汽车轻量化技术
- 格式:ppt
- 大小:3.43 MB
- 文档页数:80
汽车轻量化技术为了应对全球气候变化和能源危机,汽车轻量化技术得到了越来越多的关注。
轻量化技术包括材料轻量化、设计优化、制造工艺和部件集成等方面,旨在降低车辆重量、提高燃油效率和减少尾气排放。
本文将探讨轻量化技术的原理、应用和前景。
一、轻量化技术的原理轿车的重量主要包括车身、底盘、动力系统和电气系统等方面。
轻量化技术主要从材料、结构、工艺和部件方面入手,通过降低重量、提高性能和降低成本来实现节能减排目标。
材料轻量化是轻量化技术的核心和基础。
目前,汽车材料主要包括钢铁、铝合金、塑料、碳纤维复合材料和镁合金等五大类。
钢铁是最常用的材料,但其密度高、强度低、耐腐蚀性差,在某些特殊情况下易发生变形、疲劳和裂纹。
铝合金密度轻、强度高、抗腐蚀性能好,但成本高、易熔断、易生氧化皮。
塑料重量轻、成本低、塑性好,但耐热性不高、易老化、断裂性能较差。
碳纤维复合材料具有高强度、优异的抗压和抗拉性能、轻量化效果显著,但成本较高、易开裂、难以进行成形。
镁合金相对基本金属具有密度低、比强度高、抗腐蚀性好等优点,同时也存在着耐热性不好、易受害疲劳等缺点。
因此,如何选择合适的材料来实现轻量化效果将是关键。
结构优化是实现轻量化技术的另一重要方面。
通过优化构造、减少部件数量、增强组件强度、降低积件组装给予轻度化设计,可以减少重量、降低制造成本、提高车辆性能。
例如,采用双曲设计的车身可以使车身刚度得到进一步的提高。
亦或是采用空气动力学设计,使得车辆在运动时减少空气拖拽系数,能量消耗减少,进而提高车辆油耗等。
制造工艺包括成型、模具、件接、表面处理等方面。
其中,成型技术主要包括深冲压、锻造、热处理、涂层、铸造、正火渗氮和热塑弯曲等。
成型技术的发展将越来越重视对材料精度、表面质量、几何尺寸和工艺流程等方面的控制。
这需要不断加强材料表面处理、制造精度和部件集成等技术,降低制造成本和提高车辆质量。
部件集成主要是为了减少零件数量、减小构造尺寸、降低能源消耗、提高系统效率和降低成本。
汽车轻量化的九大关键工艺!文章来源:材加网一、激光拼焊(TWB)及不扥厚度轧制板(VRB)1.激光拼焊技术激光拼焊是将不同厚度、不同材质、不同强度、不同冲压性能和不同表面处理状况的板坯拼焊在一起,再进行冲压成形的一种制造技术。
德国大众最早于1985年将激光拼焊用于汽车。
北美于1993年也大量应用激光拼焊技术。
目前,几乎所有的著名汽车制造商都采用了激光拼焊技术。
采用拼焊板制造的结构件有身侧框架、车门内板、风挡玻璃框架/前风挡框、轮罩板、地板、中间支柱(B柱)等(见图1)。
最新统计表明,最新型的钢制车身结构中,50%采用了拼焊板制造。
图1 激光拼焊技术在车身上的应用实例激光拼焊技术在20世纪90年代末引入中国,一汽、上汽、长城、奇瑞、吉利等汽车公司在前纵梁、门内板和B柱加强板等都有应用。
宝钢已有23条激光拼焊生产线,年产2 200多万片板坯,占我国市场份额的70%以上,是世界第三、亚洲第一大激光拼焊板生产公司。
鞍钢也在与蒂森克虏伯合作,在长春等地建立激光焊接加工生产线。
2.不等厚度轧制板变厚板是轧钢机通过柔性轧制工艺生产的金属薄板,即在钢板轧制过程中,通过计算机实时控制和调整轧辊的间距,以获得沿轧制方向上按预先定制的厚度连续变化的板料。
图2显示了变厚板生产的工艺原理。
与TWB钢板相比,VRB 钢板仅可为同一种钢种,宽度也不能太宽,更适合制造梁类零部件。
图2 不等厚度轧制板生产原理德国Mubea公司有两条变厚板生产线,年产7万t。
