过低会造成锅炉水循环破坏,影响省煤器运行,严重时容易使水全部汽化烧坏锅炉甚至爆炸。
这就要求汽包液位严格控制在一定范围内,以期适应各种工况的运行。
影响汽包液位的因素除了加热汽化这一正常因素外,还有蒸汽负荷和给水流量的波动。
当负荷突然增大,汽包压力突然降低。
水就会急剧汽化,出现大量汽包,形成“虚假液位”。
一、三冲量调节系统的概念:水位自动调节作用水位信号去调节给水阀开度。
当水位升高,关小给水阀,降低给水流量;当水位降低,开大给水阀,增大给水流量。
为了使水位稳定,将主液流量和给水流量参与调节。
这就是锅炉汽包液位的三冲量调节系统。
这种调节系统由于引进了液位,给水流量及蒸汽流量三个参数,叫做三冲量调节系统。
二、工作原理:下图一中所示的三冲量调节系统、汽包液位是被控变量,是主冲量信号;蒸汽流量和给水流量是辅助冲量信号。
系统将蒸汽流量与给水流量前馈到汽包液位调节系统中,一旦蒸汽流量或给水流量波动,不是等到影响液位才进行调节,而是在这两个量改变之时就能通过DCS 系统中加法器立即去改变调节阀开度进行校正。
故大大提高了液位这个被调参数的调节精度,缩短调控时间。
三、分析:在稳定状态下,液位测量信号等于给定值,液位调节器的输出及给水流量等三个信号,通过加法器得到的输出电流为I0=K1I1+K2I2+K3I3式中:I1为液位调节器的输出电流I2为蒸汽流量变送器的输出电流I3为给水流量变送器的输出电流K1、K2、 K3分别为加法器各通道的衰减系数。
设计K2I2 =K3I3此时I0正是调节阀处于正常开度时所需的电流信号。
2017年8月锅炉汽包三冲量液位控制系统的特点及使用条件155锅炉汽包三冲量液位控制系统的特点及使用条件丁慕王永觉(河南能源化工集团中原大化仪表公司,河南濮阳457004)摘要:汽包液位是锅炉运行中的一个重要监控参数,它反映了锅炉负荷与给水的平 衡关系。
汽包液位过高会造成蒸汽带水影响过热器运行,影响汽水分离效果;水位过低会造成锅炉水循环的破坏,影响省煤器运行,容易使水全部汽化烧坏锅炉甚至爆炸。
关键词:冲量三冲量锅炉是化工生产中重要的动力设备。
汽包液位是锅炉运行中的一个重要监控参数,它反映了锅炉负荷与给水的平衡关系。
这就要求汽包液位在一定范围内,适应各种工况的运行。
影响汽包液位的因素除了加热汽化这一正常因素外,还有蒸汽负荷和给水流量的波动。
当负荷突然增大,汽包压力突然降低,水就会急剧汽化,出现大量气泡,形成了“虚假液位”。
如果使用简单的锅炉汽包液位的单冲量控制系统(如图1所示),一旦负荷急剧变化,虚假液位的出现,调节器就会误以为液位升高而关小供水阀门。
影响了生产甚至造成危险。
冲量:作用时间短暂且不连续的量。
三冲量:汽包液位、蒸汽流量、给水流量蒸汽图1锅炉汽包液位的单冲量控制系统为此,图2采取了锅炉汽包液位的双冲量控制,它 在单冲量的基础上,再加一个蒸汽冲量,以克服“虚假 液位”。
其中调节阀为气关阀,液位调节器采用正作用,调节器输出信号在加法器内与蒸汽流量信号相减。
双冲量实际上是前馈与反馈调节相结合的调节系统。
当负荷突然变化时,蒸汽的流量信号通过加法器,使它 的作用与水位信号的作用相反;假液位出现时,液位信 号a要关小给水阀,而蒸汽信号b是开大给水阀,这就 能克服“虚假液位”的影响。
但是如果给水压力本身有波动时,双冲量控制也 不能克服给水量波动的影响。
图2锅炉汽包液位的双冲量控制系统这就要用如图3所示的锅炉汽包液位的三冲量调 节系统。
