数学串讲讲义答案解析
- 格式:pdf
- 大小:677.21 KB
- 文档页数:26
专题07 整式的加减(知识大串讲)【知识点梳理】考点1 同类项1.定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
2.合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤: a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意: a.如果两个同类项的系数互为相反数,合并同类项后,结果为0. b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
考点2 去括号(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
考点3整式的加减几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
【典例分析】【考点1 同类项的判断】【典例1】(2022春•兰西县校级期末)下列各组两项中,是同类项的是( )A.xy与﹣xy B.ac与abcC.﹣3ab与﹣2xy D.3xy2与3x2y【答案】A【解答】解:A.根据同类项的定义,xy与﹣xy是同类项,那么A符合题意.B.根据同类项的定义,与不是同类项,那么B不符合题意.C.根据同类项的定义,﹣3ab与﹣2xy不是同类项,那么C不符合题意.D.根据同类项的定义,3xy2与3x2y不是同类项,那么D不符合题意.故选:A.【变式1】(2021秋•乌当区期末)在下列各组单项式中,不是同类项的是( )A.5x2y和﹣7x2y B.m2n和2mn2C.﹣3和99D.﹣abc和9abc【答案】B【解答】解:A.5x2y和﹣7x2y所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;B.m2n和2mn2所含字母相同,但相同字母的指数不相同,故不是同类项,故本选项符合题意;C.﹣3和99是同类项,故本选项不合题意;D.﹣abc和9abc所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意.故选:B.【考点2 已知同类项求指数中字母的值】【典例2】(2021秋•北辰区期末)如果2x3n y m+1与﹣3x12y4是同类项,那么m,n的值分别是( )A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=4【答案】D【解答】解:∵2x3n y m+1与﹣3x12y4是同类项,∴3n=12,m+1=4,解得m=3,n=4,故选:D.【变式2-1】(2022春•龙凤区期末)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2022=( )A.1B.﹣1C.52022D.﹣52022【答案】A【解答】解:∵单项式﹣xy b+1与x a﹣2y3是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,∴(a﹣b)2022=(3﹣2)2022=12022=1.故选:A.【变式2-2】(2022春•潍坊期末)若单项式20x m﹣n y14与可以合并成一项,则m n的值是( )A.B.2C.D.﹣2【答案】A【解答】解:由题意可知:m﹣n=3,3m﹣8n=14,∴m=2,n=﹣1,∴m n=.故选:A.【考点3 合并同类项】【典例3】(2022•清苑区二模)下列算式中正确的是( )A.4x﹣3x=1B.2x+3y=3xyC.3x2+2x3=5x5D.x2﹣3x2=﹣2x2【答案】D【解答】解:A、原式=x,故A不符合题意.B、2x与3y不是同类项,不能合并,故B不符合题意.C、3x2与2x3不是同类项,不能合并,故C不符合题意.D、x2﹣3x2=﹣2x2,故D符合题意.故选:D.【变式3】(2022•钱塘区一模)化简:﹣5x+4x=( )A.﹣1B.﹣x C.9x D.﹣9x 【答案】B【解答】解:原式=(﹣5+4)x=﹣x.故选:B【考点4 去括号或添括号】【典例4-1】(2022春•宁波期末)下列添括号正确的是( )A.﹣b﹣c=﹣(b﹣c)B.﹣2x+6y=﹣2(x﹣6y)C.a﹣b=+(a﹣b)D.x﹣y﹣1=x﹣(y﹣1)【答案】C【解答】解:A.﹣b﹣c=﹣(b+c),故此选项不合题意;B.﹣2x+6y=﹣2(x﹣3y),故此选项不合题意;C.a﹣b=+(a﹣b),故此选项符合题意;D.x﹣y﹣1=x﹣(y+1),故此选项不合题意;故选:C.【典例4-2】(2021秋•望城区期末)下列各题中去括号正确的是( )A.5﹣3(x+1)=5﹣3x﹣1B.2﹣4(x+)=2﹣4x+1C.2﹣4(x+1)=2﹣x﹣4D.2(x﹣2)﹣3(y﹣1)=2x﹣4﹣3y﹣3【答案】C【解答】解:A.5﹣3(x+1)=5﹣3x﹣3,故A不符合题意.B.2﹣4(x+)=2﹣4x﹣1,故B不符合题意.C.2﹣4(x+1)=2﹣x﹣4,故C符合题意.D.2(x﹣2)﹣3(y﹣1)=2x﹣4﹣3y+3,故D不符合题意.故选:C.【变式4-1】(2022•馆陶县)等号左右两边一定相等的一组是( )A.﹣(a+b)=﹣a+b B.a3=a+a+aC.