数学建模模糊数学方法
- 格式:ppt
- 大小:508.50 KB
- 文档页数:37
§3 股票反弹率的模糊聚类法将模糊集理论应用于聚类分析,便产生了模糊聚类法。
一、模糊聚类法介绍若矩阵A 的各元素ij a 满足10≤≤ij a ,则称A 为模糊矩阵。
设p n ij a A ⨯=)(和m p ij b B ⨯=)(为两个模糊矩阵,令m j n i b a c kj ik pk ij ,,2,1,,,2,1),(1 ==∧∨== 则称矩阵m n ij c C ⨯=)(为模糊矩阵A 与B 的乘积,记为B A C ∙=,其中∨和∧的含义为},max{b a b a =∨, },min{b a b a =∧ 显然,两个模糊矩阵的乘积仍为模糊矩阵。
设方阵A 为一个模糊矩阵,若A 满足A A A =∙,则称A 为模糊等价矩阵。
模糊等价矩阵可以反映模糊分类关系的传递性,即描述诸如“甲象乙,乙象丙,则甲象丙”这样的关系。
设n n ij a A ⨯=)(为一个模糊等价矩阵,10≤≤λ为一个给定的数,令⎩⎨⎧=<≥=n j i a a a ij ij ij ,,2,1,,0,1)( λλλ则称矩阵n n ij a A ⨯=)()(λλ为A 的λ—截阵。
模糊聚类法和一般的聚类方法相似,先计算变量间的相似系数矩阵(或样品间的距离矩阵),将其元素压缩到0与1之间形成模糊矩阵,进一步改造成模糊等价矩阵,最后取不同的标准λ,得到不同的λ—截阵,从而可以得到不同的类。
具体步骤如下:1、计算相似系数矩阵R 或样品的距离矩阵D其中n n ij d D ⨯=)(和p p ij r R ⨯=)(的算法与第四章§4.7消费分布规律的分类中相同。
2、将R (或D )中的元素压缩到0与1之间形成模糊矩阵我们统一记为n n ij a A ⨯=)(;例如对相似系数矩阵p p ij r R ⨯=)(,可令p j i r a ij ij ,,2,1,),1(21 =+= 对于距离矩阵n n ij d D ⨯=)(,可令n j i d d a ij n j i ij ij ,,2,1,,max 11,1 =+-=≤≤ 3、建立模糊等价矩阵一般说来,上述模糊矩阵n n ij a A ⨯=)(不具有等价性,这可以通过模糊矩阵的乘积将其转化为模糊等价阵,具体方法是:计算,,,2242 A A A A A A ∙=∙=直到满足k k A A =2,这时模糊矩阵k A 便是一个模糊等价矩阵。
§2 小麦品种的模糊模式识别把一批来自同一品种的小麦称为一个小麦亲本。
小麦有各种不同的品种,某一品种的小麦有它自己的很多特性,如抽穗期、株高、有效穗数、主穗粒数和百粒重量等数量性质。
然而对于小麦的一个亲本,我们不能凭其中某一粒或某一株小麦去鉴定它的品种。
实际上,同一品种的小麦中,各株小麦的抽穗期显然是不完全相同的。
在同一种小麦中,百粒重量的每一次样本也是不完全相同的,但总是在各自的均值附近摆动。
这样我们就可以把某一品种的小麦看成是一个模糊集。
不同品种的小麦就对应着不同的模糊集。
如果能肯定待识别小麦亲本的模糊集与某一已知品种小麦的模糊集最贴近,那就可以断言它属于该种小麦了。
由于模糊集合是用隶属函数来表示的,而隶属函数又不同于普通的函数,怎样来度量模糊集的模糊性以及怎样比较两个模糊集是否相贴近还是差别很大,这就要引入一些有关模糊集度量的概念。
一、单个模糊集度量 1、模糊度在论域U 上的任意模糊子集~A 的模糊度)(~A D 应满足:(ⅰ)对任意的U x ∈,当且仅当x 对~A 的隶属度)(~x A μ只取0和1时,)(~A D =0 ;(ⅱ)当)(~x A μ=0.5时,)(~A D 应取最大值,即)(~A D =1;(ⅲ)对任意的U x ∈,设U 的两个模糊子集~A 和~B ,若5.0)()(~~≥≥x x B A μμ或5.0)()(~~≤≤x x B A μμ,则有)()(~~A D B D ≥。
