触摸感应面板硬件设计与测试方法
- 格式:pdf
- 大小:306.08 KB
- 文档页数:6
硬件测试中的触摸屏性能和触控精度评估触摸屏是现代电子设备中常见的输入方式之一,如智能手机、平板电脑和电视等。
而在硬件测试中,评估触摸屏的性能和触控精度是非常重要的一项任务。
本文将介绍硬件测试中触摸屏性能和触控精度的评估方法和标准。
一、触摸屏性能评估触摸屏的性能评估主要包括以下几个方面:1. 灵敏度:触摸屏的灵敏度是指触摸屏是否能够准确地感知和响应用户的触摸操作。
评估触摸屏的灵敏度可以通过模拟用户触摸操作和记录触摸屏的响应时间来进行。
在测试过程中,需要观察触摸屏是否能够准确地捕捉到用户触摸操作,并及时响应。
2. 响应速度:触摸屏的响应速度是指触摸屏在接收到用户触摸信号后,响应的时间间隔。
触摸屏的响应速度直接影响用户的使用体验,响应速度越快,用户的交互体验就越好。
评估触摸屏的响应速度可以通过模拟用户的触摸操作和记录触摸屏的响应时间来进行。
3. 多点触控:多点触控是指触摸屏是否能够同时感知和响应多个触摸点的操作。
评估触摸屏的多点触控功能可以通过模拟多个触摸点的操作,观察触摸屏是否能够同时响应并区分多个触摸点的操作。
4. 抗干扰性:触摸屏的抗干扰性是指触摸屏是否能够抵抗外部环境干扰的能力。
外部环境干扰可能包括静电干扰、电磁干扰等。
评估触摸屏的抗干扰性可以通过在干扰环境下进行触摸屏测试,观察触摸屏是否受到干扰而导致误触或无法响应的情况。
二、触控精度评估触控精度是指触摸屏在感知和响应用户触摸操作时的准确度。
评估触控精度主要包括以下几个方面:1. 分辨率:触摸屏的分辨率是指触摸屏能够感知和显示的最小触摸点的大小。
评估触摸屏的分辨率可以通过模拟不同大小的触摸点进行测试,观察触摸屏是否能够准确地感知和显示不同大小的触摸点。
2. 位置偏移:触摸屏的位置偏移是指用户实际触摸位置与触摸屏感知的触摸位置之间的差异。
位置偏移越小,触摸屏的准确度就越高。
评估触摸屏的位置偏移可以通过模拟不同位置的触摸操作进行测试,观察触摸屏感知的触摸位置与实际触摸位置之间的差异。
几种常见的触摸感应面板设计方法
在实际应用中,常用的感应盘有PCB板上的铜箔、弹簧、薄膜线路以及ITO玻璃灯,一般情况下,感应盘面积可以在3mm×3mm~30mm×30mm之间,每个感应盘的面积应尽量保持相同,以确保
灵敏度相同。
触摸感应灵敏度通过基准电容CSEL的电容值来调节。
在可调范围内,CSEL越大,灵敏度越高,CSEL越小,灵敏度越低。
以下是常见的触摸感应面板的设计方法,供参考
1,采用双面PCB,触摸感应IC放在PCB的BOTTOM层,通TOP层的铜箔做按键感应盘,如图所示:
PCB上的铜箔做按键感应盘的实例
2,采用单面PCB板或双面PCB板,用金属弹簧做感应盘,如图所示
用弹簧做按键感应盘的实例
3,在设计LCD显示器时,将按键图形动的态效果以及其它显示内容做整体的美学设,用ITO 透明导电金属做按键感应盘并用引脚引出。
如图所示:
用ITO做按键感应盘的触摸感应和显示一体的实例
4,在PVC和PET透明软胶片上丝印导电银浆或碳浆按键感应盘和引出线的电路,再用双面胶将整个软胶片电路贴于绝缘面板背面,此方法特别适合于弧面触摸感应面板,如图所示
用PVC或PET软胶片上的导电油墨做按键感应盘的实例
以上几种方法各有利弊,在实际应用中,用户可根据面板形状、大小、按键分布、面板结构、几何尺寸、性能指标、成本目标、生产效率等要求,选择最适合的方式进行设计。
触摸感应面板稳定性的测试方法关键词:触摸感应,误动作、可靠性测试。
引言:触摸感应的操作面板因为其坚固、耐磨损、可以绝缘、隔尘、隔水,而且外观美观新颖而迅速在很多领域被应用,成为近年的热门技术。
