压裂裂缝监测技术共48页
- 格式:ppt
- 大小:4.14 MB
- 文档页数:48
哈里伯顿压裂裂缝微地震监测说明2015年4月1.微地震数据采集方式井下微地震裂缝监测理论源于研究天然地震的地震学,主要为利用在水力压裂过程中储层岩石被破坏会产生岩石的错动(微地震)来监测裂缝形态的技术。
井下微地震监测法将三分量地震检波器(图1),以大级距的排列方式,多级布放在压裂井旁的一个或多个邻井的井底中(图2)。
三分量微地震检波器在压裂井的邻井有两种放置方式:一种是放置在邻井中的压裂目的层以上,用于邻井压裂目的层已射孔生产情况,由于收集微地震信号的检波器非常灵敏;为防止监测井内的液体流动对监测造成井内噪音,必须在射孔段之上下入桥塞封隔储层,然后将检波器仪器串下入到桥塞之上的位置。
另一种方法是将检波器放置在邻井中的压裂目的层位置上,这种情况检波器和水力裂缝都位于相同的深度和储层,此时声波传播距离最近、需要穿过的储层最少,属于最佳的观测位置,这种方式用于邻井的目的层未实施射孔生产的情况。
图1 三分量地震检波器图2 三分量地震检波器下井施工现场图3显示一个由5级检波器组成的仪器串在压裂井的邻井下入的两种布局方式:图中左边表示邻井已射孔的情况下,射孔段以上经过桥塞封堵,检波器仪器串放置在该井的目的层以上;图中右边表示邻井为新井的情况下,目的层未实施射孔,检波器仪器串放置在该井的压裂目的层位置上。
井下微地震压裂测试使用的三分量检波器系统检波器以多级、变级距的方式,通过普通7-芯铠装电缆或铠装光缆放置在压裂井的邻井中。
哈里伯顿使用采样速率为0.25ms的光缆检波器采集系统采集和传输数据。
常规的电缆一方面数据传输速率低,另一方面对于低频震动信号易受电磁波的干扰大。
采用铠装光纤进行数据传输不但传输速度快,并且允许连续记录高频事件,提高了对微小微地震事件的探测能力同时对微地震事件的定位更加准确,监测到的裂缝形态数据最为可靠。
图3 多级检波器系统在邻井的两种放置方式另外,由于检波器非常灵敏,井筒中的油气流动会很大程度的影响监测微地震事件的信噪比,如果监测井为已经射孔的生产井,需要在射孔段以上20米的位置下入桥塞,检波器仪器串底部下入到距离桥塞10米的位置。
压裂裂缝监测技术及应用【摘要】目前国内外油气田普遍采用裂缝监测技术了解水力裂缝扩展情况及其复杂性,将裂缝与油藏、地质相结合以评价增产效果,并制定针对性的措施。
目前形成的技术主要分为间接诊断、直接近井诊断、直接远场诊断等三类十多种方法,在B660、F142等区块开展了多口直井现场应用,并在F154-P1井采用多种监测方法对水平井多级分段压裂裂缝进行了监测试验。
通过裂缝监测技术的应用,大大提高了对裂缝复杂形态的认识。
【关键词】水力压裂;裂缝监测;微破裂成像;示踪陶粒;井下微地震裂缝监测技术是指通过一定的仪器和技术手段对压裂全过程进行实时监测和测试评价,通过数据处理,得到裂缝的方向、长、宽、高、导流能力、压裂液的滤失系数、预测产量、计算压裂效益等,从而评价压裂效果。
使用评价的结果可以验证或修正压裂中使用的模型、选择压裂液、确定加砂量、加砂程序、采用的工艺等,保证压裂施工按设计顺利进行并且取得最好的改造效果。
1、压裂裂缝监测技术裂缝监测的主要目的在于了解裂缝真实形态,并利用监测结果评价改造效果、储层产能、指导压裂设计。
目前国内外采用的裂缝监测技术可以分为地震学方法和非地震学方法,主要采用地面微地震、井下微地震、阵列式地面微地震和测斜仪阵列水准观测等技术。
1.1地面微地震技术1.1.1简易地面微地震简易地面微地震技术是采用最多的裂缝监测技术,该技术采用地震学中的震源定位技术,通过3-6个观察点接受的信号来定位震源。
该技术具有原理简单,费用低的特点,但对于埋藏的深油藏,井下微地震信号需要穿越多个性质不同的地层,因此只有震级高的脆性破裂信号可以被从噪音中区分出来,信号采集方面的缺陷降低了该技术的精确度。
目前在使用中多采用贴套管的微地震监测技术,通过在相邻井的套管上放置检波器来收受信号,可以在一定程度上避免这一问题,但是要求井距要小。
1.1.2微破裂成像技术微破裂成像裂缝监测技术采用埋在地表下30cm的20-30台三分量检波器,利用向量扫描技术分析目的层位发生的破裂能量分布,用能量叠加原理,解释出裂缝方位、裂缝动态缝长、裂缝动态缝高。
