电磁炉IGBT简介[1].
- 格式:doc
- 大小:539.00 KB
- 文档页数:22
电磁炉的工作原理与维修及IGBT管型号和主要参数第一单元电磁加热原理电磁炉是一种靠电磁场加热食物的灶具。
我们知道:家用电器中的变压器工作时,铁芯会发热,如图1所示。
为防止发热过多,浪费电能,铁芯用导磁率高的硅钢片叠压而成,以减小涡流的热效应。
理论和实践证明:涡流与磁感应强度成正比,与交流电频率的平方成正比。
因此,电磁炉要达到一定的热交换功率,必须有能产生高磁感应强度的交变磁场线圈,还必须提高交流电的频率以提高涡流功率。
一般情况下,流过电磁炉线圈的交流电频率在15KHZ——30KHZ之间。
电磁炉的工作原理是:当线圈中通过高频电流时,线圈周围产生高频交变磁场,在高频交变磁场的作用下,铁质锅底中产生强大的涡流,锅底迅速释放出大量的热量,达到加热目的,其工作示意图如图2所示。
为了能在线圈中形成15KHZ——30KHZ的高频电流,电磁炉中设有变频电路,就是将整流滤波后的直流电变换高频交流电,其电路原理简图如图3所示。
当220V交流电经DB1桥堆整流、L1和C1滤波后,形成+300V左右的直流电压,经线圈L2加到IGBT的漏极上,当开关脉冲高电平到达IGBT的栅极时,IGBT导通,内阻很小,电流由DB1的“+” -- L1-- L2 --IGBT漏极--源极--地---DB1的“—”极,把电能转化成磁能储存在加热线圈中。
当开关脉冲低电平到达IGBT的栅极时,IGBT截止,由于L2线圈中的电流不能突变,只能通过C2放电,即给C2充电,把磁场能转化成电场能,随后电容C2又向L2放电,如此周而复始,形成谐振,直到下一个开关脉冲高电平到达IGBT的栅极时,又重复上述过程。
L2线圈产生的高频磁场,于是在铁质平底锅底便产生了强大的涡流,锅底迅速发热,加热结圈中的电磁能转化成为热能。
常用的几种加热器具对照表:加热器具液化器炉普通电饭锅(电炒锅)电磁炉加热方式气体燃烧加热(热传导)电流通过电阻后发热(热传导)电磁感应,锅自身发热效率40%——50%50%——60%高于80%有无有害气体有无无安全系数低中高缺点效率低、安全性差效率低电路复杂第二单元电磁炉特殊元器件介绍一、陶瓷板:陶瓷板是微晶陶瓷板的简称。
电磁炉igbt是什么?电磁炉损坏IGBT 功率管主要原因分析电磁炉igbt是什么:IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。
非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
电磁炉损坏IGBT功率管主要原因分析:笔者总结了以下八个原因,欢迎讨论。
原因一:0.3uF/1200V谐振电容、5uF/400V滤波电容损坏或容量不足在电磁炉中,若0.3uF/1200V谐振电容、5uF/400V滤波电容容量变小、失效或特性不良,将导致电磁炉LC振荡电路频率偏高,从而引起功率管IGBT管损坏,经查其他电路无异常时,我们必须将0.3uF和5uF电容一起更换。
原因二:IGBT管激励电路异常振荡电路输出的脉冲信号不能直接控制IGBT管饱和、导通与截至,必须通过激励电路将脉冲信号放大来完成。
如果激励电路出现故障,高电压就会加到IGBT 管的G极,导致IGBT管瞬间击穿损坏。
常见为驱动管S8050、S8550损坏。
原因三:同步电路异常同步电路在电磁炉中的主要是保证加到IGBT G极上的开关脉冲前沿与IGBT管上VCE脉冲后沿同步。
当同步电路工作异常时,导致IGBT管瞬间击穿损坏。
原因四:18V工作电压异常在电磁炉中,当18B工作电压异常时会使IGBT管激励电路、风扇散热系统及LM339工作失常导致IGBT管上电瞬间损坏。