即再加一个给水流量的冲量c,使它与液位信 号的作用方向一致,这种调节系统由于引进了液位、给 水流量及蒸汽流量三个参数,叫做三冲量调节系统。
阐述三冲量控制系统在锅炉汽包液位的应用在矿业企业原料的开采、加工、成品等一系列生产过程中,锅炉几乎是其中枢神经,故而其技术标准和安全操作就显得至关重要。
但是在锅炉生产的过程中,控制它的汽包液位仍旧是一个技术难题。
1 锅炉汽包液位在锅炉生产中,汽包液位是一项重要的工艺指标。
通常情况下,汽包液位过高,可能造成过节器结垢,汽轮机叶片损坏;而汽包液位过低,会使水汽失衡,严重的会引起爆炸。
同时在实际工艺中,还经常出现蒸汽负荷波动、给水量改变而引起的虚假液位现象。
基于种种原因,我们需要对锅炉汽包液位进行有效控制。
1.1 虚假液位在锅炉的运行中,出现虚假液位现象的主要原因是汽包内部压力的改变。
通常在蒸汽负荷以及锅炉的工况发生改变时,汽包内部的压力也会发生相应的改变。
举例来说,某锅炉的燃烧强度保持不变,蒸汽的负荷却增加。
为了保持水位,大都会将汽包内的一部分蒸汽流量取出。
然而燃料强度却并未增加,这就造成汽包内的压力下降、沸腾加剧,出现大量气泡,这些气泡会抬高锅炉内的水位,待气泡破坏后,水位才能够恢复。
这个短暂的提高水位的现象就是虚假液位现象。
发生这种现象后,如不及时控制,经常会造成给水流量和蒸汽负荷的反向运行,不利于调节器的正常工作。
1.2 锅炉汽包液位的控制要求对锅炉汽包液位控制通常会采用三种方式,即单冲量、双冲量、三冲量。
其中,冲量可以理解为变量。
单冲量控制采用的是单回路调节系统,在调节中,汽包液位是被控变量,而给水流量是调节变量,由于其独有的特性,故而单冲量控制系统适用于蒸汽负荷变化小而停留时间长的锅炉系统。
同时这种控制系统在调节的过程中,仍旧会出现因蒸汽负荷增加产生“假液位”的现象。
双冲量控制系统增加了蒸汽流量前馈信号功能,旨在消除“假液位”现象,比单冲量控制系统更加精确先进,然而在使用的过程中,由于给水流量信号无法反馈,故而影响锅炉汽包液位的正常使用和运行。
针对单冲量和双冲量的缺陷和不足,设计了三冲量控制系统。
三冲量控制在高压汽包中的应用汽包水位是汽包运行的主要指标,水位过高会影响汽包的汽水分离,增加蒸汽携带的水份,汽水品质恶化,导致透平进水,损坏叶片。
水位过低,则由于汽包内的水量较少而负荷却很大,水的汽化速度又快,因而汽包内的水量变化速度很快,破坏汽包与水冷壁间的水循环,如不及时控制就会使汽包内的水全部汽化。
导致汽包破坏或爆炸。
因此,汽包水位的控制是保证汽包安全运行的最重要条件之一。
2汽包水位的动态特性分析2.1蒸汽负荷(蒸汽流量)对水位的影响在传热过程不变的情况下,当出口蒸汽用量突然增加,瞬间必然导致汽包压力下降,汽包内水的沸腾加剧,水中气泡迅速增加,使得汽化量突然增多,将整个水位抬高,形成假上升液位现象。
当蒸汽流量突然增加时,由于假水位现象,在开始阶段水位不仅不会下降,反而先上升,然后下降(反之,当出口蒸汽流量突然减少时,则水位先下降,然后上升)。
蒸汽流量突然增加时,实际水位的变化H,是不考虑水面下气泡容积变化时的水位变化H1,与只考虑水面下气泡容积变化所引起水位变化H2的叠加,即H=H1+H22.2给水流量对水位的影响当给水流量突然增大时,由于在这个时间内烟道气传给汽包的热量不变,给水温度又有比汽包内的饱和水温度低,致使汽包中气泡含量减少,导致水位虚假下降,因此实际水位响应曲线如图1(b)中H线所示,并非H1线。