板厚为0.7~3.5m m,原始板料的最高强度为800MP a级别。
目前,欧洲70余个车型使用变厚板或者变厚管产品。
奔驰C级车中通道加强板、前地板纵梁、后保险杠、后地板横梁等11个零件使用了VRB钢板。
我国宝钢和东北大学均开展了VRB钢板的研发和生产工作,目前具备了小批量供货的能力。
借助于强大的材料开发能力,宝钢形成了VRB零件的设计、材料开发、成形过程模拟、模具设计和产品质量评估的能力,并已试制成功前纵梁、仪表板支架、顶盖横梁等零件,同时也轧制成功了1 500MPa级别的非镀层和铝硅镀层的热冲压成形钢板,成功试制了热冲压成形VRB中通道零件。
汽车轻量化的发展趋势及其技术实现随着工业化的加速和人们生活水平的提高,汽车已经成为了现代社会不可缺少的交通工具之一。
但随之而来的是汽车带来的能源消耗、环境污染、交通拥堵等问题,因此,汽车的绿色环保和高效节能成为了整个行业的重要研究方向。
而轻量化作为这个领域的一个关键技术,也开始引起了越来越多的关注。
一、轻量化技术的发展现状传统汽车在设计时往往会追求强度和稳定性,导致了车身结构的材料主要以铁、钢材和马铃薯粉为原材料,这些重量较大,不仅耗油,而且不利于环保。
因此,轻量化技术的运用成为了改善汽车性能、提高经济性和环保节能的有效途径。
目前,轻量化的技术手段主要包括轻质材料的使用、车身设计的优化和动力系统的改进等方面。
具体来说,汽车制造商可以通过增加铝、碳纤维、镁合金的材料使用量,减少车身结构的重量和材料消耗,从而实现轻量化;另外,对于车身结构的设计也可以采用更加科学的流线型设计、曲柄下沉设计等方式,以增加车辆的空气动力性能和减小阻力;同时,将传统的发动机和传动系统替换为混合动力系统、电动车辆等有助于减小车辆的自重,降低整车能耗等方面的技术也成为了车辆轻量化的有效途径。
二、轻量化技术的优势与挑战通过轻量化技术可以有效地降低车辆的油耗和排放,提高车辆的环保性和经济性。
同时,轻量化还可以增强整车的安全性能,降低车辆的运动性能和灵敏度,为车辆的高性能和高安全性能铺设了坚实的基础。
然而,汽车的轻量化也面临着一系列的挑战。
其中最主要的挑战是如何在材料选择、设计、加工等方面实现轻量化,同时又不降低车辆的安全性、耐久性和质量稳定性,保证车辆的安全性能和舒适性。
此外,汽车轻量化技术的成本问题也难以回避。
不同的材料以及加工方式所带来的成本差异较大,这也给轻量化技术的推广带来了挑战。
三、轻量化技术的前景展望未来,随着科技的不断进步和对环保的重视,汽车轻量化技术将会得到持续发展和改进。
在未来的发展中,轻量化技术将呈现出以下几个发展趋势:1.材料多样化未来的轻量化技术将会更多地采用多种轻质材料,如碳纤维、铝合金、镁合金、塑料等,从而实现更加高效的轻量化效果。
汽车轻量化的主要技术
汽车轻量化是汽车行业开发、提高汽车性能和减少燃油消耗的重要技术。
通过汽车轻量化,不仅有效的减轻汽车重量,提高汽车的加速性能,减少能耗,而且有助于减少材料和能源的消耗。
汽车轻量化的主要技术有:
1.车身材料改进:通过使用合理的车身材料,达到车身更轻、更坚固,
更好、更有效的结构,从而减少车身重量。
通常使用的材料包括:钢材、铝
合金、高强度塑料等。
2.底盘优化设计:车身下部部分是重车身重量最大的部分,通过优化设计,减少底盘的重量和面积,减少结构梁的数量,加强车身的刚性,改善汽
车行驶的舒适性,实现底盘结构的轻量化。
3.焊接工艺优化:焊接技术是车身部件轻量化的重要技术,有助于将大
型车身部件拆分,缩小模型尺寸,从而实现更轻量化的结构。