原因五:过热电磁炉工作在大电流状态下,其发热量也大,如果散热系统出现异常会导致IGBT管过热而损坏。
电磁炉的IGBT工作原理是什么IGBT这个场控器件,也叫绝缘栅双极型晶体管,用的地方很多。
小到家用电器,如电磁炉、开关电源,高大上的就是高铁也用,在工业用如变频器、交流电机等,其实很多领域都离不开它。
从外观上看,跟晶体三极管几乎一个模子。
IGBT的结构图如下IGBT属于三端器件,由栅极(G)、集电极(C)、发射极(E)构成。
上图所示的IGBT双极型晶体管跟VDMOSFET组合的,其中多出来的一层P+是为了实现对漂移区的电导率进行调制,使IGBT具有很强的流通能力。
IGBT的工作原理:IGBT的简化等效电路图如下这个IGBT是达林顿结构的简化等效电路图,由MOSFET跟GTR 组成。
IGBT的通与断取决于栅极(F)跟发射极(E)之间的电压UGE。
当IGBT的UGE电压为正时,且高于其阀值电压,那么MOSFET内会形成沟道,此时GTR就会得到基极电流使IGBT导通。
当栅极与发射极加反向电压或不供信号,那么MOSFET内的沟道会消失,此时GTR 的基极电流会被切断,使IGBT关断。
由于电导调制效应使得基极电阻RN减小,因此耐高压的IGBT也具有较小的通态压降。
电磁炉的IGBT对于电磁炉来说非常重要,可谓是它的心脏,但是这个心脏很容易出事,如果电磁炉发生故障,50%的可能是这个元器件坏了,下图是电磁炉常用的IBGT管H20R1203,现在价格一般是5块左右,这要是在以前价格起码得10块,这种IGBT管一般是由仙童,不过已被ON收购,还有英飞凌,英飞凌是很多人都认为质量最好的,不仅市场巨大,质量也很好,还有东芝的,国产的不多。
电磁炉电路以及原理如下图是电磁炉等效工作原理图,1、低压电源主要是5V、12V、18V或者24V低压供电,是给IC供电、直流风扇供电驱动、IGBT驱动等电路电压供电;2、功率控制使控制电磁炉的IGBT导通频率,控制电磁炉输出功率大小;3、系统检测主要是检测锅具的温度,也就是NTC温度,还有IGBT模块温度等,从而对系统做出相应的反应;4、显示电路一般都有数码屏,主要是显示各项参数,属于人机交互,价格低廉一点的也会有LED指示;5、主控制电路是电磁炉谐振电路,产生涡流来产生热量如下图,市电220V经过整流桥DB1、电感L1、电容C1后形成310V脉动直流电,这时候IGBT导通,电流流向:整流桥DB1正端→L1→锅底加热线圈→IGBT→整流桥DB1负端,就这样把电能转换成磁能并储存在锅底加热线圈当中当IGBT截止时候,由于锅底加热线圈电流不能突变,只能通过放电,把磁场能转化成电场能,随后C2又向锅底加热线圈放电,这样不断充放电,形成谐振,不断产生涡流。
电磁炉igbt工作原理
电磁炉使用了一种称为IGBT(绝缘栅双极性晶体管)的功率
半导体器件,其工作原理如下:
1. 电源输入:当电磁炉接通电源时,交流电会先经过整流器转换为直流电。
2. 电流变换:直流电经过逆变器,被转换为高频交流电。
逆变器的核心部件就是IGBT。
3. IGBT工作原理:IGBT由三个部分组成——NPN型晶体管(一个底面接收器和一个集电极)、PNP型晶体管(基极和
发射极)以及一个嵌入在P型层中的绝缘栅。
当控制信号施
加在绝缘栅上时,可以控制NPN型晶体管和PNP型晶体管之
间的电流传输。
4. 控制信号:控制信号根据设定的加热功率和温度需求,通过控制电路添加或减少,并传递给IGBT。
5. 高频电流输出:通过控制和调整IGBT的导通和关断时间,
高频电流被传送到线圈中。
线圈内的磁场产生了交变的磁通量。
6. 感应加热效应:当放置在电磁炉上的铁质或者感应层底部的铁质锅具进入磁场后,感应层内的铁质材料会形成涡流(感应电流)。
涡流会在锅底产生热量,进而加热食物。
7. 加热控制:电磁炉内的传感器会感知锅具的温度变化,通过