﹣2(a+b)=﹣2a﹣2b D.﹣(a﹣b)=﹣a﹣b【答案】C【解答】解:A、原式=﹣a﹣b,原去括号错误,故此选项不符合题意;B、a3=a•a•a,a+a+a=3a,原式左右两边不相等,故此选项不符合题意;C、原式=﹣2a﹣2b,原去括号正确,故此选项符合题意;D、原式=﹣a+b,原去括号错误,故此选项不符合题意.故选:C.【变式4-2】(2021秋•海门市期末)计算﹣(4a﹣5b),结果是( )A.﹣4a﹣5b B.﹣4a+5b C.4a﹣5b D.4a+5b【答案】B【解答】解:﹣(4a﹣5b)=﹣4a+5b,故选:B【考点5 整式加减的运算】【典例5】(2022•南京模拟)先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2﹣(a+b)﹣(a+b)2+(﹣3)2(a+b).【解答】解:(1)原式=3x2+4﹣5x3﹣x3+3﹣3x2=﹣6x3+7;(2)原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=x2﹣3xy+2y2;(3)原式=2x﹣2x﹣6y+3x﹣6y=3x﹣12y;(4)原式=﹣(a+b)﹣(a+b)2+9(a+b)=﹣(a+b)2+(a+b).【变式5-1】(河南期中)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)【解答】解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.【变式5-2】(乐清市校级月考)去括号,合并同类项:(1)﹣3(2x﹣3)+7x+8;(2)3(x2﹣y2)﹣(4x2﹣3y2).【解答】解:(1)﹣3(2x﹣3)+7x+8=﹣6x+9+7x+8,=(﹣6x+7x)+(9+8),=x+17,(2)3(x2﹣y2)﹣(4x2﹣3y2)=3x2﹣y2﹣2x2+y2,=3x2﹣2x2+(﹣y2+y2),=x2.【考点6 化简求值】【典例6】(2022春•杜尔伯特县期中)代入求值.(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.【解答】解:(1)原式=5ab﹣(2a2b﹣4b2﹣2a2b)=5ab﹣2a2b+4b2+2a2b=5ab+4b2,由题意可知:a﹣2=0,b+1=0,∴a=2,b=﹣1,原式=5×2×(﹣1)+4×1=﹣10+4=﹣6.(2)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=5﹣5=0.【变式6-1】(2021秋•兴庆区校级期末)先化简,再求值.(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2),其中(x+2)2+|y﹣1|=0;(2)(﹣a2+3ab﹣2b)﹣2(﹣a2+4ab﹣b2),其中a=3,b=﹣2.【解答】解:(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy,∵(x+2)2+|y﹣1|=0,(x+2)2≥0,|y﹣1|≥0,∴x+2=0,y﹣1=0.∴x=﹣2,y=1.当x=﹣2,y=1时,原式=﹣6×(﹣2)×1=12.(2)(﹣a2+3ab﹣2b)﹣2(﹣a2+4ab﹣b2)=﹣a2+3ab﹣2b+a2﹣8ab+3b2=﹣5ab+3b2﹣2b,当a=3,b=﹣2时,原式=﹣5×3×(﹣2)+3×(﹣2)2﹣2×(﹣2)=30+3×4+4=30+12+4=46.【变式6-2】(2021秋•梁平区期末)先化简再求值:(1)﹣(x2﹣y2)﹣[3xy﹣(x2﹣y2)],其中x=﹣3,y=﹣4.(2),其中|2+y|+(x﹣1)2=0.【解答】解:(1)﹣(x2﹣y2)﹣[3xy﹣(x2﹣y2)]=﹣x2+y2﹣3xy+x2﹣y2=﹣3xy,当x=﹣3,y=﹣4时,原式=﹣3xy=﹣3×(﹣3)×(﹣4)=﹣36;(2)=5x2y﹣(3xy2﹣6xy2+7x2y)=5x2y﹣3xy2+6xy2﹣7x2y=﹣2x2y+3xy2,因为|2+y|+(x﹣1)2=0,所以y=﹣2,x=1,所以原式=﹣2×1×(﹣2)+3×1×4=16.【考点7 整式加减的无关型问题】【典例7】(2021秋•东港区期末)(1)先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣,y=2.(2)已知A=y2+3ay﹣1,B=by2+4y﹣1,且4A﹣3B的值与y的取值无关,求a,b的值.【解答】解:(1)原式=3x2y﹣(2x2y﹣6xy+3x2y﹣xy)=3x2y﹣2x2y+6xy﹣3x2y+xy=﹣2x2y+7xy,当,y=2时,原式=.(2)4A﹣3B==3y2+12ay﹣4﹣3by2﹣12y+3=(3﹣3b)y2+(12a﹣12)y﹣1,∵4A﹣3B的值与y的取值无关,∴3﹣3b=0,12a﹣12=0,∴a=1,b=1.【变式7-1】(2022春•泰州期末)已知:A=3x2+2xy+3y﹣1,B=x2﹣xy.(1)计算:A﹣3B;(2)若A﹣3B的值与y的取值无关,求x的值.【解答】解:(1)A﹣3B=(3x2+2xy+3y﹣1)﹣3(x2﹣xy)=3x2+2xy+3y﹣1﹣3x2+3xy=5xy+3y﹣1;(2)∵A﹣3B=5xy+3y﹣1=(5x+3)y﹣1,又∵A﹣3B的值与y的取值无关,∴5x+3=0,∴x=﹣.