人工压裂裂缝的检测人工压裂直接关系到压裂效果。
压后产量及其稳产效果等都决定于人工裂缝的几何尺寸和裂缝方位,而裂缝方位有直接关系到井区的井网布置和开发政策。
压裂后对所产生裂缝的几何形态的检测是压裂施工的一项重要工作。
对目前国内外广泛采用几种不同的检测方法来综合分析。
裂缝高度的检测目前对水力压裂裂缝高度的检测技术中,效果比较好的有油井温度测量法和放射性同位素示踪法。
油井温度测量法是在压裂前先测出地层基准温度剖面,然后在压裂时将冷或热的压裂液压入裂缝中,在压裂结束后测的井温曲线在裂缝段会发生温度异常,根据井温曲线上的温度异常范围来确定裂缝的高度。
放射形同位素示踪法又分为两种方法,一是在支撑剂中加入示踪剂,压裂结束后用伽玛射线测井法测量裂缝中的放射形示踪剂确定裂缝的高度。
二是在施工的最后,在压裂液中加入示踪剂,再进行伽玛射线测井。
裂缝方位和几何尺寸的检测目前检测裂缝的方位和几何尺寸的主要方法是在裸眼井中用下井下电视测量、微地震测量、无线电脉冲测量等方法对裂缝进行探测,通过传送系统在地面进行实时显示,根据图象观察和分析裂缝的方位和几何形态。
地层人工裂缝监测方法有诸多,其中以微地震方法最为及时、直接、可靠。
当压裂井实施压裂形成人工裂缝时,沿裂缝面必然出现微震,微震震源的分布反映了人工裂缝的轮廓。
根据监测结果可以汇出裂缝的形态、方位、高度、产状,从而弄清油田地应力方向。
井温测井可用来评估水力裂缝高度,通常可根据压裂作业后很短时间进行的关井测井曲线上的高温异常或低温异常来确定。
挤入的压裂液一般比被压裂地层的的温度低,在压裂过程中,低温压裂液被挤入裂缝,而井周未被压裂的地层散热从而降温。
关井后,对应着未压开地层的井眼部位,通过非稳态的辐射热传导方式,温度逐渐转回至地热温度;在被压开地层段,主要以热传导方式升温。
由于辐射热交换比热传导交换的速度快,因此被压开地层的升温相对慢,所以在相应的井温曲线上呈现低温异常。
利用动态资料识别裂缝油藏注水后,注入水很容易沿裂缝窜进,使沿裂缝方向上的采油井见水快,油藏含水上升快,可能在很短的时间内就进入高含水阶段,而位于裂缝两侧的油井见效慢,压力恢复慢。
压裂施工井下监测技术简介二O 一七年五月二十五日压裂施工井下监测技术简介1 开展压裂施工井下监测的目的意义水力压裂是油气层增产的最有效方法之一,目前尽管水力压裂在理论、设备、工艺技术等方面都有了较快的发展,但在现场施工中仍存在不少问题。
例如现场施工时如何根据施工曲线确定裂缝类型、裂缝的延伸状况及准确获得裂缝的几何尺寸、滤失系数、闭合压力、闭合时间、地层主应力等都没得到有效的解决。
随着油气藏整体压裂技术的发展,压裂的实时监测及压后评估技术必将受到广泛重视,相应的压力分析及解释技术也急需进一步的发展和完善。
此外,同一区块一口井的压裂测试和解释,对于准确取得压裂所需要的参数并即时修改压裂设计是非常必要的,从而为下一次压裂措施作业提供借鉴和指导作用,这也是近年来实时监测及压后评估受到广泛关注的重要原因。
压裂压力是指压裂施工过程和停泵后井底或井口压力,压裂压力曲线是指压裂压力随时间的变化关系。
由于目前缺少直接测量水力裂缝的长度及导流能力等重要参数的手段,因此影响了分析压裂成败的原因及进一步提高水力裂缝效果的途径。
但是地下填砂裂缝的存在总要反映在压裂前后油井压力与产量的变化上来,特别是压力与产量随时间的变化速度与水力裂缝的长短、导流能力的大小等参数有直接关系。
通过对施工过程中压力曲线的分析,可以确定裂缝的延伸方式和施工期间任意时刻裂缝的几何参数,对停泵后压力曲线(称为压降曲线)的分析,能为压裂设计提供重要的设计参数,如地层有效滤失系数、压裂液效率等。
因而对压裂压力曲线的分析可以提高压裂施工的成功率和有效率。
2 压裂施工监测技术的发展趋势压裂施工过程及其后的排液过程中都包含有许多反映油气层和裂缝性质的参数,如何进行该过程的动态监测及反演地层参数及有关裂缝的参数的获得是今后发展的主要方向,它可以及时、快速、高效、准确地了解地层参数及有关裂缝的参数,达到快速评价压裂效果的目的。
同时可以部分取消压裂后的试井测试(如测温、关井静压、示踪测井等),减少不必要的测试费用并可提前生产等。