反馈传给控制电路。
控制电路会根据反馈信号和设定的加热功率,调整IGBT的控制信号来控制加热温度。
电磁灶IGBT管的代换技巧(一)2010-11-17 15:17:36 来源:《无线电》杂志作者:王德沅【大中小】浏览:1263次评论:0条IGBT是Insulated Gate Bipolar Transistor的缩写,中文名称为“绝缘栅双极型功率管”,是由“双极型”三极管和绝缘栅型场效应管两者复合而成的全控制型电压驱动式电力电子器件。
现在这种器件已经广泛应用于电磁炉、电饭煲、变频空调、变频洗衣机等家电及工农业设备中。
在电磁炉产品中,IGBT几乎是不可缺少的功率电子器件。
由于电磁炉工作在高温、高压、大电流状态下,所处环境大多比较恶劣,所以IGBT损坏比较多见,尤其是一些自身质量不佳的或代换不妥的IGBT管更容易发生故障。
经常有读者朋友问及各种各样的IGBT的特性、种类和代换等问题,这里先以电磁炉中应用十分广泛的东芝公司IGBT产品为例介绍一些这方面的实用知识,以飨读者,以后有机会再介绍其他公司的产品和代换。
东芝IGBT器件型号命名和代换“某某IGBT内部是否带有阻尼管?”是读者来信来电中询问最多的问题之一。
例如,有读者问及一台电磁炉中的西门子IGBT损坏,型号为BUP304,称当地只能购到东芝公司的GT50T101,不知其是否内带阻尼二极管,参数如何,能否代换BUP304?其实,对于东芝IGBT产品,从型号上就可知道管子是否内含阻尼管。
东芝IGBT的型号由6个部分数字、字母组成,如图1所示。
其中第一部分GT表示为IGBT;第二部分用数字表示电流等级(极限参数值,电压也一样),单位为A,60就是电流参数IC为60A ;第三部分用字母表示电压等级(VCES,),具体字母对应的耐压已经标示在图1下面的表格中;第四部分用数字表示管子沟道的类型和管子是否内含阻尼(续流)二极管,如果数字是“3”就表示该管内含阻尼二极管,而1、2就是不带阻尼管的品种,所以只要看型号第四部分就能区分该管是否内含阻尼管,不必再去查找资料或向别人咨询,是不是特别方便?第五、六部分分别表示管子的类型和版本。
电磁炉igbt工作原理电磁炉是一种使用电磁感应原理进行加热的厨房电器。
它使用高频电源产生的高频电流通过线圈产生交变磁场,使放在上面的锅具内部产生涡流,从而将锅具加热。
电磁炉内部主要由功率调节器、中频电路、线圈和悬浮感应电磁铁四个部分组成。
功率调节器是电磁炉控制功率输出的关键部分。
它通过检测锅具的温度和用户设定的加热功率,控制中频电路输出的电流大小,从而实现对加热功率的调节。
常见的功率调节方式有脉宽调制和频率调制。
脉宽调制是通过控制中频电路输出的脉冲波的占空比来调节加热功率大小。
频率调制则是通过改变中频电路的工作频率来实现功率调节。
中频电路是电磁炉的核心部件,它由功率管、IGBT(绝缘栅双极型晶体管)和其他电子元件组成。
中频电路负责将220V的交流电转换成数千赫兹甚至上百万赫兹的高频交流电。
高频交流电通过线圈产生交变磁场,进而在放在上面的锅具内部产生涡流,从而实现加热。
中频电路的关键部件是IGBT,它是一种功率管,具有高电压、高电流和高开关速度的特点。
IGBT通过开关控制电流的导通和切断,从而实现功率调节。
线圈是电磁炉用于产生交变磁场的部分,通常由铜导线绕成。
线圈中的电流随着中频电路的工作而变化,产生交变磁场,进而感应导体内部的涡流。
线圈的设计需要考虑电流的大小和频率,以及与锅具之间的磁耦合效应。
悬浮感应电磁铁是一种用于支撑锅具的装置。
它由导体和电磁铁组成,放在电磁炉的工作平台上。
电磁铁在通电时会产生磁场,通过磁感应定律感应导体内的涡流,从而使导体受到磁场的反作用力,从而支撑锅具。
利用这种原理,锅具可以悬浮在电磁炉上方,不直接接触电磁炉的表面,避免了传统炉灶的接触式加热,有效降低了热损失和热辐射,提高了加热效率。