【变式7-2】(2021秋•井研县期末)已知A=2x2+xy+3y﹣1,B=x2﹣xy.(1)当x=﹣1,y=3时,求A﹣2B的值;(2)若3A﹣6B的值与y的值无关,求x的值.【解答】解:(1)∵A=2x2+xy+3y﹣1,B=x2﹣xy,∴A﹣2B=(2x2+xy+3y﹣1)﹣2(x2﹣xy)=2x2+xy+3y﹣1﹣2x2+2xy=3xy+3y﹣1,当x=﹣1,y=3时,原式=3×(﹣1)×3+3×3﹣1=﹣9+9﹣1=﹣1;(2)∵A=2x2+xy+3y﹣1,B=x2﹣xy,∴3A﹣6B=3(2x2+xy+3y﹣1)﹣6(x2﹣xy)=6x2+3xy+9y﹣3﹣6x2+6xy=9xy+9y﹣3=(9x+9)y﹣3,∵3A﹣6B的值与y的值无关,∴9x+9=0,∴x=﹣1.【考点8 整式加减的看错问题】【典例8】(2021秋•济宁期末)已知多项式M,N,其中M=2x2﹣x﹣1,小马在计算2M﹣N时,由于粗心把2M﹣N看成了2M+N求得结果为﹣3x2+2x﹣1,请你帮小马算出:(1)多项式N;(2)多项式2M﹣N的正确结果.求当x=﹣1时,2M﹣N的值.【解答】解:(1)根据题意得:N=﹣3x2+2x﹣1﹣2(2x2﹣x﹣1)=﹣3x2+2x﹣1﹣4x2+2x+2=﹣7x2+4x+1;(2)2M﹣N=2(2x2﹣x﹣1)﹣(﹣7x2+4x+1)=4x2﹣2x﹣2+7x2﹣4x﹣1=11x2﹣6x﹣3,当x=﹣1时,2M﹣N=11+6﹣3=14.【变式8】(2021秋•禹州市期末)某同学做一道题,已知两个多项式A、B,求A﹣2B的值.他误将“A﹣2B”看成“A+2B”,经过正确计算得到的结果是x2+14x﹣6.已知A=﹣2x2+5x﹣1.(1)请你帮助这位同学求出正确的结果;(2)若x是最大的负整数,求A﹣2B的值.【解答】解:(1)由题意得:2B=x2+14x﹣6﹣(﹣2x2+5x﹣1)=x2+14x﹣6+2x2﹣5x+1=3x2+9x﹣5,所以,A﹣2B=﹣2x2+5x﹣1﹣(3x2+9x﹣5)=﹣2x2+5x﹣1﹣3x2﹣9x+5=﹣5x2﹣4x+4;(2)由x是最大的负整数,可知x=﹣1,所以,A﹣2B=﹣5×(﹣1)2﹣4×(﹣1)+4=﹣5+4+4=3【考点8整式加减的应用】【典例9】(2021秋•海沧区期末)为了促进“资源节约和环境友好型”社会建设,引导居民合理用电.某市结合实际,决定提供两种家庭用电计费方式供居民选择.方式一:峰谷计价.收费标准为:峰时段(上午8:00~晚上21:00)用电的电价为0.65元/度,谷时段(晚上21:00~次日晨8:00)用电的电价为0.35元/度.方式二:阶梯计价.收费标准如下表:超过400度的部分居民一个月用电量不超过200度超过200度但不超过400度的部分电价(单位:元/度)0.500.600.75(1)若该市居民小王家某月用电300度,其中,峰时段用电200度,谷时段用电100度.他家选择哪种计费方式费用较低?(2)若该市居民小张家某月总用电量为a度,其中80%为峰时段的用电量.请用含a的式子分别表示两种计费方式应缴的电费.【解答】解:(1)方式一:200×0.65+100×0.35=130+35=165(元).方式二:200×0.50+(300﹣200)×0.60=100+100×0.60=100+60=160(元).160元<165元,所以他家选择方式二计费方式费用较低.(2)方式一:80%a×0.65+(1﹣80%)×a×0.35=0.8a×0.65+0.2a×0.35=0.52a+0.07a=0.59a(元).方式二:当a不超过200时,电费为:a×0.5=0.5a(元).当a超过200但不超过400时,电费为:200×0.5+(a﹣200)×0.6=100+0.6a﹣120=0.60﹣(120﹣100)=(0.6a﹣20)(元).当a超过400时,电费为:200×0.50+(400﹣200)×0.60+(a﹣400)×0.75=100+120+0.75a﹣400×0.75=220+0.75a﹣300=0.75a﹣(300﹣220)=(0.75a﹣80)(元).答:小张家按方式一计费方式应缴电费0.59元.方式二计费时,当a不超过200时,应缴电费0.5a元;当a超过200但不超过400时,应缴电费(0.6a一20)元;当a超过400时,应缴电费(0.75a一80)元.【变式9】(2021秋•沐川县期末)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为5公里,行车时间为10分钟,则需付车费多少元;(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元?(用含a、b的代数式表示,并化简)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,并且小王的行车时间比小张的行车时间多24分钟,请计算说明两人下车时所付车费有何关系?【解答】解:(1)1.8×5+0.45×10=13.5(元),答:需付车费13.5元;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)设小王与小张乘坐滴滴快车分别为a分钟、(a﹣24)分钟,则小王应付车费1.8×9.5+0.45a=17.1+0.45a,小张应付车费1.8×14.5+0.45(a﹣24)+0.4×(14.5﹣10)=17.1+0.45a,因此,两人车费一样多【典例10】(2021秋•新泰市期末)如图是一块长方形花园,内部修有两个凉亭及过道,其余部分种植花圃(阴影部分).