即当突然加大给水量后,汽包水位一开始不立即增加,而要呈现出一段起始惯性段。
用传递函数来描述时,它相当于一个积分环节和一个纯滞后环节的串联,可表示为3传统控制方案及其缺陷汽包水位的控制手段就是控制给水,传统的单冲量(汽包水位)控制系统和双冲量(汽包水位和蒸汽流量)控制系统其本身都有不可克服的缺陷。
就单冲量控制系统而言,当蒸汽负荷突然增大,由于假水位现象,控制器不但不能开大给水阀增加给水量,而是关小控制阀,减少给水量,等到假水位消失后,由于蒸汽量增加,送水量反而减少,将使水位严重下降,波动很厉害,甚至会使汽包水位将到危险程度,以至发生事故。
热电锅炉2#汽包F101-2液位控制复杂回路描述1、概要热电锅炉2#汽包F101-2液位控制三冲量控制液位的目的是保证蒸汽在波动范围较大的情况下,保证液位稳定;因而要保证汽包的物料平衡,每千克的水产生一千克的蒸汽,小的损失(大概2%的排放)由标准的液位控制进行控制。
热电锅炉2#汽包F101-2的入口流量(BFW)和出口流量(过热蒸汽)都要测量,再减掉喷水降温的锅炉给水(BFW)(FY30102B),汽包的连排作为常量处理(大概1%),可以忽略,基于这些输入值可以建立三冲量控制。
汽包液位的控制可以是单冲量控制也可以是三冲量控制。
锅炉启动时,只有少量的蒸汽产生,采用单冲量控制,当大量蒸汽产生时,应切换到三冲量控制。
三冲量进水控制系统已很成熟,特别适合负荷变化较大的情况。
2、“大阀-小阀”控制(LV30101B-LV30102B)在控制回路应采用“大阀-小阀”的概念,既可以控制大的流量和压力,也可以很好的控制小的流量变化,本控制方案可以控制锅炉给水从零到最大流量;基本消除或使之达到最少的波动,这种波动在分程控制中经常出现。
“大阀-小阀”控制概念应该应用到单冲量控制和三冲量控制。
2.1 开车模式- HS-30101B在“单冲量控制”液位控制模式-- LIC-30101B液位控制器(小阀)应在手动或自动模式,输出通过HS-30101B选择器接到LC-30102B,到LY-30102B和控制阀LV-30102B(小阀)- FC-30101B 锅炉给水控制器(大阀)应在自动模式,设定点在70%(满量程为0~100%),它代表了LV-30102B 小阀70%的开度。
通过控制器FC-30101B增加BFW的流量,大阀LV-30101B仍然关闭直到小阀LV-30102B的阀门开度超过70%。
超过控制器FC-30101B的设定点(参数设定为低增益,带10%的死区),控制器慢慢的打开LV-30101B。
当LV30101B开始打开,增加BFW的流量,小阀LV-30102B逐渐关闭到70%开度,这种动作持续到整个工厂正常操作。
给水泵三冲量在汽包液位控制中的应用计林佑(中海油珠海天然气发电有限公司,广东珠海519000)摘要:传统的火力发电厂汽包给水系统均使用定速泵加给水调门三冲量调节的方式调节汽包水位。
但是定速泵由于功率恒定,出口压力高,阀门的节流损失较大,厂用电也浪费较大,不符合现在节能降耗的要求。
因此部分发电厂采用了变频(变速)泵加三冲量调节给水的方式进行控制,既维持了汽包水位稳定,又节约了厂用电。
现就变频泵三冲量给水控制方式进行介绍。
关键词:变频;给水泵;三冲量给水0引言汽包水位是发电厂锅炉运行中一个非常重要的参数,维持汽包水位在正常范围内是保证机组安全运行的必要条件。