总的来说,电磁炉利用高频电源产生的高频电流,通过线圈产生交变磁场,感应锅具内部的涡流,从而将锅具加热。
功率调节器用于控制加热功率的大小,中频电路实现电能的转换和放大,线圈产生交变磁场,悬浮感应电磁铁用于支撑锅具。
本文结合IGBT在电磁炉中的典型应用,对其工作原理作了详尽的分析,利用指针式万用表对其进行静态和动态测量作一讲述。
1.IGBT的结构IGBT管是功率场效应管与双极性晶体三极管(NPN 或PNP)复合后的一种新三极管,其输入管为绝缘栅场效应晶体管,输出管为双极性晶体三极管,内部结构及对应的电路符号如图1所示。
输入管的漏极通过一只电阻与输出管的基极相连。
输入管的源极与输出管的集电极并接在一起构成IGBT管的发射极e,输入管的栅极仍为IGBT管栅极G,输出管的发射极成为IGBT管的集电极C。
从图1可以看出,NPN型的IGBT管内部配接的是PNP型的三极管,PNP型的IGBT管内部配接的是NPN型的三极管。
IGBT管一旦导通,由于栅极电流恒为零。
所以集电极电流与发射极电流相等,即Ie=Ic。
对于绝缘栅双极性场效应晶体管的命名,现在还没有统一的方法及规定,常用的NPN型IGBT管型号有:GNl2050E、GNl2030E等。
IGBT管制作时,在其内部c、e极之间并接一只二极管,就构成带阻尼的场效应晶体管。
它主要用在与感性器件相连的开关、脉冲电路中,且多为NPN型。
其内部结构、电路符号如图2所示,常用的型号有:GT40T301;IRG4ZH70VD、FGA25N102等,外形图如图3所示。
2.IGBT的特性IGBT管工作时,用栅极电压控制内部场效应管导电沟道的形成。
进而控制集电极、发射极电流的大小。
其工作电流一般都在20A以上,功率在1kW以上。
目前,IGBT的控制电压高于3V即可,最高工作频率已超过150kH,最高反压Vcbs大于1700v,Ioa已超过800A,PCM已达3000W,Ton小于50ns。
IGBT 管广泛用于大功率电压谐振变换电路中,如电磁炉、汽车电子点火器、变频器等产品。
3.IGBT的典型应用图4为IGBT管在电磁炉中的典型应用简图。
电路包括四部分:主电源整流滤波电路、电磁调振回路L2、C3 滤波得到的约300V电压,经过L2、C3组成的谐振回路加到T1的集电极C,回路得到能量产生LC电磁振荡,L2中的高频电流产生交变的磁场,饭锅处在线圈的上部,金属锅底处在磁场中将产生涡流。
电磁炉的工作原理与维修及IGBT管型号和要紧参数电磁炉是一种利用电磁感应原理进行加热的厨房电器。
它通过在底部放置一块铁磁性材料,通过电磁感应加热锅底,从而实现加热食物的目的。
本文将详细介绍电磁炉的工作原理、维修方法以及IGBT管的型号和要紧参数。
一、电磁炉的工作原理电磁炉的工作原理基于电磁感应现象。
当电磁炉通电时,内部线圈产生一个交变电流,形成一个交变磁场。
当放置在电磁炉上的铁磁性锅底接触到磁场时,锅底内部的分子开始运动,摩擦产生热能,从而加热锅底和食物。
具体来说,电磁炉的工作原理包括以下几个步骤:1. 电磁炉内部的线圈通电,产生一个交变电流。
2. 交变电流产生一个交变磁场。
3. 放置在电磁炉上的铁磁性锅底接触到交变磁场。
4. 锅底内部的分子开始运动,摩擦产生热能。
5. 热能传导到食物中,使其加热。
通过这种工作原理,电磁炉能够快速、高效地加热食物,相比传统的燃气炉具有更快的加热速度和更高的能量利用率。
二、电磁炉的维修方法1. 电源故障:如果电磁炉无法启动或无法正常工作,首先检查电源是否正常。
可以尝试将电磁炉插入其他插座进行测试,或者检查电源线是否损坏。
如果电源线损坏,应及时更换。
2. 控制板故障:如果电磁炉的控制面板无法正常操作,可能是控制板故障。
