RS485通讯协议说明
- 格式:doc
- 大小:119.50 KB
- 文档页数:6
rs485通信协议介绍附录:RS485串⾏通讯协议1 主要性能本变频器通过内置的RS485标准接⼝,能与个⼈计算机、PLC 或同系列的变频器等连接,进⾏主从式、异步半双⼯串⾏通信。
其主要性能参见下表:项⽬规范适⽤机型 ALPHA3000系列变频器物理级EIA RS485 传输线屏蔽双绞线配线最长长度 500⽶连接台数主机⼀台,从机31台传输速度19200bps,9600bps,4800bps,2400bps,1200bps,600bps,300bps 数据交换⽅式异步串⾏、半双⼯传送协议点对点或⼴播字长 11位停⽌位长度 1位帧长 14字节固定奇偶校验奇校验出错检查⽅式异或校验2硬件连接 2.1硬件联接如下图:图 1 多台变频器⽤主机控制连接⽰意图图中的MASTER (主机)是ALPHA3000变频器、PC 机或可编程控制器(PLC ),图中的SLAVE (从机,在虚线框内)是变频器。
变频器做为主机,只要将从机的RS485端⼦和主机的RS485同名端⼦相联接即可;如果⽤PC 机或PLC 做为主机,则要在主机和总线之间增加⼀个RS485的转接器。
RS458串⾏总线接⼝最多可连接31台变频器做从机,每⼀个从机变频器都有⼀个唯⼀的号码(ID ),主机依靠ID 来识别每⼀台从机。
2.2 RS485转换器RS485转换器采⽤DB9/DB9外形,带孔的⼀端为RS232,带针的⼀端为RS485。
转换器外带接线转换头把RS485端的DB9接线转换为螺丝接线柱,便于通讯线缆的安装和拆卸。
接线转换头上“A+”为485收/发正端,“ B-”为485收/发负端,“GND”为485地线。
RS485接⼝组成半双⼯⽹络,⼀般只需⼆根连线,为获得良好的抗噪声⼲扰性和较长的传输距离,建议采⽤屏蔽双绞线传输。
3通讯协议3.1概述3.1.1通讯⽅式采⽤USS协议。
主机和从机之间⽤轮询的⽅式来进⾏通讯。
由主机启动每⼀次通信,主机向从机变频器发送任务报⽂,从机接到主机的任务命令后返回响应报⽂并执⾏相应动作。
串行口RS485通讯协议1.1通讯概述本公司系列变频器向用户提供工业控制中通用的RS485通讯接口。
通讯协议采用MODBUS标准通讯协议,该变频器可以作为从机与具有相同通讯接口并采用相同通讯协议的上位机(如PLC控制器、PC机)通讯,实现对变频器的集中监控,另外用户也可以使用一台变频器作为主机,通过RS485接口连接数台本公司的变频器作为从机。
以实现变频器的多机联动。
通过该通讯口也可以接远控键盘。
实现用户对变频器的远程操作。
本变频器的MODBUS通讯协议支持两种传送方式:RTU方式和ASCII方式,用户可以根据情况选择其中的一种方式通讯。
下文是该变频器通讯协议的详细说明。
1.2通讯协议说明1.2.1通讯组网方式(1) 变频器作为从机组网方式:图9-1 从机组网方式示意图(2) 多机联动组网方式:单主机单从机单主机多从机图9-2 多机联动组网示意图1.2.2通信协议方式该变频器在RS485网络中既可以作为主机使用,也可以作为从机使用,作为主机使用时,可以控制其它本公司变频器,实现多级联动,作为从机时,PC 机或PLC可以作为主机控制变频器工作。
具体通讯方式如下:(1)变频器为从机,主从式点对点通信。
主机使用广播地址发送命令时,从机不应答。
(2)变频器作为主机,使用广播地址发送命令到从机,从机不应答。
(3)用户可以通过用键盘或串行通信方式设置变频器的本机地址、波特率、数据格式。
(4) 从机在最近一次对主机轮询的应答帧中上报当前故障信息。
1.2.3通讯接口方式通讯为RS485接口,异步串行,半双工传输。
默认通讯协议方式采用ASCII 方式。
默认数据格式为:1位起始位,7位数据位,2位停止位。
默认速率为9600bps,通讯参数设置参见P3.09~P3.12功能码。
1.3 ASCII通讯协议字符结构:10位字符框(For ASCII)(1-7-2格式,无校验)(1-7-1格式,奇校验)(1-7-1格式,偶校验)11位字符框(For RTU)(1-8-2格式,无校验)(1-8-1格式,奇校验)(1-8-1格式,偶校验)通讯资料结构:ASCII模式通讯地址:00H:所有变频器广播(broadcast)01H:对01地址变频器通讯。