2、模糊熵在模糊数学中,用模糊熵描述模糊度,是模糊集合所含模糊性大小的一种度量,这里仅介绍较其它方法为好的仙农函数引出的模糊熵定义。
设~A 是论域U 上的任意模糊子集,当U x ∈时,记))((2ln 1)(~1~i Ai x S n A H μ∑∞==叫做模糊集~A 的熵,此处)1ln()1(ln )(x x x x x S ----=。
容易验证,上述模糊熵满足模糊度的三个条件。
二、多个模糊集度量 1、海明距离设论域U 上的两个模糊子集~A 和~B ,它们之间的海明距离定义为∑=-=ni i B i A x x B A d 1~~)()(),(~~μμ这个定义适用于论域为有限集时,n 是论域中元素的个数,它又称为绝对海明距离。
模糊数学方法1965年美国加利福尼亚大学控制论专家扎德(Zadeh L .A .)教授在《Information and Control 》杂志上发表了一篇开创性论文“Fuzzy Sets ”,这标志着模糊数学的诞生。
模糊数学是研究和处理模糊性现象的数学方法。
众所周知,经典数学是以精确性为特征的。
然而,与精确性相悖的模糊性并不完全是消极的、没有价值的。
甚至可以这样说,有时模糊性比精确性还要好。
例如,要你某时到某地去迎接一个“大胡子高个子长头发戴宽边黑色眼镜的中年男人”。
尽管这里只提供了一个精确信息——男人,而其他信息——大胡子、高个子、长头发、宽边黑色眼镜、中年等都是模糊概念,但是你只要将这些模糊概念经过头脑的综合分析判断,就可以接到这个人。
模糊数学在实际中的应用几乎涉及到国民经济的各个领域及部门,农业、林业、气象、环境、地质勘探、医学、经济管理等方面都有模糊数学的广泛而又成功的应用。
§1 模糊集的基本概念要想掌握模糊数学方法,必须先了解模糊集的基本概念,特别是隶属函数的建立方法。
1.1 模糊子集与隶属函数定义1 设U 是论域,称映射():[0,1]A x U →确定了一个U 上的模糊子集A ,映射()A x 称为A 的隶属函数,它表示x 对A 的隶属程度。
使()0.5A x =的点称为A 的过渡点,此点最具模糊性。
当映射()A x 只取0或1时,模糊子集A 就是经典子集,而()A x 就是它的特征函数。
可见经典子集就是模糊子集的特殊情形。
例 1 设论域123456{(140),(150),(160),(170),(180),(190)}U x x x x x x =(单位:cm )表示人的身高,那么U 上的一个模糊集“高个子”(A )的隶属函数()A x 可定义为140()190140x A x -=-,也可用Zadeh 表示法:12345600.20.40.60.81A x x x x x x =+++++, 上式仅表示U 中各元素属于模糊集A 的隶属度,不是普通分式与求和运算。
-257- 第二十二章 模糊数学模型模糊数学是研究和处理模糊性现象的数学,是在美国控制论专家A. Zadeh 教授于1965年提出的模糊集合(Fuzzy Set )基础上发展起来的一门新兴的数学分支。
这门学科经过多年的发展。
它在现实世界中的应用越来越广泛。
§1 模糊数学基本知识1.1 集合与特征函数集合是现代数学的重要概念。
一般地说,具有某种属性的事物的全体或确定对象的汇总称为一个集合。
不含任何元素的集合称为空集,记为Φ。
由所研究的所有事物构成的集合称为全集,记为Ω。
若集合Ω⊆A ,则将集合},|{Ω∈∉x A x x 且称为集合A 的补集,记为c A 。