可以尝试重新启动电磁炉或者重置控制面板。
如果问题仍然存在,可能需要更换控制板。
3. 加热问题:如果电磁炉无法加热或加热不均匀,可能是加热元件故障。
可以检查加热线圈是否损坏或者松动,如果有问题,需要更换或者重新固定加热线圈。
4. 温度控制问题:如果电磁炉的温度控制不准确,可能是温度传感器故障。
可以检查温度传感器是否正常工作,如果需要更换,应选择与电磁炉型号相匹配的传感器。
5. 其他故障:除了上述常见故障外,电磁炉还可能出现其他问题,如电路板损坏、电源模块故障等。
对于这些故障,建议寻求专业维修人员的帮助进行修复。
三、IGBT管的型号和要紧参数IGBT管(Insulated Gate Bipolar Transistor)是一种常用于电磁炉等高功率电子设备中的功率开关元件。
电磁炉3极管有什么用途电磁炉3极管(也称为IGBT)是电磁炉控制电路的重要组成部分,其主要作用是将低压和低电流的控制信号转换成高电压和高电流。
在电磁炉中,3极管起到两个关键的作用:电流放大和开关控制。
首先,电流放大是3极管的主要功能之一。
在电磁炉中,电压经过变压器降低后,进入3极管。
3极管根据控制信号的大小,放大电流,然后通过线圈产生磁场。
这个磁场进一步激励锅底内的铁,使其产生感应电流,加热食物。
因此,3极管的电流放大作用是电磁炉运作的关键步骤之一。
其次,3极管也是电磁炉控制开关的重要元件。
在电磁炉加热过程中,需要根据控制信号的大小和频率,控制线圈的通断情况。
3极管的导通状态和截止状态可以通过外部信号来控制。
通过控制3极管的导通和截止,可以改变线圈的通断情况,从而调整电磁炉的加热功率和温度。
因此,3极管在电磁炉中起到了控制开关的作用。
除了上述的基本功能之外,3极管还有以下几个特点和用途。
首先,3极管有高速开关能力。
在电磁炉中,磁场的变化需要非常快速和精确地调整。
3极管的高速开关特性使其能够迅速响应电流和电压的变化,从而实现精确的控制。
其次,3极管具有大功率开关能力。
电磁炉工作时通常需要大功率的电流输出,以快速加热食物。
3极管的设计使其能够承受高电压和大电流的负载,从而满足电磁炉的高功率需求。
此外,3极管还有较低的开关损耗和导通能力。
电磁炉作为家庭电器,需要具有高效、低能耗的特点。
3极管的设计使其具有较低的开关损耗和导通能力,从而减少了功率转换过程中的能量损失。
另外,3极管还具有较高的温度稳定性和抗干扰能力。
在电磁炉的工作环境中,温度和电磁波等因素会对电路产生干扰。
3极管的设计和构造使其具有较高的温度稳定性和抗干扰能力,能够在恶劣环境下稳定地工作。
总结来说,电磁炉3极管在电磁炉中起到了核心的控制功能。
它能够通过放大电流和控制开关状态,实现对电磁炉的精确控制。
同时,3极管还具有高速开关、大功率、低能耗、温度稳定性和抗干扰等优点,能够适应电磁炉的工作环境要求。
学习电磁炉必须掌握的:IGBT的识别和检测IGBT的检测和识别是学习电磁炉必须掌握的知识点,希望大家花点时间围观。
中文名称为绝缘棚双极晶体管。
它是由双极型三极管和绝缘栅型场效应管组成的复合全控型电压驱动式电子元件。
双极型三极管饱包和压降低,载流密度大,但驱动电流较大。
而绝缘栅型场效应管驱动功率很小,开关速度快,但导通压降大,载流密度小。
lGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。
1.IGBT的认识认知技巧:(1)1GBT的外形和图形符号IGBT的外形与功率三极管及功率场效应管相同,随功率大小有各种封装形式。
IGBT的的3只引脚依次为控制极G、集电极C、发射极E。
常见IGBT的外形如下图所示。
(2)IGBT的主要参数IGBT的主要参数有工作频率,最高反压,最大电流,最大功率,导通时间等。