4.金属发泡:金属发泡是一种可以大大减少汽车重量的复合材料技术。
金属发泡材料特殊的复合结构,能极大的降低车身重量,同时又能满足强度
和刚性的要求。
汽车轻量化已经成为当前汽车行业的主流发展,通过应用上述多种技术,可以大大减小汽车重量,提高能源利用效率,减少燃料消耗,是提高汽车效
率和节省能源的有效措施。
汽车轻量化主要技术路线分析一、关系营销的主要目标关系营销更为关注的是维系现有顾客,丧失老主顾无异于失去市场、失去利润的来源。
关系营销的重要性就在于争取新顾客的成本大大高于保持老顾客的成本。
有的企业推行“零顾客叛离”计划,目标是让顾客没有离去的机会。
这就要求及时掌握顾客的信息,随时与顾客保持联系,并追踪顾客动态。
因此,仅仅维持较高的顾客满意度和忠诚度还不够,必须分析顾客产生满意感和忠诚度的根本原因。
由于对企业行为绩效的感知和理解不同,表示满意的顾客,原因可能不同,只有找出顾客满意的真实原因,才能有针对性地采取措施来维系顾客。
满意的顾客会对产品、品牌乃至公司保持忠诚,忠诚的顾客会重复购买某一产品或服务,不为其他品牌所动摇,不仅会重复购买已买过的产品,而且会购买企业的其他产品。
同时顾客的口头宣传,有助于树立企业的良好形象。
此外,满意的顾客还会高度参与和介入企业的营销活动过程,为企业提供广泛的信息、意见和建议。
二、竞争者识别每个企业都要根据内部和外部条件确定自身的业务范围并随着实力的增加而扩大业务范围。
企业在确定业务范围时都自觉或不自觉地受一定导向支配。
企业的每项业务包括四个方面的因素:要服务的顾客群;要迎合的顾客需求;满足这些需求的技术;运用这些技术生产出的产品。
企业确定自身业务范围时着眼点不同,业务范围导向就不同,竞争者识别和竞争战略也随之不同。
L产品导向与竞争者识别产品导向指企业业务范围限定为经营某种定型产品,在不从事或很少从事产品更新的前提下设法寻找和扩大该产品的市场。
对照确定业务范围的四方面因素可知,产品导向指企业的产品和技术都是既定的,而购买这种产品的顾客群体和所要迎合的顾客需求却是未定的,有待于寻找和发掘。
在产品导向下,企业业务范围扩大指市场扩大,即顾客增多和所迎合顾客的需求增多,而不是指产品种类或花色品种增多。
实行产品导向的企业仅仅把生产同一品种或规格产品的企业视为竞争对手。
产品导向的适用条件是:市场的产品供不应求,现有产品不愁销路;企业实力薄弱,无力从事产品更新。
汽车轻量化技术发展趋势分析随着人们对环保节能意识的日益增强,汽车轻量化技术成为了汽车行业的一个热门话题。
轻量化是指在维持汽车性能和功能不变的情况下,通过减少汽车整车重量来提高汽车燃油效率和降低二氧化碳排放。
本文将分析汽车轻量化技术的发展趋势。
一、汽车轻量化技术发展历程随着汽车工业的快速发展,汽车的质量和性能得到了显著提升。
然而随之而来的问题是汽车的重量不断增加,导致燃油消耗和污染排放等问题日益严重。
为了解决这些问题,汽车轻量化技术不断得到发展和应用。
最早的轻量化技术是采用轻量材料,如铝合金、镁合金等材料进行研发和应用,使汽车的整车重量得以降低。
然而,这些材料的成本较高,价格不菲,限制了轻量化技术的推广。
随后,汽车轻量化技术进入了一个新的阶段,采用先进的制造工艺技术,如板材冲压、焊接、铆钉连接等技术,使汽车结构变得更加精细化、复杂化,并能够实现零件的精细现代化加工。
这种轻量化技术的优势是能够减少汽车零部件的重量和成本,提高整车的燃油经济性。
目前,汽车工业已经进入了第三个轻量化技术阶段。