附录1:RS485通讯协议1.概述CVF-G3/P3系列变频器中提供了RS485通讯接口,用户可通过PC/PLC实现集中监控(设定变频器的工作参数和读取变频器的工作状态),以适应特定的使用要求。
本附录的协议内容即是为实现上述功能而设计的。
1.1 协议内容该串行通讯协议定义了串行通讯中传输的信息内容及使用格式。
其中包括:主机轮询(或广播)格式;主机的编码方法,内容包括:要求动作的功能代码,传输数据和错误检验等。
从机的响应也是采用相同的结构,内容包括:动作确认,返回数据和错误校验等。
如果从机在接收信息时发生错误,或不能完成主机要求的动作,它将组织一个故障信息作为响应反馈给主机。
1.2 适用范围1.2.1 适用产品CVF-G3/P3系列变频器1.2.2 应用方式⑴变频器接入具备RS485总线的“单主多从”PC/ PLC控制网。
⑵变频器接入具备RS485/ RS232(转换接口)的“点对点”方式的PC/ PLC监控后台。
2.总线结构及协议说明2.1 总线结构(1) 接口方式RS485(RS232可选,但需要电平转换附件)(2) 传输方式异步串行、半双工传输方式。
在同一时刻主机和从机只能有一个发送数据,而另一个只能接收数据。
数据在串行异步通讯过程中,是以报文的形式,一帧一帧发送。
⑶拓扑方式单主站系统,最多32个站,其中1个站为主机、31个站为从机。
从机地址的设定范围为0~30,31(1FH)为广播通讯地址。
网络中的从机地址必须是唯一的。
点对点方式实际是作为单主多从拓扑方式的一个应用特例,即只有一个从机的情况。
2.2 协议说明CVF-G3/P3系列变频器通讯协议是一种串行的主从通讯协议,网络中只有一台设备(主机)能够建立协议(称为“查询/命令)。
其它设备(从机)只能通过提供数据响应主机的查询/命令,或根据主机的命令/查询做出相应的动作。
主机在此处指个人计算机(PC)﹑工控机和可编程控制器(PLC)等,从机指变频器。
使用说明书 - 1 -_MODBUS 通讯协议说明一.通讯说明控制器采用RS-485总线,协议符合ModBus RTU 规约。
数据传输均采用8位数据位、1位停止位、无奇偶校验位。
波特率可设为1200-9600 bit/s 。
通讯传送分为独立的信息头,和发送的编码数据。
以下的通讯传送方式定义与RTU 通讯规约相初始结构 = >=4字节的时间地址码 = 1 字节功能码 = 1 字节数据区 = N 字节错误校检 = 16位CRC 码结束结构 = >=4字节的时间地址码:地址码为通讯传送的第一个字节。
这个字节表明由用户设定地址码的从机将接收由主机发送来的信息。
并且每个从机都有具有唯一的地址码,并且响应回送均以各自的地址码开始。
主机发送的地址码表明将发送到的从机地址,而从机发送的地址码表明回送的从机地址。
功能码:通讯传送的第二个字节。
ModBus 通讯规约定义功能号为1到127。
本控制器利用其中的一部分功能码。
作为主机请求发送,通过功能码告诉从机执行什么动作。
作为从机响应,从机发送的功能码与从主机发送来的功能码一样,并表明从机已响应主机进行操作。
如果从机发送的功能码的最高位(比如功能码大于127),则表明从机没有响应操作或发送出错。
数据区:数据区是根据不同的功能码而不同。
CRC 码:二字节的错误检测码。
当通讯命令发送至仪器时,符合相应地址码的设备接通讯命令,并除去地址码,读取信息,如果没有出错,则执行相应的任务;然后把执行结果返送给发送者。
返送的信息中包括地址码、执行动作的功能码、执行动作后结果的数据以及错误校验码。
如果出错就不发送任何信息。
1 2.信息帧格式:(1) 地址码: 地址码是信息帧的第一字节(8位),从0到255。
这个字节表明由用户设置地址的从机将接收由主机发送来的信息。
每个从机都必须有唯一的地址码,并且只有符合地址码的从机才能响应回送。
当从机回送信息时,相当的地址码表明该信息来自于何处。
RS-485通信协议说明采用国际标准modbus数字通信协议,可与世界上任意一款组态软件对接。
通过RS-232或485串行接口可与计算机组成多点温湿度测量系统。
二、主要技术指标注:具体功能请以“”为准三、通讯说明可通过标准DB-9接口与计算机串口相连,当传输距离为15米时,码元畸变率仅为4%;当通过标准485-232转换接口与计算机串口相连,在传输距离为1500米时码元畸变率小于等于4%,严格复合EIA(美国电子工业协会)串行总线标准。