其中最高反压:是指集电极与发射极之间的最高反向击穿电压。
最大电流指集电极最大输出电流,最大功率指集电极最大耗散功率,这是IGBT的极限参数。
2.IGBT的的检测方法和技巧带阻尼二极管的IGBT的集电极与发射极单向导通,反向测量(黑笔接发射极,红笔接集电极)存在较小阻值,正向测量阻值为无穷大。
控控制极与集电极、发射极之间的正、反向阻值均为无穷大。
因此,若测量到两次或两次以上的较小阻值,则表明IGBT损坏。
3.IGBT的更换和代换。
更换时应采用同型号元件。
应急时替换元件的各项参数必须达到或超出原装元件的标准。
注意:如果替换件为不带阻尼二极管的IGBT ,需在集电极与发射极间加接一只阻尼二极管该阻尼二极管的正极接发射极,负极接集电极。
阻尼二极管的最大反向电压应在1500V以上。
所以在更换之前一定要弄清楚原IGBT的型号,这点很重要,这也是一个电子电路爱好者必须养成的好习惯!如果你喜欢,请关注:光头机电,欢迎指点!。
电磁炉常用IGBT管型号及主要参数目前,用于电磁炉的I G B T管主要由:A I R C H I L D(美国仙童)、I N F I N E O N(德国英飞凌)、T O S H I B A(日本东芝)等几家国外公司生产,各公司对I G B T管的型号命名不尽相同,但大致有以下规律:1.管子型号前半部分数字表示该管的最大工作电流值,如:G40××××、20N××××就分别表示其最大工作电流为40A、20A。
2.管子型号后半部分数字则表示该管的最高耐压值,如:G×××150××、××N120x××就分别表示最高耐压值为1.5kV、1.2kV。
3.管子型号后缀字母含“D”则表示该管内含阻尼二极管。
但未标“D”并不一定是无阻尼二极管,因此在检修时一定要用万用表检测验证,避免出现不应有的损失。
一只I G B T管的技术参数较多,包括反向击穿电压(B V c e o)、集电极最大连续电流(I c)、输出功率、工作频率等参数。
例:G40N150D反向击穿电压BV ce o(V)1500集电极最大连续电流Ic(A)40工作电压(V)1000输出功率(w)>2000工作频率(k Hz)<100栅板门限电压UG e。
(V)5.5集、射极间饱和电压Uc e(v)3.5集、射极间是否有阻尼保护二极管内含阻尼保护二极管但在实际修理中,一般只需了解其反向击穿电压(BVceo,又称最高耐压)、集电极最大连续电流(Ic,简称最大电流)及管内是否有阻尼二极管即可。
电磁炉为何要用IGBT管做功率管在电磁炉电路中,开关管扮演着非常重要的角色。
当开关管导通时,+300V经加热线圈、开关管以大电流给加热线圈充电,电能转化为加热线圈中的电磁能。
经测试,此时加在开关管上的电压约为十250V,工作电流在20A~40A之间。
如此大的工作电流,什么样的开关管才能安全稳定地工作呢?普通的M o s场效应管,虽然仅需微弱的驱动电压即可工作,但工作在高电压和大电流状态时,因内阻较大,管子发热快,难以长时间工作;大功率达林顿管虽然可以在高电压、大电流状态下长时间工作,但需要较大的驱动电流。
人们自然想到将场效应管与大功率达林顿管有机地结合的IGBT管,将场效应管作为推动管,大功率管作为输出管,在高电压、大电流状态下长期安全工作,并表现出极好的开关特性,输出功率可达1000W以上。
电磁炉IGBT管的代换1、替换管的代用参数大些比小的好对于功率在2000W以下的电磁炉可选用最大电流为20A或25A的I G B T管,如25Q101等;对于功率等于或大于2000W 的电磁炉应选用最大电流为40A的I G B T管,如G T40T301等。
如果一时没有大电流I G B T管,可用两只小电流的I G B T管并联(两只管的c、e、G极分别连在一起)代用。