集合及其性质可用所谓特征函数来描述。
定义 1 设Ω为全集,A 为Ω的子集,则集合A 的特征函数指的是Ω到集合}1,0{=V 的一个映射A μV A →Ω:μ)(x x A μ→其中对应规则A μ满足⎩⎨⎧∉∈=Ax A x A 01μ 集合的特征函数具有以下性质:)}(),(max{)(x x x B A B A μμμ= ,记作)()(x x B A μμ∨)}(),(min{)(x x x B A B A μμμ= ,记作)()(x x B A μμ∧)(1)(x x A A cμμ-= 1.2 模糊集合1.2.1 模糊集合的概念对于普通集合A 及其余集c A ,任何元素A x ∈或cA x ∈,二者必居其一,且仅居其一;用特征函数来表示就是0)(=x A μ或1)(=x A μ有且仅有一个成立。
然而,客观-258-世界中存在着大量的模糊概念,如“高个子”,“老年人”,这些概念无法用普通集合表示,因为这些概念与其对立面之间无法划出一条明确的分界线。
为了研究和处理这类模糊概念(或现象),就需要把普通集合引申到模糊集合,用特征函数来描述就是将集合的特征函数的值域由}1,0{两个数扩展到闭区间]1,0[,这就是建立模糊集合的基本思想。
下面我们把所讨论对象的全体称为论域。
数学建模方法详解--模糊数学在生产实践、科学实验以及日常生活中,人们经常会遇到模糊概念(或现象)。
例如,大与小、轻与重、快与慢、动与静、深与浅、美与丑等都包含着一定的模糊概念。
随着科学技术的发展,各学科领域对于这些模糊概念有关的实际问题往往都需要给出定量的分析,这就需要利用模糊数学这一工具来解决。
模糊数学是一个较新的现代应用数学学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。
统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定性的领域扩大到了模糊领域,即从精确现象到模糊现象。
在各科学领域中,所涉及的各种量总是可以分为确定性和不确定性两大类。
对于不确定性问题,又可分为随机不确定性和模糊不确定性两类。
模糊数学就是研究属于不确定性,而又具有模糊性的量的变化规律的一种数学方法。
本章对于实际中具有模糊性的问题,利用模糊数学的理论知识建立数学模型解决问题。
1.1 模糊数学的基本概念1.1.1 模糊集与隶属函数1. 模糊集与隶属函数一般来说,我们对通常集合的概念并不陌生,如果将所讨论的对象限制在一定的范围内,并记所讨论的对象的全体构成的集合为U ,则称之为论域(或称为全域、全集、空间、话题)。
如果U 是论域 ,则U 的所有子集组成的集合称之为U的幂集,记作)(U F 。
在此,总是假设问题的论域是非空的。
为了与模糊集相区别,在这里称通常的集合为普通集。
对于论域U 的每一个元素U x ∈和某一个子集U A ⊂,有A x ∈或A x ∉,二者有且仅有一个成立。
于是,对于子集A 定义映射}1,0{:→U A μ即⎩⎨⎧∉∈=,0,,1)(A x A x x A ,μ则称之为集合A 的特征函数,集合A 可以由特征函数唯一确定。
所谓论域U 上的模糊集A 是指:对于任意U x ∈总以某个程度)]1,0[(∈A A μμ属于A ,而不能用A x ∈或A x ∉描述。
模糊综合评价法数学建模在这篇文章里,我们将聊聊“模糊综合评价法”这种听起来挺高大上的数学建模方法。
别担心,我们会用最简单的语言,让它变得像聊天一样轻松。
准备好了吗?那就一起往下看吧!1. 什么是模糊综合评价法?好,首先咱们得明白模糊综合评价法到底是个啥。
简单来说,它是一种处理那些不太确定、模糊不清的数据的工具。