这个阶段的轻量化技术主要采用先进的复合材料,如碳纤维、玻璃纤维等材料,这些材料具有优异的强度和刚度,且重量轻,是未来汽车结构材料的发展方向。
二、汽车轻量化技术的现状目前汽车轻量化技术在汽车行业中已经得到了广泛的应用。
在轿车领域,一些高端汽车品牌已经开始采用混合材料,同时在汽车的发动机、变速器、底盘、悬挂等方面进行了轻量化设计。
在商用车领域,一些重型卡车也开始采用轻量化技术,以减少整车的重量和燃油消耗。
汽车企业已掌握了精密制造工艺、材料设计、CAE 分析等多项核心技术,已经实现了在汽车性能不变的情况下,汽车自重的大量减轻。
三、汽车轻量化技术的发展趋势未来,汽车轻量化技术将朝着以下几个方向发展:1. 混材设计。
将不同种类的材料同车身密集连接,以实现富有弹性的配置,发挥各种材料的优点,提升整车的性能。
2. 引入复合材料。
随着复合材料的不断发展,未来汽车的很多零部件都将采用复合材料。
车身轻量化技术的研究与实践在当今汽车工业的发展中,车身轻量化技术已成为一项至关重要的研究领域。
随着环保要求的日益严格和消费者对燃油经济性、车辆性能的不断追求,减轻车身重量不仅有助于降低油耗、减少尾气排放,还能提升车辆的操控性和安全性。
本文将对车身轻量化技术的研究与实践进行深入探讨。
一、车身轻量化技术的重要性汽车的燃油消耗与车辆重量密切相关。
一般来说,车辆重量每减轻10%,燃油效率可提高 6% 8%。
在全球能源紧张和环保压力增大的背景下,降低油耗和减少尾气排放是汽车行业必须面对的挑战。
轻量化车身能够显著降低车辆的能耗,为可持续发展做出贡献。
此外,轻量化车身还能提升车辆的性能。
较轻的车身重量可以使车辆在加速、制动和转弯时更加敏捷,提高操控性和驾驶乐趣。
同时,在发生碰撞时,较轻的车身能够更有效地分散和吸收能量,提高车辆的被动安全性。
二、车身轻量化的实现途径1、材料的优化选择(1)高强度钢高强度钢具有出色的强度和韧性,在保证车身结构强度的前提下,可以通过使用更薄的钢板来减轻重量。
例如,热成型钢的强度可达1500MPa 以上,能够大幅减少零部件的厚度和数量。
(2)铝合金铝合金具有低密度、高强度和良好的耐腐蚀性。
在车身中,铝合金常用于发动机罩、车门、行李箱盖等部件,能够有效减轻重量。
此外,全铝车身的应用也在逐渐增加,如奥迪 A8 等车型。
(3)镁合金镁合金是目前最轻的金属结构材料之一,其密度约为铝合金的2/3。
虽然镁合金的成本较高,但在一些高端车型中,如奔驰 SL 级,已经开始使用镁合金部件来实现轻量化。
(4)复合材料复合材料包括碳纤维增强复合材料(CFRP)和玻璃纤维增强复合材料(GFRP)等。
这些材料具有高强度、高模量和低密度的特点,但成本较高,目前主要应用于超级跑车和高性能车型中,如宝马 i3 和 i8的车身框架就采用了碳纤维复合材料。
2、结构设计的优化(1)拓扑优化通过数学算法和有限元分析,在给定的设计空间内寻找最优的材料分布,实现结构的轻量化。
汽车轻量化的途径汽车轻量化是一种重要的技术手段,旨在减小汽车整车重量,提高车辆的燃油效率和运动性能,减少对环境的影响。
轻量化的途径包括材料的优化、结构的设计和工艺的改进等方面。
本文将就这些途径进行详细的介绍和分析。
1. 材料的优化材料的优化是实现汽车轻量化的基础工作。
目前常用的汽车材料主要包括钢铁、铝合金、镁合金和碳纤维等。
不同材料之间具有不同的密度和强度特性,因此需要根据具体的要求来选择合适的材料。
1.1 钢铁钢铁是目前最常用的汽车材料,主要由铁和碳组成,具有良好的强度和韧性。
优化钢铁材料可以采用高强度钢、热成形钢和复合钢等。