2、注意内部是否含阻尼二极管在最高耐压、最大电流符合要求时,内含阻尼管的I G B T 管可以代换不含阻尼二极管的I G B T管;若用不含阻尼二极管的I G B T 管代换含阻尼二极管的I G B T管时,应在新换管的c、e极间加焊一只快恢复二极管。
型号如表所示:3、考虑封装和放置位置如果封装不符,又受到散热板上固定螺丝孔的限制,就要考虑调整IGBT管的安装位置;适当改动散热板。
若安装难度确实太大,应考虑另选代换管。
1.IGBT的基本结构绝缘栅双极晶体管(IGBT)本质上是一个场效应晶体管,只是在漏极和漏区之间多了一个 P 型层。
根据国际电工委员会的文件建议,其各部分名称基本沿用场效应晶体管的相应命名。
图1所示为一个N 沟道增强型绝缘栅双极晶体管结构,N+区称为源区,附于其上的电极称为源极。
N+ 区称为漏区。
器件的控制区为栅区,附于其上的电极称为栅极。
沟道在紧靠栅区边界形成。
在漏、源之间的P型区(包括P+和P一区)(沟道在该区域形成),称为亚沟道区(Subchannel region )。
而在漏区另一侧的 P+ 区称为漏注入区(Draininjector ),它是 IGBT 特有的功能区,与漏区和亚沟道区一起形成 PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。
附于漏注入区上的电极称为漏极。
为了兼顾长期以来人们的习惯,IEC规定:源极引出的电极端子(含电极端)称为发射极端(子),漏极引出的电极端(子)称为集电极端(子)。
这又回到双极晶体管的术语了。
但仅此而已。
IGBT的结构剖面图如图2所示。
它在结构上类似于MOSFET ,其不同点在于IGBT是在N沟道功率MOSFET 的N+基板(漏极)上增加了一个P+ 基板(IGBT 的集电极),形成PN结j1 ,并由此引出漏极、栅极和源极则完全与MOSFET相似。
图1 N沟道IGBT结构图2 IGBT的结构剖面图由图2可以看出,IGBT相当于一个由MOSFET驱动的厚基区GTR ,其简化等效电路如图3所示。
图中Rdr是厚基区GTR的扩展电阻。
IGBT是以GTR 为主导件、MOSFET 为驱动件的复合结构。
N沟道IGBT的图形符号有两种,如图4所示。
实际应用时,常使用图2-5所示的符号。
对于P沟道,图形符号中的箭头方向恰好相反,如图4所示。
IGBT 的开通和关断是由栅极电压来控制的。
当栅极加正电压时,MOSFET 内形成沟道,并为PNP晶体管提供基极电流,从而使IGBT导通,此时,从P+区注到N一区进行电导调制,减少N一区的电阻 Rdr值,使高耐压的 IGBT 也具有低的通态压降。
在栅极上加负电压时,MOSFET 内的沟道消失,PNP晶体管的基极电流被切断,IGBT 即关断。
正是由于 IGBT 是在N 沟道 MOSFET 的 N+ 基板上加一层 P+ 基板,形成了四层结构,由PNP-NPN晶体管构成 IGBT 。
但是,NPN晶体管和发射极由于铝电极短路,设计时尽可能使NPN 不起作用。
所以说, IGBT 的基本工作与NPN晶体管无关,可以认为是将 N 沟道 MOSFET 作为输入极,PNP晶体管作为输出极的单向达林顿管。
采取这样的结构可在 N一层作电导率调制,提高电流密度。
这是因为从 P+ 基板经过 N+ 层向高电阻的 N一层注入少量载流子的结果。
IGBT 的设计是通过 PNP-NPN 晶体管的连接形成晶闸管。
2.IGBT模块的术语及其特性术语说明3.IGBT模块使用上的注意事项1. IGBT模块的选定在使用IGBT模块的场合,选择何种电压,电流规格的IGBT模块,需要做周密的考虑。
a. 电流规格IGBT模块的集电极电流增大时,V CE(-)上升,所产生的额定损耗亦变大。
同时,开关损耗增大,原件发热加剧。