现在的发电厂基本都参与电网负荷调节,负荷的变化必然导致蒸汽流量的变化,进而导致汽包水位的变化。
如果汽包水位过高,蒸汽带水则会使过热器结垢,管壁受热不均,导致爆管事故;如果水位过低,则会破坏锅炉的水循环,造成“干锅”的情况。
因此,需要对汽包水位进行快速稳定的调节,以防止发生意外,这就对给水自动调节提出了更高的要求。
1串级三冲量给水调节系统传统的给水控制方式均为两台定速泵一用一备,通过串级三冲量给水逻辑对给水调门的开度进行节流调节。
系统使用了PI 1和PI 2两个调节器,我们称之为主调节器和副调节器。
主调节器一般采用PI 控制规律,以保证被调量汽包水位无静态偏差;副调节器一般采用PI 或P 控制规律,接收给水流量、汽包水位及蒸汽流量三个输入信号,主要用于快速消除内扰。
串级三冲量给水调节系统的结构图和方框图如图1及图2所示。
该系统由两个闭合回路和前馈部分组成:(1)主回路:由调节对象、水位测量变送器、主调节器和副回路组成。
(2)副回路:由给水流量、给水流量测量变送器、给水流量信号分流系数、副调节器、执行器、调节阀门组成。
(3)前馈调节部分:由蒸汽流量信号、蒸汽流量测量变送器、蒸汽流量信号分流系数组成。
一般发电厂均使用定速泵配合串级三冲量逻辑进行给水调节,具有较好的调节品质,调试整定也比较方便。
前言自动控制技术在工程和科学发展中起着极为重要的作用,其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制,在不需要操作人员干预的情况下,可以很好的完成生产过程中的给水及水位控制,大大提高了生产效率。
汽包锅炉给水控制系统的任务是使给水量适应锅炉蒸发量,并使汽包中水位保持在一定的范围内。
只有保证汽包水位的波动在允许范围内,才能实现机组安全经济运行。
因此,汽包水位是影响整个机组安全经济运行的重要因素,所以就要有一套较好的控制方案,来实现汽包水位的控制。
从传统的控制方式来看,它们要么系统结构简单成本低,却不能有效的控制锅炉汽包“虚假水位”现象,要么能够在一定程度上控制“虚假现象”,系统却过于复杂,成本投入过大。
目前工业控制急需一种系统简单,并且能够控制“虚假水位”,具有高性价比的控制系统。
汽包锅炉的给水调节系统有三种基本结构:单冲量调节系统结构、双冲量调节系统结构、串级三冲量调节系统结构。
低负荷阶段,由于疏水和锅炉排污等因素的影响,给水和蒸汽流量存在着严重的不平衡,而且流量太小时,测量误差大,故在低负荷阶段,很难采用三冲量调节方式,一般均采用单冲量调节方式。
负荷达到一定值以上时,疏水和排污阀逐渐关闭,汽、水趋于平衡,流量逐渐增大,测量误差逐渐减小,这时原则上可采用三冲量调节方式。
但由于单级三冲量调节系统要求蒸汽流量和给水流量信号在稳态时必须相等,否则汽包水位存在静态偏差,而且由于测量装置及变送器的误差等因素的影响,实际上现场这两个信号在稳态时,经常难以做到完全相等,而且单级三冲量调节系统一个调节器参数整定需兼顾的因素多。
因此单级三冲量事实上一般也难以采用。
串级三冲量调节方式,采用主、副两个调节器。
两调节器任务分工明确,整定相对容易,而且不要求稳态时给水流量信号与蒸汽流量信号完全相等,易于得到较好的调节品质,因此现场多采用此控制方式。