但很多采用了触摸感应面板的产品都遇到了诸如生产调试困难,触摸感应面板工作不稳定,在潮湿,强干扰环境下容易误动,造成客户退货的难题。
问题:生产调试困难,无法上批量生产。
触摸感应面板工作不稳定。
在潮湿,强干扰环境下容易误动,造成客户退货。
产品长期工作稳定性差,生产线调试好的产品,经过运输或长期工作以后灵敏度变化或经常误动而增加了很大的售后成本。
这些原因造成了很多厂家既希望采用这一新技术,又对采用了这个技术的产品是否能稳定工作心存疑虑。
因为触摸感应面板简单的试用往往无法发现有什么不妥。
经常要等到发货后顾客使用一段时间才会出现形形色色的问题。
这时不可避免的会给厂家带来成本和声誉上的损失。
顾客遇到触摸感应面板的突出问题就是灵敏度和可靠性(无误动)各种环境下很难保持稳定,尤其是长期工作的情况。
问题分析:触摸感应面板目前主流的技术是采用电容感应技术来实现。
因为手指在感应盘上带来的电容变化极小,而且随着隔离的绝缘面板厚度增加,电容的大小会成指数降低。
大概隔5mm的钢化玻璃后,人的手指触摸只能带来不到0.5PF的电容变化。
对于这样微小的测量量,湿度、温度的变化、电磁干扰、电源干扰等都会极大的影响测量电路的测量结果。
如果没有特殊、专业的处理办法很难保证触摸感应面板的工作稳定尤其是各种恶劣环境下的长期稳定性。
现在提供触摸感应芯片和方案的公司较多,他们的水平参差不齐。
技术水平高的公司可以解决触摸感应面板设计的难点问题。
有些公司提供的芯片和方案宣传作的很好,东西也较便宜,但产品却只能保证“能动”。
如果没有经过仔细的验证很难保证顾客在各种使用环境下不会出问题。
我们完成了一个带触摸感应面板的产品设计后,必须自己用贴近顾客使用环境且相对严格的测试方法进行反复、长时间测试来确保产品的可靠性。
触摸按键测试方案(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--触摸按键测试方案一、防水性能测试测试目的:测试触摸感应面板在溅水或水淹条件下,触摸按键仍可正常操作并且没有误动作和反应迟钝无法操作的现象。
测试方法:在待测触摸感应面板对应的弹簧按键上洒上水珠,在水珠滴落到按键时的那一刻观察按键是否动作,按键没有动作则防水性能测试为合格。
将其它的按键也洒上水滴,将水滴练成片,直到面板上形成一个“水洼”。
将相邻的几个感应按键淹没到一个“水洼”里,触摸其中的任意一个按键,观察该按键是否动作且灵敏度有无影响,并观察触摸该按键是否会导致其它的按键误触发。
若触摸该按键能正常响应,不会出现灵敏度下降导致该按键反应迟钝无法操作,且触摸该按键不会误触发其它按键。
则防水性能测试合格。
二、静电放电测试测试目的:模拟人体接触感应面板时人体静电对触摸按键的影响。
测试方法:采用接触放电,对每个触摸弹簧按键正上方的感应面板处施加±6KV的静电电压,每次一秒,各测试10次。
在打静电的过程中,所有按键不能出现误触发现象。
打完静电后,该按键还能正常工作。
三、电快速瞬变脉冲群测试测试目的:测试触摸按键在受到重复性电快速瞬变脉冲群干扰时的抗扰能力。
测试方法:输入频率为5kHz、15ms的正、负极性脉冲串,脉冲串间隔时间是300ms,每次持续2min。
触摸按键在最低4kV的脉冲群干扰下,能够正常操作按键,不会出现按键按下无效或按键误触发现象(误触发即没有按下该按键,该按键触发或按下该按键其它按键触发)。
四、辐射抗干扰能力测试测试目的:模拟触摸按键在平时使用过程中射频信号对按键的干扰。
测试方法:手机是日常生活中最常见的射频干扰源,因此,可以将一手机放在触摸按键感应面板上,然后用另一手机不停的拨打该手机号码,观察触摸按键的反应,不能出现任何问题如按键失效或误触发。
五、低温测试测试目的:模拟整机在低温工况下,触摸按键的工作情况。