因此,根据额定损耗,开关损耗所产生的热量,控制器件结温(T j)在 150o C 以下(通常为安全起见,以125o C以下为宜),请使用这时的集电流以下为宜。
特别是用作高频开关时,由于开关损耗增大,发热也加剧,需十分注意。
一般来说,要将集电极电流的最大值控制在直流额定电流以下使用,从经济角度这是值得推荐的。
b.电压规格IGBT模块的电压规格与所使用装置的输入电源即市电电源电压紧密相关。
其相互关系列于表1。
根据使用目的,并参考本表,请选择相应的元件。
2. 防止静电IGBT的V GE的耐压值为±20V,在IGBT模块上加出了超出耐压值的电压的场合,由于会导致损坏的危险,因而在栅极-发射极之间不能超出耐压值的电压,这点请注意。
在使用装置的场合,如果栅极回路不合适或者栅极回路完全不能工作时(珊极处于开路状态),若在主回路上加上电压,则IGBT就会损坏,为防止这类损坏情况发生,应在栅极一发射极之间接一只10kΩ左左的电阻为宜。
此外,由于IGBT模块为MOS结构,对于静电就要十分注意。
因此,请注意下面几点:1)在使用模块时,手持分装件时,请勿触摸驱动端子部份。
2)在用导电材料连接驱动端子的模块时,在配线未布好之前,请先不要接上模块。
3)尽量在底板良好接地的情况下操作。
4)当必须要触摸模块端子时,要先将人体或衣服上的静电放电后,再触摸。
5)在焊接作业时,焊机与焊槽之间的漏泄容易引起静电压的产生,为了防止静电的产生,请先将焊机处于良好的接地状态下。
6)装部件的容器,请选用不带静电的容器。
3.并联问题用于大容量逆变器等控制大电流场合使用IGBT模块时,可以使用多个器件并联。
并联时,要使每个器件流过均等的电流是非常重要的,如果一旦电流平衡达到破坏,那么电过于集中的那个器件将可能被损坏。
为使并联时电流能平衡,适当改变器件的特性及接线方法。
例如。
挑选器件的V CE(sat)相同的并联是很重要的。
4.其他注意事项1)保存半导体原件的场所的温度,温度,应保持在常温常湿状态,不应偏离太大。
常温的规定为5-35℃,常湿的规定为45—75%左右。
2)开、关时的浪涌电压等的测定,请在端子处测定。
IGBT管好坏的检测I G B T管的好坏可用指针万用表的R x l k挡来检测,或用数字万用表的“二极管”挡来测量PN结正向压降进行判断。
检测前先将I G B T管三只引脚短路放电,避免影响检测的准确度;然后用指针万用表的两枝表笔正反测G、e两极及G、c两极的电阻,对于正常的I G B T管(正常G、C两极与G、c两极间的正反向电阻均为无穷大;内含阻尼二极管的IG B T管正常时,e、C 极间均有4kΩ正向电阻),上述所测值均为无穷大;最后用指针万用表的红笔接c极,黑笔接e极,若所测值在3.5kΩl左右,则所测管为含阻尼二极管的I G B T管,若所测值在50kΩ左右,则所测I G B T管内不含阻尼二极管。
对于数字万用表,正常情况下,IGBT管的C、C极问正向压降约为0.5V。
综上所述,内含阻尼二极管的I G B T管检测示意图如图所示,表笔连接除图中所示外,其他连接检测的读数均为无穷大。
如果测得IGBT管三个引脚间电阻均很小,则说明该管已击穿损坏;若测得IGBT管三个引脚间电阻均为无穷大,说明该管已开路损坏。
实际维修中IGBT管多为击穿损坏。
CY8C24423构成的电动车无刷控制器系统原文:PSoC在电动车无刷电机控制器上的应用作者:溧水县电子研究所缪鹏程马跃来源:网络电动车作为一种新型的代步工具,已经实实在在地被人民群众所接受。
尤其是在当前油价飞涨、摩托车牌照发放受限,汽车的梦想可望而不可即的情况下,电动车越来越受到老百姓的青睐。
在中国这样一个“自行车王国”,电动车的市场空间是值得期待的。
业内人士预测,未来几年内,电动车的容量几乎相当于自行车的市场容量,全国4.5亿辆自行车用户中至少有3亿的用户将成为电动车的用户。