通过标准的RS232或RS422/485通讯口,可直接接计算机通讯,国际标准MODBUS-RTU通讯协议:在使用组态软件时,须选用的设备为MODICON(莫迪康)的PLC,MODBUS-RTU地址型。
数据为整型16位。
支持MODBUS协议03H、04H、06H指令(03H、06H读写参数,04H读测量值),参数寄存器地址:参数设定范围出厂默认值通讯指令地址温度测量值/ / 04H 00H 湿度测量值/ / 04H 01H 本机地址0-255 1 03H,06H 00H 通讯波特率300-19200 9600 03H,06H 01H 湿度平移修正-20.0-20.0 0.0 03H,06H 67H ●基本参数波特率9600 数据格式:8位校验位无停止位1位数据默认1位小数,例如109表示10.9●帧结构●消息交互模式●功能码及消息结构使用Modbus协议的公共功能码功能码0X04功能说明读串口数据消息格式读串口数据主机读数据格式开始从机地址命令寄存器地址读数个数CRC校验≥5ms延迟1字节0x04 0x0000 0x0002 0xXXXX说明:读数个数是指主机需要在从机读回的数据个数,0001表示只读温度,0002表示读回温湿度两个数,温度在前,湿度在后;从机返回数据格式开始从机地址命令返回字节数温度值(高位在前,低位在后)湿度值(高位在前,低位在后CRC校验(高位在前,低位在后)≥5ms延迟1字节0X04 0x02 0x0000 0x0000 0xXXXX例1:读取温度测量值(测量值=260)发送数据为:01 04 00 00 00 01 31 CA其中,01是本机地址,04是通讯指令,00 00是寄存器起始地址,00 01表示读一个数,31 CA 是校验码。
rs485通讯协议RS485是一种常用的串行通信协议,广泛应用于工业自动化领域。
它是一种差分信号传输方式,可以实现远距离、高速、抗干扰的通信。
RS485通信协议定义了物理层和数据链路层的规范,确保了设备之间的稳定通信。
首先,RS485定义了通信的物理层,包括电气特性和连接方式。
电气特性规定了通信线路的电压范围和电平差异,通常使用正负两个信号线传输数据。
连接方式有两种,一种是点对点连接,即一个主设备和一个从设备之间的连接;另一种是多点连接,即一个主设备与多个从设备之间的连接。
在RS485通信中,数据链路层是关键。
它定义了帧格式、传输控制和错误检测等内容。
帧格式包括起始位、数据位、停止位和校验位,确保数据的正确传输。
传输控制定义了主设备与从设备之间的通信规则,例如主设备发送请求,从设备回应应答等。
错误检测使用循环冗余校验(CRC)算法,检测并纠正传输过程中产生的误码。
RS485通信具有以下优点。
首先,它可以实现长距离通信,最远可达1200米,适用于分布式控制系统。
其次,RS485可以支持多个设备之间的通信,灵活且方便。
再次,RS485具有高速传输能力,传输速率可达10Mbps,满足实时性要求。
此外,RS485还能够抵抗电磁干扰和噪声干扰,提高通信的可靠性。
在实际应用中,RS485通信广泛应用于各种工控设备之间的通信。
例如,工业自动化领域中的PLC、传感器、伺服驱动器等设备常使用RS485通信协议进行数据交互。
此外,RS485通信协议也被广泛应用于配电系统、楼宇自动化系统、视频监控系统等领域。
总之,RS485通信协议是一种可靠、高效的串行通信协议,适用于工业自动化等领域。
它通过定义物理层和数据链路层规范,实现了长距离、高速、抗干扰的通信。
在实际应用中,RS485通信协议发挥着重要作用,推动着工业自动化技术的发展。
RS485通讯1. 引言RS485是一种串行通信协议,用于在多个设备之间进行双向数据传输。
它是一种高性能的通讯协议,常用于工业自动化、仪器仪表、门禁系统等领域。
本文将介绍RS485通讯的基本原理、使用方法以及常见的应用场景。
2. 基本原理RS485通讯使用差分信号传输,可以抵抗电磁干扰和噪声。
它采用两条相对独立的传输线(A线和B线),通过不同的电平表示逻辑1或逻辑0。
其中,逻辑1对应线A为高电平,线B为低电平;逻辑0对应线A为低电平,线B为高电平。
通过这种方式,数据可以在多个设备之间进行可靠的传输。