在串级控制系统中,参数的整定也是非常重要的,由于在系统中所设计的对象是确定的,所以只有对调节器进行整定,控制系统的参数整定有理论计算方法和工程整定方法,理论计算方法是基于一定的性能指标,结合组成系统各环节的动态特征,通过理论计算求得调节器的动态参数设定值;而工程整定法,则是源于理论分析,结合实验、工程实际经验等一套工程上的方法,其具体方法将在本设计中体现。
锅炉汽包液位三冲量自动调节控制一、概述:现代化工业生产中,工业锅炉是一个重要设备,其运行是为了得到一定质量的蒸汽。
自动化锅炉的基本要求是:按质按量的供应合格的蒸汽,满足生产的需要;安全可靠耐用,延长锅炉的使用寿命;降低操作人员的劳动强度。
锅炉的运行参数包括蒸汽压力、流量、温度等。
锅炉汽包液位是锅炉生产中重要的工艺指标。
汽包液位是影响蒸汽质量的一个关键参数,保持锅炉汽包液位稳定在规定范围内,对于保障锅炉安全运行及蒸汽质量的稳定具有关键的作用。
如果锅炉汽包液位过高,由于汽包容积小,造成汽包上部空间过小,影响汽水分离,容易出现蒸汽带液现象,损坏其它设备。
如过锅炉汽包液位过低,水的汽化速度加快,影响汽水平衡,如不及时调节进水会造成干锅,造成事故。
汽包水位的主要扰动是蒸汽流量的变化。
当蒸汽用量突然减小时,蒸汽压力会急剧上升,沸腾暂时停止,形成水位暂时下降的“假水位”现象。
当蒸汽用量突然增大时,汽包内蒸汽压力突然下降,水的沸腾加剧,气泡量迅速增加,也会使汽包内形成水位升高的“假水位”现象。
如单按简单的水位调节,调节器将依据这一“虚假水位”减少补水量造成事故,所以单量调节无法满足需要,因此老山锅炉房采用了三冲量调节系统控制,以保障锅炉的安全运行。
二、三冲量水位控制方案:(一)根据生产工艺的要求锅炉控制系统增加下列检测项目:1、锅炉汽包水位进行三冲量给水自动控制,提高锅炉的安全。
2、设置过热器出口蒸汽温度高报警。
3、设置汽包水位高低报警。
4、设置蒸汽出口压力高报警。
备注:控制系统采用常规仪表实现,调节器选用新型数字智能调节器。
(二)选用仪表检测设备名称、规格、型号清单:三、锅炉汽包液位三冲量调节系统组成及工艺分析:(一)锅炉三冲量调节系统原理图及系统框图三冲量调节系统原理图三冲量调节系统方框图(二)锅炉汽包水位调节过程:锅炉水位控制系统如图所示,调节对象是锅炉的汽包,被调量是汽包水位,而引起汽包水位变化的干扰量是蒸汽负荷的变化,蒸汽负荷的急剧变化,将导致“虚假水位”出现。
在矿业企业原料的开采、加工、成品等一系列生产过程中,锅炉几乎是其中枢神经,故而其技术标准和安全操作就显得至关重要。
但是在锅炉生产的过程中,控制它的汽包液位仍旧是一个技术难题。
1 锅炉汽包液位
在锅炉生产中,汽包液位是一项重要的工艺指标。
通常情况下,汽包液位过高,可能造成过节器结垢,汽轮机叶片损坏;而汽包液位过低,会使水汽失衡,严重的会引起爆炸。
同时在实际工艺中,还经常出现蒸汽负荷波动、给水量改变而引起的虚假液位现象。
基于种种原因,我们需要对锅炉汽包液位进行有效控制。
1.1 虚假液位
在锅炉的运行中,出现虚假液位现象的主要原因是汽包内部压力的改变。
通常在蒸汽负荷以及锅炉的工况发生改变时,汽包内部的压力也会发生相应的改变。
举例来说,某锅炉的燃烧强度保持不变,蒸汽的负荷却增加。
为了保持水位,大都会将汽包内的一部分蒸汽流量取出。
然而燃料强度却并未增加,这就造成汽包内的压力下降、沸腾加剧,出现大量气泡,这些气泡会抬高锅炉内的水位,待气泡破坏后,水位才能够恢复。
这个短暂的提高水位的现象就是虚假液位现象。