打个比方吧,就像你在选择一部新手机时,可能会考虑多个方面:价格、性能、外观、品牌等。
可是这些方面有时候很难量化,模糊综合评价法就是用来帮你把这些“模糊”的因素综合起来,从而做出一个比较合理的决策。
1.1 基本概念模糊综合评价法的核心在于“模糊”。
什么是模糊?就是那些不完全确定的东西。
比如,今天你觉得这个手机的外观“很不错”,但并没有具体到说“好到什么程度”。
这种感觉就属于模糊的范围。
模糊综合评价法通过一些数学技巧,把这些模糊的感觉变成一个可以分析的结果。
1.2 应用场景这种方法在许多地方都能用上,比如在评估公司员工的绩效、选择投资项目、甚至在一些医学领域的决策中。
它特别适合那些信息不完全、评价标准多样化的情况。
可以说,模糊综合评价法就像一个能把复杂情况简化的超级工具。
2. 模糊综合评价法的步骤接下来,我们来看一下使用模糊综合评价法的具体步骤。
虽然步骤听起来有点复杂,但其实也没那么难搞。
2.1 确定评价指标首先,你得列出所有需要考虑的评价指标。
以选手机为例,可能包括价格、性能、外观、品牌等。
这里的每一个指标都是用来帮助你做出决策的关键因素。
2.2 建立模糊评价矩阵接下来,咱们就要建立一个模糊评价矩阵。
这个矩阵就是把每个指标的“模糊感”转化为一个可以处理的数据形式。
例如,你可以把“外观好”转化为一个模糊数值,像“7分”,然后在评价矩阵中填上这些数值。
2.3 综合评价最后一步就是综合这些模糊数据。
你需要把所有的模糊数值综合在一起,得出一个总的评价结果。
这一步有点像拼图,把各个小部分都拼在一起,最终你会得到一个清晰的总体评价。
第八章 模糊数学方法建模1965年,美国自动控制学家L.A.Zadch 首先提出了用“模糊集合”描述模糊事物的数学模型。
它的理论和方法从上个世纪七十年代开始受到重视并得到迅速发展,特别是愈来愈广泛地应用于解决生产实际问题。
模糊数学的理论和方法解决了许多经典数学和统计数学难以解决的问题,这里,我们通过几个例子介绍模糊综合评判、模糊模式识别、模糊聚类、模糊控制等最常用方法的应用。
而相应的理论和算法这里不作详细介绍,请参阅有关的书籍。
§1 模糊综合评判及其应用一、模糊综合评判在我们的日常生活和工作中,无论是产品质量的评级,科技成果的鉴定,还是干部、学生的评优等等,都属于评判的范畴。
如果考虑的因素只有一个,评判就很简单,只要给对象一个评价分数,按分数的高低,就可将评判的对象排出优劣的次序。
但是一个事物往往具有多种属性,评价事物必须同时考虑各种因素,这就是综合评判问题。
所谓综合评判,就是对受到多种因素制约的事物或对象,作出一个总的评价。
综合评判最简单的方法有两种方式:一种是总分法,设评判对象有m 个因素,我们对每一个因素给出一个评分i s ,计算出评判对象取得的分数总和∑==mi isS 1按S 的大小给评判对象排出名次。
例如体育比赛中五项全能的评判,就是采用这种方法。
另一种是采用加权的方法,根据不同因素的重要程度,赋以一定的权重,令i a 表示对第i 个因素的权重,并规定∑==mi ia11,于是用∑==mi ii sa S 1按S 的大小给评判对象排出名次。
以上两种方法所得结果都用一个总分值表示,在处理简单问题时容易做到,而多数情况下评判是难以用一个简单的数值表示的,这时就应该采用模糊综合评判。
由于在很多问题上,我们对事物的评价常常带有模糊性,因此,应用模糊数学的方法进行综合评判将会取得更好的实际效果。
模糊综合评判的数学模型可分为一级模型和多级模型两类,这里仅介绍一级模型。
应用一级模型进行综合评判,一般可归纳为以下几个步骤:(1)建立评判对象的因素集},,,{21n u u u U =。