(1)用整式表示花圃的面积;(2)若a=3m,修建花圃的成本是每平方米60元,求修建花圃所需费用.【解答】解:(1)根据题意得:(7.5+12.5)×(a+2a+2a+2a+a)﹣12.5•2a×2=20•8a﹣50a=160a﹣50a=110a(m2),所以,花圃的面积为:110a;(2)当a=3m、修建花圃的成本是每平方米60元时,修建花圃所需费用为110×3×60=19800(元),所以,修建花圃所需费用为19800元.【变式10】(2022春•莱州市期末)如图是一个长方形游乐场,其宽是4a米,长是6a 米.其中半圆形休息区和长方形游泳区以外的地方都是绿地.已知半圆形休息区的直径和长方形游泳区的宽是2a米,游泳区的长是3a米.(1)该游乐场休息区的面积为 a2 m2,游泳区的面积为 6a2 m2.(用含有a 的式子表示)(2)若长方形游乐场的宽为40米,绿化草地每平方米需要费用30元,求这个游乐场中绿化草地的费用.【解答】解:(1)休息区的面积为:×π×a2=a2(m2);游泳区的面积为:3a×2a=6a2(m2).故答案为:a2,6a2;(2)∵长方形游乐场的宽为40米,∴a=10米.所以(6a×4a﹣6a2﹣a2)×30≈(24a2﹣6a2﹣1.57a2)×30=16.43a2×30=492.9a2.当a=10时,原式=49290(元).答:游乐场中绿化草地的费用为49290元.【典例11】(2021秋•连城县期中)某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带:方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款 元.(用含x的代数式表示)若该客户按方案二购买,需付款 元.(用含x的代数式表示)(2)若x=40,通过计算说明此时按哪种方案购买较为合算?(3)当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.并算出需要付款多少元?【解答】解:(1)客户要到该商场购买西装20套,领带x条(x>20).方案一费用:20×1000+(x﹣20)×200=(200x+16000)元,方案二费用:(20×1000+200x)×0.9=(180x+18000)元,故答案为:(200x+16000),(180x+18000).(2)当x=40时,方案一:200×40+16000=24000(元),方案二:180×40+18000=25200(元),所以,按方案一购买较合算.(3)能给出一种更为省钱的购买方案;先按方案一购买20套西装获赠送20条领带,再按方案二购买20条领带;需要付款:20000+200×20×90%=23600(元).【变式11】(2021秋•淅川县期中)某校羽毛球队需要购买6支羽毛球拍和x盒羽毛球(x>6),羽毛球拍市场价为150元/支,羽毛球为30元/盒.甲商场优惠方案为:所有商品九折.乙商场优惠方案为:买1支羽毛球拍送1盒羽毛球,其余原价销售.(1)分别用x的代数式表示在甲商场和乙商场购买所有物品的费用.(2)当x=20时,请通过计算说明选择哪个商场购买比较省钱.【答案】(1甲:27x+810乙:30x+720(2)乙商场购买比较省钱【解答】解:(1)在甲商场购买所有物品的费用为:0.9(6×150+30x)=27x+810,在乙商场购买所有物品的费用为:6×150+30(x﹣6)=30x+720;(2)当x=20时,27x+810=1350(元);30x+720=1320(元);1350>1320,答:选择乙商场购买比较省钱.。
专题11 投影知识网络重难突破知识点一平行投影投影的概念:一般地,用光线照射物体,在某个平面 (地面、墙壁等) 上得到的影子叫做物体的投影。
照射光线叫做投影线,投影所在的平面叫做投影面。
平行投影概念:由平行光线形成的投影叫做平行投影。
平行投影特征:1.等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.2.等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.考查题型(物高与影长的关系)1.在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.2.在同一时刻,不同物体的物高与影长成正比例. 即:.利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.1.(2018·渭南市期末)矩形木框在阳光照射下,在地面上的影子不可能是()A.B.C.D.【答案】C【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是梯形.故选:C.2.(2019·宝鸡市期中)如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”【答案】C【详解】根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西-西北-北-东北-东,可得应该是下午.