高强度钢可以提高汽车的结构刚度和抗拉强度,同时减小钢材的厚度和重量。
热成形钢可以通过控制成形温度和速度来改善材料的塑性变形能力,从而减小零件的厚度和重量。
复合钢可以通过不同材料的组合来提高强度和韧性。
1.2 铝合金铝合金具有较低的密度和良好的机械性能,是用于汽车轻量化的理想材料之一。
优化铝合金材料可以采用高强度铝合金、变形铝合金和喷射铝合金等。
高强度铝合金可以提高材料的强度和刚度,减小材料的厚度和重量。
变形铝合金可以通过控制成形温度和速度来改善材料的塑性变形能力,从而减小零件的厚度和重量。
喷射铝合金可以通过快速凝固技术制备精密铝合金零件,进一步减小零件的厚度和重量。
1.3 镁合金镁合金具有较低的密度和较高的比强度,是用于汽车轻量化的另一种理想材料。
优化镁合金材料可以采用高强度镁合金和合金化技术等。
高强度镁合金可以提高材料的强度和刚度,减小材料的厚度和重量。
合金化技术可以通过添加其他元素来改善镁合金的力学性能和耐腐蚀性能。
1.4 碳纤维碳纤维具有很高的比强度和比模量,是用于汽车轻量化的高性能材料。
碳纤维复合材料的制造工艺包括预浸料(Prepreg)工艺和干法成型(Autoclave)工艺。
预浸料工艺是将纤维和树脂预先浸渍在一起,然后进行成型和固化。
干法成型工艺是将干燥的纤维放置在模具中,然后注入树脂进行固化。
汽车轻量化技术方案及应用实例一、汽车轻量化分析轻量化技术应用给汽车带来的最大优点就是油耗的降低,并且汽车轻量化对于环保,节能,减排,可持续发展也发挥着重大效用。
一般情况下,汽车车身的重量约占总重量的30%,没有承载人或物的情况下,大概70%的油耗是因为汽车自身的质量,由此可得到结论,车身的轻量化会减少油耗,提高整车的燃料经济性。
目前轻量化技术的主要思路是:在兼顾产品性能和成本的前提下,采用轻质材料、新成型工艺并配合结构上的优化,尽可能地降低汽车产品自身重量,以达到减重、降耗、环保、安全的综合指标。
二、新材料技术1、金属材料。
(1)高强度钢。
高强钢具有强度高、质量轻、成本低等特点,而普通钢是通过减薄零件来减轻质量的,它是汽车轻量化中保证碰撞安全的最主要材料,可以说高强钢的用量直接决定了汽车轻量化的水平。
另一方面,它与轻质合金、非金属材料和复合材料相比,制造成型过程相对容易,具有经济性好的优势。
(2)铝合金的密度小(2.7g/cm3左右),仅为钢的1/3,具有良好的工艺性、防腐性、减振性、可焊性以及易回收等特点,是一种非常优良的轻量化材料。
典型的铝合金零件一次减重(传统结构件铝替钢后的减重)效果可达30%~40%,二次减重(车身重量减轻后,制动系统与悬架等零部件因负载降低而设计的减重)则可进一步提高到50%,用作结构材料替换钢铁能够带来非常显著的减重效果。
(3)镁合金。
镁的密度仅为铝的2/3,是所有结构材料中最轻的金属,具有比强度和比刚度高、容易成型加工、抗震性好等优点。
采用镁合金制造汽车零件能在应用铝合金的基础上再减轻15%〜20%,轻量化效果十分可观,但成本偏高于铝合金和钢。
2、非金属材料。
(1)塑料是重要的非金属轻量化材料,具有比重小、成本低、易于加工、耐蚀性好等特点,在汽车行业中的应用前景被看好。
(2)树脂基复合材料根据增强体和基体材料不同分为多种类型增强基复合材料,如玻璃纤维增强复合材料、碳纤维增强复合材料、生物纤维增强复合材料等。
2023年中国汽车轻量化相关政策2023年中国汽车轻量化相关政策主要包括以下几个方面:政策目标、政策措施、政策影响等。
以下将逐一阐述。