发生这种现象后,如不及时控制,经常会造成给水流量和蒸汽负荷的反向运行,不利于调节器的正常工作。
1.2 锅炉汽包液位的控制要求
对锅炉汽包液位控制通常会采用三种方式,即单冲量、双冲量、三冲量。
其中,冲量可以理解为变量。
单冲量控制采用的是单回路调节系统,在调节中,汽包液位是被控变量,而给水流量是调节变量,由于其独有的特性,故而单冲量控制系统适用于蒸汽负荷变化小而停留时间长的锅炉系统。
同时这种控制系统在调节的过程中,仍旧会出现因蒸汽负荷增加产生“假液位”的现象。
双冲量控制系统增加了蒸汽流量前馈信号功能,旨在消除“假液位”现象,比单冲量控制系统更加精确先进,然而在使用的过程中,由于给水流量信号无法反馈,故而影响锅炉汽包液位的正常使用和运行。
针对单冲量和双冲量的缺陷和不足,设计了三冲量控制系统。
它将汽包液位、蒸汽流量和给水流量作为三个信号,通过前馈-串级反馈系统来调节水位。
三冲量控制系统是一种较为完善的、安全的、准确的汽包液位控制系统。
2 三冲量控制系统
2.1 三冲量控制系统的构成
在三冲量控制系统中,汽包液位、蒸汽流量及给水流量等3个被控变量会安装相应的调节器,在锅炉运行的过程中,这三个信号作用于调节器,会适时调整,做相应的改变。
而且三冲量控制采用的是前馈-串级反馈控制系统,
其系统的构成图如下:
图1 三冲量控制系统的构成图
从图中可以看出,在三冲量控制系统中,汽包液位、蒸汽流量、给水流量都是串联关系,其中汽包液位是三者中的主冲量,能够反映整个汽包的工作状态和运行状况;而蒸汽流量和给水流量分别担任辅助冲量,蒸汽流量就是一个前馈系统,通过这个系统,能够消除“假液位”现象,保证整个系统的准确性;给水流量是一个反馈系统,它能够副回路减少水压改变对汽包液位的影响。
主冲量和辅助冲量之间相互配合、相互影响,共同保证前馈-串级反馈的三冲量控制系统的正常有效运行。
2.2 三冲量控制系统的工作原理
三冲量控制系统的工作原理是:将三个信号中的汽包液位当做主信号,当锅炉中的水位改变时,与之相对应的调节器输出也会发生相应的变化,在此基础上的给水流量也会发生改变,这样就能够使锅炉的水位达到给定值。
在这个过程中,蒸汽流量充当着前馈作用,其作用是防止“假液位”干扰调节器的工作。
而给水流量充当着反馈的作用,当前馈的蒸汽流量发出干扰信号时,给水流量会
三冲量控制系统在锅炉汽包液位的应用
常 江
(贵州开磷(集团)矿肥有限责任公司,贵州贵阳 550000)
摘要:文章通过介绍三冲量控制系统的工作原理和调节过程,提出采用这种系统来控制锅炉的汽包液位,消
除虚假液位现象,保证锅炉的正常生产运行,促进锅炉技术的改进和完善。
关键词:三冲量控制系统;锅炉汽包液位;虚假液位;锅炉技术
中图分类号:TK22 文献标识码:A 文章编号:1009-2374(2013)09-0053-02
53
1 基坑围护与土方开挖技术概述
1.1 基坑围护的定义和作用
基坑围护是在建筑施工中为了进行建筑物(包括构筑物)的基础与地下室的施工所进行的开挖地面以及地下空间的防护加固工程活动。
它是建设多层地下室、地下铁道、地下商业街等各种地下建筑所用的防护加固方法。
基坑属于临时性工程,为建筑物的开挖提供了临时的坑井,为施工工程提供了空间,使得基础的施工作业能够按照设计中所设计的指定位置进行施工,保证了施工的安全和质量。
1.2 土方开挖技术的定义和作用
土方开挖技术是指将施工地点的土和岩石进行松动、捣碎、挖掘、运出的工程,是工程初期乃至其后的施工过程中进行施工的主要程序和环节。