故选:C.3.(2019·四川省安岳实验中学初三期末)给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个【答案】B【详解】①由于太阳光线是平行光线,所以物体在阳光照射下,影子的方向是相同的,故正确;②物体在太阳光线照射下影子的方向都是相同的,在灯光的照射下影子的方向与物体的位置有关,故错误;③物体在路灯照射下,影子的方向与路灯的位置有关,故正确;④物体在点光源的照射下,影子的长短与物体的长短和光源的位置有关,故错误.所以正确的只有2个.故选B.4.(2019·山东省济南市汇才学校初三期中)下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是()A.B.C.D.【答案】A【解析】试题分析:根据平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例,依次分析各选项即得结果.A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.5.(2019·天水市期中)如图,一电线杆AB的影子分别落在地上和墙上,某一时刻,小明竖起1m•高的直杆,量得其影长为0.5m,此时,他又量得电线杆AB落在地上的影子BD长3m,落在墙上的影子CD的高为2m,小明用这些数据很快算出了电线杆AB的高,请你计算,电线杆AB的高为()A.5m B.6m C.7m D.8m【答案】D【解析】本题主要考查同一时刻物高和影长成正比在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.如图:假设没有墙CD,则影子落在点E,∵身高与影长成正比例,∴CD:DE=1:0.5,∴DE=1米,∴AB:BE=1:0.5,∵BE=BD+DE=4,,∴AB=8米.故选D.6.(2019·昌平区期中)如果在同一时刻的阳光下,小莉的影子比小玉的影子长,那么在同一路灯下()A.小莉的影子比小玉的影子长B.小莉的影子比小玉的影子短C.小莉的影子与小玉的影子一样长D.无法判断谁的影子长【答案】D【解析】由一点所发出的光线形成的投影叫做中心投影,而中心投影的影子长短与距离光源的距离有关,由题意可得,小莉和小玉在同一路灯下由于位置不同,影长也不相同,故无法判断谁的影子长,故选D.7.(2018·湘乡市期末)如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25m B.4.25m C.4.45m D.4.75m【答案】C【解析】如图,设BD是BC在地面的影子,树高为x,根据竹竿的高与其影子的比值和树高与其影子的比值相同,得:10.8 CBBD而:CB=1.2∴BD=0.96∴树在地面的实际影长为:0.96+2.6=3.56.再竹竿的高与其影子的比值和树高与其影子的比值相同,得:13.560.8x = ∴x=4.45∴树高是4.45m .故选C . 8.(2019·平顶山市第四十二中学初三期中)下列说法正确的是( )A .物体在阳光下的投影只与物体的高度有关B .小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C .物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D .物体在阳光照射下,影子的长度和方向都是固定不变的.【答案】C【详解】解:A 、物体在阳光下的投影不只与物体的高度有关,还与时刻有关,错误;B 、小明的个子比小亮高,在不同的时间,小明的影子可能比小亮的影子短,错误;C 、不同时刻物体在太阳光下的影子的大小在变,方向也在改变,正确;D 、不同时刻物体在太阳光下的影子的大小在变,方向也在改变,错误.故选:C .9.(2018·市北区期末)太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是( ) A .与窗户全等的矩形 B .平行四边形C .比窗户略小的矩形D .比窗户略大的矩形【答案】B【解析】试题解析:太阳光照射一扇矩形的窗户,根据在同一时刻,不同物体的物高和影长成比例,平行物体的投影仍旧平行.故可知矩形的窗户的投影是平行四边形.故选B.10.(2019·营口市期中)路边有一根电线杆AB 和一块长方形广告牌,有一天,小明突然发现在太阳光照射下,电线杆顶端A 的影子刚好落在长方形广告牌的上边中点G 处,而长方形广告牌的影子刚好落在地面上E 点(如图),已知5BC =米,长方形广告牌的长4HF =米,高3HC =米,4DE =米,则电线杆AB 的高度是( )A.6.75米B.7.75米C.8.25米D.10.75米【答案】C【详解】如图,延长AG交BE于N点,则四边形GNEF是平行四边形,故NE=GF=2,BN=5+4+4-2=11米,∴AB DF BE DE=,∴3 114 AB=,∴AB=8.25米.故选C.知识点二中心投影中心投影概念:由同一点 (点光源) 发出的光线形成的投影叫做中心投影。