一、政策目标:中国汽车轻量化相关政策的首要目标是促进汽车轻量化技术研发与应用,以实现汽车工业的可持续发展。
具体目标包括:提高汽车整体能源效率,减少汽车工业对能源资源的消耗;降低汽车燃料消耗和尾气排放,减少对环境的污染;提升汽车安全性能,减少交通事故的发生。
二、政策措施:1.加强技术研究与创新:政府将加大对汽车轻量化技术研发的投入,鼓励企业加强技术创新,推动车辆材料、设计、工艺等方面的突破。
同时,鼓励高校科研机构与企业合作,在轻量化领域开展合作研究,促进科技成果转化。
2.优化标准体系:政府将制定和完善汽车轻量化相关的技术标准和规范,推动整个行业朝着更加环保、安全和高效的方向发展。
同时,将加强对企业的监督和检查,确保企业按照标准进行生产和使用。
3.优惠政策支持:政府将出台一系列优惠政策,鼓励企业推广应用轻量化技术。
例如,对采用轻量化材料生产的汽车给予税收优惠和补贴,为企业提供贷款和资金支持等。
同时,还将鼓励消费者购买轻量化汽车,推出购车补贴和减免车辆购置税的政策。
4.创新人才培养:政府将加大人才培养的力度,鼓励高校和研究机构开设相关专业和研究方向,培养更多高水平的汽车轻量化技术人才。
政府还将出台相关奖励政策,吸引优秀人才从事轻量化领域的研究和创新工作。
三、政策影响:1.产业发展:汽车轻量化政策的实施将加快整个汽车产业的转型升级。
推动汽车企业加强技术创新,提升产品竞争力,促进行业向高端发展。
同时,也将带动相关产业链的发展,如轻量化材料、零部件制造等领域。
2.环保减排:汽车轻量化可以减少汽车燃料消耗和尾气排放,改善空气质量,减少对环境的污染。
有助于降低碳排放量,推动可持续发展。
3.安全性能提升:轻量化材料的应用可以提升汽车的安全性能,减少事故发生的概率,并减轻事故对乘员的伤害。
汽车轻量化技术的研究与进展一、本文概述随着全球环境问题的日益严重,节能减排、绿色出行已成为全人类的共识。
汽车作为现代社会的主要交通工具,其轻量化技术的研发与应用对于节能减排、提高能源利用效率、改善车辆性能等方面具有重要意义。
本文旨在探讨汽车轻量化技术的研究现状与发展趋势,分析轻量化材料、设计优化、制造工艺等方面的最新进展,以期为推动汽车轻量化技术的发展提供有益的参考。
本文将对汽车轻量化技术的概念进行界定,明确其研究范围与重点。
接着,从轻量化材料、设计优化、制造工艺等方面入手,系统梳理国内外在该领域的研究成果与经验。
在此基础上,结合当前汽车轻量化技术的发展趋势,对未来研究方向进行展望,以期为推动汽车轻量化技术的持续创新与发展提供有益的启示。
本文的研究不仅有助于加深对汽车轻量化技术的理解与认识,还为汽车行业的绿色可持续发展提供了有益的技术支持。
本文的研究也有助于推动相关领域的科技进步,促进全球范围内节能减排目标的实现。
二、轻量化材料的研究与应用随着全球环保意识的增强和能源危机的日益严峻,汽车轻量化已成为汽车工业发展的重要趋势。
轻量化材料的研究与应用是实现这一目标的关键。
轻量化材料主要包括高强度钢、铝合金、镁合金、塑料及复合材料等。
高强度钢以其优良的力学性能和相对较低的成本,在汽车制造中得到了广泛应用。
通过优化钢材成分、改进热处理工艺和微观结构设计,高强度钢不仅具有更高的强度,而且具有更好的塑性和韧性,能够满足汽车结构件对材料性能的要求。
铝合金以其低密度、高比强度、良好的加工性能和耐腐蚀性等特点,在汽车轻量化中发挥着重要作用。
尤其是铝合金铸件和锻件,因其结构紧凑、重量轻,被广泛应用于发动机、底盘和车身等部件的制造中。
镁合金作为一种轻质、高强度的金属材料,在汽车轻量化领域也备受关注。