它主要适用于一些平整的土地和削坡、水工建筑物的地基开挖,地下洞室的开挖,填筑材料、建筑石料及混凝土骨料的开采,混凝土结构物的拆除等。
土方开挖技术为建筑施工进行了前期的清理工作,保证了建筑施工的正常开展和进行,而且此种技术在施工过程中的运用实际减轻了施工的工作量,减少了施工带来的废料和废渣等,为施工的顺利完成提供了良好的工作环境和作业条件。
2 基坑围护技术
2.1 基坑围护的主要形式
2.1.1 水泥搅拌桩重力坝。
在计划施工场地的软粘土地基中开挖深度为5~7m左右的基坑,利用深层搅拌的方法形成水泥土桩挡墙。
这样筑成的挡墙因水泥土的强度和防渗透性能够达到很强的坚固性和防水性。
水泥土重力式挡墙一般做成格栅形式,多用于深基坑围护结构、管道沟支
建筑施工中基坑围护与土方开挖技术的应用
李 绘
(山东省枣庄市房屋建设开发中心,山东枣庄 277100)
摘要:随着城市化进程的不断加快,建筑业出现了迅猛的发展势头。
为了使建筑物能够保质保量地建成,施工过程中会采取多种技术结合的方法进行施工。
文章主要通过对施工初期所采用的基坑围护技术和贯穿于施工过程中的土方开挖技术进行详细描述,探讨了它们在建筑施工中的应用。
关键词:基坑围护;土方开挖;建筑施工
中图分类号:TU473 文献标识码:A 文章编号:1009-2374(2013)09-0054-02
在锅炉水位未改变之前,消除这种干扰,使调节器正常工作,使给水流量更加稳定。
3 三冲量控制系统在锅炉汽包液位中的应用在锅炉生产中,三冲量控制系统作为前馈-串级反馈系统,其运行遵循着主控制器的正作用和副控制器的反作用原则。
在三冲量控制系统中,流量控制器FC作为主控制器,起着正作用功能;水位控制器LC作为副控制器,起着反作用的功能;而调节器则起着调节阀的作用。
通常当锅炉的水位升高时,LC就会产生反作用,其输出就会相应减少,通过加法器,FC的给定值减少,而调节器的输出却增加,故而要减小调节器的阀门开度,缩小FA2101(给水流量),使水位下降至给定值。
在FAQ2102(蒸汽流量)增加的情况下,FC的给定值会相应的减少,而调节器的输出增加,故而要扩大调节器的阀门开度,增加给水流量,平衡蒸汽流量,使水位保持在给定值上。
当FA2102(给水流量)增加时,FC调节器的输出也会相应增加,这时要减小调节阀开度,减少给水流量,平衡蒸汽流量,保持水位不变。
另外,在选择给水流量的调节阀时,要保证锅炉的安全。
比如当生产的热源是蒸汽时,就应该选择气关阀来保护锅炉;而当蒸汽的供给超过蒸汽压缩机时,就应该选择气开阀来保护锅炉设备。
通过三冲量控制系统,能够利用调节器的开关阀对锅炉生产中的汽包液位、蒸汽流量和给水流量进行有效调节,消除了“虚假液位”现象,保证水位的稳定,很好地控制了锅炉汽包液位,保证整个锅炉系统和整个生产工艺的安全可靠,同时也促进了锅炉生产技术的改进和完善。
参考文献
[1]魏方合.锅炉汽包液位的三冲量控制系统[J].河北化
工,2012,29(3):41-42.
[2]买丽叶木.三冲量控制系统在锅炉汽包液位的应用[J].
纯碱工业,2010,(3):36-37.
[3]贾志清,罗炜.三冲量在锅炉汽包液位控制中的应用
[J].甘肃科技,2012,28(15):60-62.
[4]李亚琴.三冲量控制原理在锅炉汽包水位中的应用[J].
科技信息,2012,(6):428-429.
(责任编辑:周 琼)
54。