刘蒋巍高考数学串讲第1讲:集合与逻辑用语子集 已知集合{}13M x x =-<,1()1,2x N x x ⎧⎫=<∈⎨⎬⎩⎭Z ,则M N 的子集的个数是 .【答案】8已知集合{}22(,)(2)(1)1A x y x y =-+-≤,{}(,)2|1||1|B x y x y a =-+-≤,A B ⊆,则实数a 的取值范围是 .【答案】[2)+∞ 【解析】画图可知,要使A B ⊆,则0a >,且点(2,1)到直线230x y a +--=的距离不小于1,即1≥,解得2a ≥,即a 的取值范围是[2)++∞.交并补 设集合{}2[]2A x x x =-=和{}||2B x x =<,其中符号[]x 表示不大于x 的最大整数,则A B = .【答案】{- 【解析】因为2x <,[]x 的值可取2,1,0,1--. 当[x ]=2-,则20x =无解;当[x ]=1-,则21x =,所以x =1-;当[x ]=0,则22x =无解;当[x ]=1,则23x =,所以x所以1x =-集合A ={x |x =3n ,n ∈N ,0<n <10},B ={y |y =5m ,m ∈N ,0≤n ≤6}则集合A ∪B 的所有元素之和为__________________.【答案】225 【解析】A ∩B ={15};故所求和=(3+6+…+27)+(0+5+…+30)-15=225.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是 .【答案】0 【解析】因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0.空集若集合{}1,A ax x ==+∈R 为空集,则实数a 的取值范围是 . 【答案】⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,6131,逻辑用语“224+<”是“422x y+>+”成立的( ).xy x y(A) 充分但不必要条件(B) 必要但不充分条件(C) 既不充分也不必要条件(D) 充分必要条件【答案】A 【解析】由422(2)(2)0x y<<或2,2>>;+>+⇔-->⇔2,2x yxy x y x y而22422+<⇒-<<,且22x y x⇒+>+. 故选A.xy x y-<<422y。
高考数学串讲(四) 应用问题一,基础知识1,概率与统计(1)等可能性事件的概率(古典概型)。
试验由个基本事件组成,所有结果等可能出现,如果某个事件A 包含的结果有个,n m 那么事件A 的概率为。
()m P A n=(2)互斥事件的概率:;()()()P A B P A P B +=+对立事件的概率:。
()1()P A P A =-(3)相互独立事件的概率:①若与互相独立,则;A B ()()()P A B P A P B ⋅=⋅②如果在一次试验中某事件发生的概率是,则在次独立重复试验中这个事件p n 恰好发生次的概率为:。
k ()(1)k k n kn P n k C p p -==-(4)离散型随机变量的分布列与期望:设离散型随机变量的分布列为:()ξ()i i P x x p ==1,2,,i n =⋅⋅⋅⋅⋅⋅则的期望。
ξ1122n n E x p x p x p ξ=++⋅⋅⋅++⋅⋅⋅其中①;②。
01i p ≤≤121n p p p ++⋅⋅⋅++⋅⋅⋅=2,求函数最值的常用方法(1)一次函数:①根据函数的单调性求解;②运用线性规划的方法求解。
(2)二次函数:①运用配方法求解;②运用数形结合求解。
(3)其它函数:①配方法:如,求函数的最小值。
,x R +∈设21()f x x x x=-+配成。
22()(1)1f x x=-++②求导法,运用函数的单调性求解。
③判别式法:如,求的最大值和最小值。
222321x x y x x --=++④不等式法:(i ),则;(ii )。
0,0a b >>a b +≥cos 1,sin 1x x ≤≤⑤换无法:当时,求函数的最小值。
04x π<<22cos ()cos sin sin xf x x x x =-⑥数形结合法。
二,跟踪训练1,(05江西)A,B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片,规定掷硬币的次数达9次时,或ξ在此前某人已赢得所有卡片时游戏终止。
例题精讲例题一:从0按从小到大的顺序连到100,你看到了什么小动物?〖难度〗:3 难度9个梯度,1-3为容易4-6为中档7-9为偏难〖考点〗:100以内数的认识〖分析〗:题目中要求从0连到100,这一点考查了学生对100以内数的熟记程度;题目还要求学生要按从小到大的顺序连,这一点考查了学生是否知道100以内数的大小关系,而连完之后会看到什么小动物反倒不是题目的考查重点,知识利用了学生的好奇心来提高学生的做题兴趣。
〖详解〗:首先找出图中所有的数字为:0 5 10 20 15 25 30 35 40 45 95 10055 50 65 60 90 85 80 75 70;然后再从小到大排列:0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100;然后再依次在图中连接。
〖答案〗:小狗〖举一反三〗:送小动物上火车。
解析:“10个十”既考查学生的整十的加法,又考查了学生对于一百的大小写的认识,10个十=一百;四十七前面的一个数=四十六;七十二前面的第三个数=72-3=69;七十九后面第5个数=79+5=84。