镁合金具有良好的电磁屏蔽性能、高的阻尼性能和低的热膨胀系数,特别适用于制造汽车仪表板、座椅框架等部件。
然而,镁合金的耐腐蚀性较差,限制了其在汽车领域的应用。
-车身结构培训模块五❝1、为什么要轻量化❝2、世界各大研究机构的轻量化项目❝3、轻量化技术方案❝4、轻量化三步走❝1、为什么要轻量化❝2、世界各大研究机构的轻量化项目❝3、轻量化技术方案❝4、轻量化三步走☐欧洲居于全球油耗目标之首,且2025年2.9L 的目标必须大量采用新能源汽车才能实现☐四阶段中国油耗法规相较上一阶段下降30%,而2025年目标进一步收紧20%,直指 4.0L/100km 4.1 2.9 5.0 5.62 4.50 2.03.04.05.06.07.020152016201720182019202020212022202320242025EU China US L /100k m (N o r m a l i z e d t o N E D C T e s t C y c l e ) 4.0全球油耗法规日益严苛汽车对能耗和排放还有潜力吗Hybird和EV是趋势整车轻量化趋势白车身大约占到整车重量的20%~25%而各大主机厂都已经充分做好轻量化的技术储备,蓄势待发 未来的5~15年的技术更新速度将大大加快❝1、为什么要轻量化❝2、世界各大研究机构的轻量化项目❝3、轻量化技术方案❝4、轻量化三步走❝1、为什么要轻量化❝2、世界各大研究机构的轻量化项目❝3、轻量化技术方案❝4、轻量化三步走虚拟CAE仿真优化通过拓扑等手段发现高效传力路经,减轻重量研究断面特性,位置等对结构性能的影响,优化料厚,实现轻量化 优化计算方法,缩短计算时间,提高精度车身用材料展望新一代超高强度钢板的使用 第三代超高强钢的推进使用抗拉强度1500Mpa, 1700Mpa 的马氏体钢薄板冲压的逐步使用液压成型技术的应用无焊点的整体连接结构形式,大大提高零件的整体刚度以及碰撞吸能效果 变截面,可弯曲的液压成型技术可满足结构设计的多种用途激光拼焊管技术的使用焊缝整体连接结构形式,大大提高零件的整体刚度以及碰撞吸能效果 领先的成型技术代替拉延可以提高碰撞区零件的材料等级铝合金的机械特性密度仅为钢的1/3,但是弹性模量也只有钢的1/3,可通过其特有的成型方式来用几何弥补其刚度方面的先天不足未来的铝板强度会不段提高,6XXX系列的屈服已接近CR340的水平,而7XXX已经可以通过T7的热处理达到DP钢的强度水平铝板冲压工艺的应用技术相对成熟,主要用于门盖,翼子板等大型覆盖件未来的铝板强度会不段提高,供应商需要应对其低延展率以及高回弹的特点,向深拉伸零件挑战铝挤出工艺的应用截面形式相对冲压来说十分多变在实现轻量化的同时有效的提高车身的的刚度,或者碰撞吸能效果真空高压铸造工艺的应用 能实现高刚度可变厚度的零件设计要求零件集成度提高,大大减少零件的数量工艺复杂,并且产品的质量控制难度较高碳纤维技术的应用 碳纤维具有低密度,高弹性模量,高强度的特点大规模使用受限于目前行业制造能力以及其成本激光焊接技术的应用 具有单面可达的特点,充分拓宽了工程应用的范围缩短焊接边长度,实现减重的同时可达到更好的顾客感知效果铝-铝焊接技术的应用AL-AL点焊技术AL-AL点焊技术可以应用到冲压件,挤出件和铸造件的相互连接中当铝板和铸件焊接的时候,需要铝板为6000系列铝材铝件电阻点焊技术大大降低铝制车身的制造成本AL-AL弧焊技术制造成本取决于焊接长度,可以作为高强度要求的单面可达区域使用 可以作为超厚板连接的工艺手段SPR铆接技术的应用SPR可以满足于铝-铝,铝-钢,钢-钢, 