例题二:1.小明拿着20元钱,可能买了哪些东西?花了多少钱?(每件商品只有一个)2.找回多少钱?〖难度〗:4 难度9个梯度,1-3为容易4-6为中档7-9为偏难〖考点〗:题的第一问考查学生100以内数的大小判断、有关钱的计算和两位数和一位数或者两位数的加法;第二问是在第一问的基础上进行考查,考查学生对100以内的数的减法的掌握程度。
〖分析〗:小明手中有20元钱,21元的汽车比20元要贵;18元的洋娃娃比20元少2元,可以购买,但是货架上没有2元或者比两元少的商品,所以只能买一个商品;13元的玩具熊比20元少7元,所以在可以购买玩具熊的同时,可以购买等于或者少于7元的商品,所以7元的相框和13元的玩具熊刚好凑够20元,或者5元的皮球和13元的玩具熊可以一起购买,这是还剩2元,不能再购买其他的商品;7元的相框和5元的玩具熊加一起是12元,比20元少8元,而剩下的8元不能再购买其他的商品。
考研数学的命题特点1. 基础性【例一】极限定义1、lim x →∙是什么?(lim n →∞是什么?)①lim x →∙1)“x →∙”存在六种情形 (1)0x x →00,0,x x εδ∃><-< (2)0x x +→00,0,x x εδ∃><-<(3)0x x -→00,0,x x εδ∃><-<(4) x →∞0,,X x X ∃>> (5) x →+∞0,,X x X ∃>> (6) x →-∞0,,X x X ∃><-2极限趋向的“过程性”——若lim x →∙f(x)∃,则f(x)在x →∙时处处有定义(命题A ⇒B ,则B ⇒A )故有:若f(x)在x →∙时至少一点无定义,⇒lim x →∙f(x)不存在。
(2016)求0lim x →1sin sin()1sin()x x x x⎛⎫ ⎪⎝⎭【分析】x →∙,xsin(1x)→0x ~0, sinx ~x. 狗~0,sin 狗~狗xsin(1x )→0, xsin(1x )~sin(xsin(1x))故原式=1知道为什么这么做不对吗?来看看正解吧!【正解】当x=π1k ,|k|充分大,xsin(1x )=0。
还记得极限的定义吗?0x →时可以取到0嘛?答案当然是不可以!但是却可以取到除零外任意小的点,例如取x=π1k ,此时xsin(1x )的极限=0。
所以xsin(1x)在时0x →不能叫0→,而叫做无穷小量。
故f(x)= 1sin(sin())1sin()x x x x在x=π1k 处无定义,⇒原极限不∃ ②lim n →∞n →∞只有一种情形,专指n →+∞∃N>0, n>N(注意n 是自然数,没有负的,而且都是整数,所以是离散的) 2、极限定义 ①函数极限的定义 若0lim x x →f(x)=A ⇔∀ε>0, ∃δ>0,当0<|x-x0|<δ时,|f(x)-A|<ε②数列极限的定义。
专题10 几何初步(知识大串讲)【知识点梳理】考点1:认识平面图形和立体图形、图形分类⑴几何图形:几何图形是数学研究的主要对象之一。
几物体的形状、大小和位置关系是何研究的内容。
像长方体、圆柱、球、长方形、正方形、圆、线段、点、三角形、梯形……它们都是几何图形。
⑵立体图形:有些几何体(如长方体、正方体、圆柱、圆锥、棱柱、棱锥、球等)各个部分都不在同一平面内,它们是立体图形。
⑶平面图形:有些几何图形(如线段、角、三角形、长方形、正方形、平行四边形、梯形、圆等)的各部分都在同一平面内,它们是平面图形。
考点2:立体图形的展开图立体图形的展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为立体图形的展开图。
如正方体的展开图有如下几种情况:中间四个面,上下各一面:中间三个面,一二隔河见:中间两个面,楼梯天天见: 中间没有面,两两连成线:考点3:点、线、面、体。
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
点动成线,线动成面,面动成体。
【典例分析】【考点1 认识平面图形和立体图形、图形分类】1.如图,该几何体的截面形状是()A.三角形B.长方形C.圆形D.五边形【答案】B【解答】解:观察图形,截面与底面平行,得到截面形状是长方形.故选:B.2.如图的图形绕虚线旋转一周,可以得到的几何体是()A.B.C.D.【答案】C【解答】解:如上图的图形绕虚线旋转一周,可以得到的几何体是,故选:C.3.下列平面图形绕轴旋转一周,可得到如图几何体的是()A.B.C.D.【答案】C【解答】解:观察可以看出只有选项C符合题意.故选:C.4.下列立体图形中,各面不都是平面图形的是()A.B.C.D.【答案】B【解答】解:A、四棱锥由四个平面组成,故此选项不符合题意;B、圆锥由一个平面和一个曲面组成,故此选项符合题意;C、六棱柱由八个平面组成,故此选项不符合题意;D、三棱柱由五个平面组成,故此选项不符合题意;故选:B.5.下列图形旋转一周,能得到如图几何体的是()A.B.C.D.【答案】A【解答】解:A、将图形绕直线旋转一周,能得到如上图的几何体,故A符合题意;B、将图形绕直线旋转一周,不能得到如上图的几何体,故B不符合题意;C、将图形绕直线旋转一周,不能得到如上图的几何体,故C不符合题意;D、将图形绕直线旋转一周,不能得到如上图的几何体,故D不符合题意;故选:A.6.我们知道,圆柱是由长方形绕着它的一边所在直线旋转一周得到的,下列绕着直线旋转一周能得到下图的是()A.B.C.D.【答案】A【解答】解:A.绕着直线旋转一周能得到上图所示的几何体,故A符合题意;B.绕着直线旋转一周不能得到上图所示的几何体,故B不符合题意;C.绕着直线旋转一周不能得到上图所示的几何体,故C不符合题意;D.绕着直线旋转一周不能得到上图所示的几何体,故D不符合题意;故选:A.7.某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出如图所示的无盖长方体盒子,制作过程如下:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.则该无盖长方体盒子的体积可以表示为()A.b(a﹣b)2cm3B.b(a﹣b)2cm3C.b(a﹣2b)2cm3D.b(a﹣2b)2cm3【答案】D【解答】解:由题意得,这个长方体的底面是边长为(a﹣2b)的正方形,高为b,所以体积为(a﹣2b)(a﹣2b)×b=b(a﹣2b)2(cm3),故选:D.8.下列图中所示的球、圆柱、正方体的重量分别都相等,三个天平分别都保持平衡,那么第三个天平中,右侧秤盘上所放正方体的个数应为()A.5B.4C.3D.2【答案】A【解答】解:设一个球的质量为a,一个圆柱体的质量为b,一个正方体的质量为c,由题意得,2a=5b,2c=3b,即a=b,c=b,∴3a=b,5c=b,即3a=5c,∴右侧秤盘上所放正方体的个数应为5,故选:A.9.有一种用于海水养殖的网箱,单体是一个无盖的长方体,它的侧面和底面用网布缝制,长,宽,高分别为a,b,c(如图1所示),如果按照图2所示的方式连续制作n个网箱(相邻网箱间只用一层网布隔断),那么这几个网箱网布的总面积为()A.bc+n(ab+bc+2ac)B.2n(ab+bc+ac)C.n(ab+2bc+2ac)D.bc+n(ab+2bc+2ac)【答案】A【解答】解:一个长方体的网布总面积为:ab+2ac+2bc.两个连在一起的网布总面积为:2ab+3bc+4ac=bc+2(ab+bc+2ac).三个连在一起的网布总面积为:3ab+4bc+6ac=bc+3(ab+bc+2ac).依此类推,n个连在一起的网布总面积为:bc+n(ab+bc+2ac).故选:A.10.有一个正方体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2022次后,骰子朝下一面的点数是()A.5B.3C.4D.2【答案】B【解答】解:由图可知:3和4相对,2和5相对,1和6相对,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,骰子朝下一面的点数依次为2,3,5,4,且依次循环,∵2022÷4=505......2,∴滚动第2022次后,骰子朝下一面的点数是:3,故选:B.【考点2 立体图形的展开图】11.一个正方体盒子的每个面上都写了一个字,其平面展开图如图所示,那么在这个正方体盒子的表面上,与“喜”相对的字是()A.建B.党C.百D.年【答案】C【解答】解:根据正方体表面展开图的“相间、Z端是对面”可知,“喜”与“百”是对面,故选:C.12.下列图形,能折叠成圆锥的是()A.B.C.D.【答案】C【解答】解:A.是圆柱的展开图,故本选项不合题意;B.是五棱柱的展开图,故本选项不合题意;C.是圆锥的展开图,故本选项符合题意;D.是三棱柱的展开图,故本选项不合题意.故选:C.13.如图是一个正方体的展开图,将它折叠成正方体后,有“喜”字一面的对面上的字是()A.我B.欢C.数D.学【答案】C【解答】解:有“喜”字一面的对面上的字是:数.故选:C.14.如图是一个几何体的展开图,则这个几何体是()A.B.C.D.【答案】B【解答】解:侧面为3个长方形,底边为三角形,故原几何体为三棱柱.故选:B15.如图是某一正方体的平面展开图,则该正方体是()A.B.C.D.【答案】D【解答】解:由正方体的展开图可知,两个圆是相对的面,故选项A、B不合题意;没有阴影的圆与直角三角形的直角相邻,故选项C不合题意;选项D符合该正方体的平面展开图,故选:D.16.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.【答案】D【解答】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.【考点3 点、线、面、体】17.“枪挑一条线,棍扫一大片”,从数学的角度解释为()A.点动成线,线动成面B.线动成面,面动成体C.点动成线,面动成体D.点动成面,面动成线【答案】A【解答】解:“枪挑一条线,棍扫一大片”,从数学的角度解释为:点动成线,线动成面,故选:A.18.“汽车的雨刷在挡风玻璃上画出一个扇面”可以说是()A.面与面交于线B.点动成线C.面动成体D.线动成面【答案】D【解答】解:汽车的雨刷把玻璃上的雨水刷干净,是运用了线动成面的原理,故选:D.19.在长方形ABCD中,AB=3,BC=2,把该图形沿着直线AB所在直线旋转一周,所围成的几何体的体积是()A.4πB.6πC.12πD.18π【答案】C【解答】解:如图:该图形沿着直线AB所在直线旋转一周,AB=3,BC=2,所围成的几何体的体积是V=πBC2×AB=π×22×3=12π.故选:C.20.角可以看成是由一条射线绕着它的端点旋转而成的,这体现了()A.点动成线B.线动成面C.面动成体D.线线相交得点【答案】B【解答】解:角可以看成是由一条射线绕着它的点旋转而成的,这体现了:线动成面,故选:B.。