塑料-金属等两层和三层板连接需求目前技术能达到的最高强度板连接是DP800→DP600,由于混合式材料车身将在未来的一段时间内长期存在,所以超高强钢,甚至是PHS的SPR连接技术是目前需要攻克的难题FDS紧固技术的应用FDS仅需要单面可达,并且相对于电弧焊来说没有热变形的影响,因此可以很好的解决封闭截面结构(如Extrusion RKR, Hydro-form Rail)的连接需求其连接方式类似于螺栓连接,因此可以广泛应用于铝-钢,铝-铝,钢-钢的连接应用中Cycle Time的长短取决于连接板材的强度以及厚度,一般在3~7s之间,因此其制造成本较高❝1、为什么要轻量化❝2、世界各大研究机构的轻量化项目❝3、轻量化技术方案❝4、轻量化三步走充分挖掘钢制车身的剩余价值 设计高效的白车身结构,提高Load Path上的结构效率大比例提高高强钢,超高强钢,热成型零件的使用比例结合新型钢材的特性改良,充分利用其机械性能上的潜力克服超薄板的成型焊接等问题,扩大其使用范围TWB,TRB技术的进一步开拓,合理分配质量配合结构胶,烧焊,激光焊接等技术的大规模使用,提高连接效率 适当考虑液压成型等技术的使用推进轻质在结构件上的使用 拓展5XXX, 6XXX系列的铝板在覆盖件以及深拉伸件上的范围真空高压铸造零件技术在车身结构设计上的技术储备标准化AL-AL焊接方面的技术规范SPR,FDS等新型连接技术的经验积累玻纤增强材料在非碰撞吸能区域的大量推进碳纤维材料在结构件设计上的技术储备混合式材料车身将是未来方向Thanks。
汽车轻量化的原理和应用1. 引言随着全球环境问题和汽车工业的不断发展,汽车轻量化成为一种重要的技术手段,旨在减少车辆的重量、提高燃油经济性和降低二氧化碳排放。
本文将介绍汽车轻量化的原理和应用,包括材料的选择、设计优化以及相关技术的应用。
2. 轻量化原理汽车轻量化的原理是通过减少车辆的自重来降低燃油消耗和排放。
这可以通过以下几种方式实现:•材料替代:使用高强度、高刚度的材料来替代传统材料,如铝合金、高强度钢、复合材料等。
这些材料在保证安全性的同时,可以显著降低车辆的重量。
•结构优化:通过对车辆结构进行优化设计,减少材料的使用量,同时提高结构的刚度和强度。
采用先进的计算机辅助设计和优化分析的方法,可以实现轻量化设计的最佳效果。
•零部件精简:通过改进零部件的设计和工艺,减少零部件数量和重量。
精简部件还可以降低生产成本和维护费用。
•组装技术:采用先进的焊接、铆接和粘接技术,可以减少零部件的连接方式和数量,提高车辆的整体刚度和稳定性。
3. 轻量化应用汽车轻量化在各个方面都有广泛的应用,以下是一些常见的应用案例:•车身结构:采用轻质材料替代传统钢铁材料,如铝合金、高强度钢和复合材料。
这些材料可以减少车身的重量,提高燃油经济性和安全性。
•发动机和传动系统:采用先进的材料和制造工艺,减少发动机和传动系统的重量。
例如,使用轻质材料制造发动机缸体、减少传动系统的部件数量等,可以显著降低燃油消耗。
•底盘和悬挂系统:采用铝合金材料制造底盘和悬挂系统,可以降低车辆的重量,提高悬挂系统的响应速度和稳定性。
•内饰和配件:采用轻质材料制造内饰和配件,如碳纤维、仿生合金等。
这些材料不仅可以减少车辆的重量,还可以提高内饰的质感和舒适度。
4. 轻量化的挑战与未来发展尽管汽车轻量化带来了很多优势,但也面临着一些挑战。
首先,新材料的研发和应用需要投入大量的时间和资源。
其次,轻量化设计需要综合考虑安全性、成本和性能等因素,才能取得最佳效果。