3. 硬件连接在使用RS485通讯时,需要将所有设备连接到一个共享的总线上。
每个设备都需要两条连接线(A线和B线)以及一个共享的地线。
通常,可以使用终端电阻来匹配总线阻抗并提高信号质量。
4. 传输方式RS485通讯可以采用两种传输方式:全双工和半双工。
4.1 全双工通讯在全双工通讯中,设备可以同时发送和接收数据。
发送数据的设备需要将数据发送到总线上,并通过差分信号传输给其他设备。
同时,接收数据的设备可以监听总线上的数据并将其解析。
4.2 半双工通讯在半双工通讯中,设备的发送和接收操作是交替进行的。
设备在发送数据时,需要先将总线设置为发送模式,并将数据发送到总线上。
其他设备在接收数据时,将总线设置为接收模式,并监听数据。
5. 通讯协议RS485通讯可以使用多种协议进行数据交换,常见的有MODBUS、DMX512等。
这些协议定义了数据的传输格式、通讯方式和功能码等。
5.1 MODBUS协议MODBUS是一种常用的通讯协议,适用于工业自动化领域。
它定义了数据的传输格式,并提供了读写寄存器等功能。
MODBUS协议支持点对点和多点通讯。
5.2 DMX512协议DMX512是一种用于舞台灯光控制的通讯协议。
它定义了数据的传输格式和通讯方式。
DMX512通讯一般采用全双工方式进行。
6. 应用场景RS485通讯在许多领域都有广泛的应用。
RS485主从式多机通讯协议1.RS485简介2.主从式多机通信协议RS485主从式多机通信协议允许一个主设备控制多个从设备,实现主设备与从设备之间的数据传输和通信协调。
主从式通信分为两个角色,即主机和从机。
主机是整个系统的控制中心,负责向从机发送指令和收集数据。
从机是被控制的设备,负责执行主机发送的指令并向主机发送数据。
3.数据传输格式4.通信流程-主机发送请求:主机向从机发送请求指令。
-从机应答:从机接收到请求指令后,执行相应操作,并向主机发送应答数据。
-主机接收应答:主机接收到从机的应答数据。
-主机发送下一个请求:主机根据需要继续发送下一个请求指令,重复上述步骤。
5.地址识别与从机选择在RS485主从式多机通信协议中,每个从机都有一个唯一的地址,主机通过地址来识别并选择要与之通信的从机。
通常采用软件设置的方式,主机在发送请求指令时会将目标从机的地址加入请求帧中,从机在接收到请求帧后,会根据地址判断是否为自己的请求。
6.错误处理机制RS485主从式多机通信协议中,为了保证通信的可靠性,需要引入一些错误处理机制。
例如,可以使用CRC校验来检测数据传输过程中的错误,并进行错误重传。
此外,还可以使用超时机制来处理通信过程中出现的超时情况。
7.适用范围总结:RS485主从式多机通信协议是一种常用于工业控制领域的通信标准。
它采用主从式通信模式,支持一个主设备控制多个从设备。
数据传输以帧为单位,采用差分技术提高信号传输的可靠性和抗干扰能力。
通信流程包括主机发送请求、从机应答、主机接收应答和主机发送下一个请求。
地址识别与错误处理机制是确保通信可靠性的重要部分。
RS485主从式多机通信协议适用于工业自动化等环境中的数据传输和控制应用。
知识创造未来
rs485通讯协议
RS485通信协议是一种用于串行通信的标准协议,适用于在工业环境中进行长距离数据传输的应用。
RS485协议使用差分信号传输数据,可以实现在多个节点之间进行双向通信。
RS485通信协议定义了数据传输的电气特性、物理连接和通信格式。
电气特性指定了信号线的电压范围和信号传输的速率。
物理连接采用了多个节点共享同一条通信线路的方式,通信线路上可以连接多个设备。
通信格式定义了数据帧的结构,包括起始符、数据位、校验位等。
RS485通信协议可以支持不同的数据传输模式,包括点对点模式、多点传输模式和主从模式。
在点对点模式中,只有两个节点进行通信。
在多点传输模式中,可以有多个节点同时发送和接收数据。
在主从模式中,一个主设备可以控制多个从设备进行通信。
RS485通信协议具有高噪声抑制能力和抗干扰性能,适用于在工业环境中进行稳定可靠的数据传输。
它广泛应用于自动化控制系统、工业仪表、智能楼宇系统等领域。
1。
摘要:阐述了RS-485总线规范,描述了影响RS-485总线通信速率和通信可靠性的三个因素,同时提出了相应的解决方法并讨论了总线负载能力和传输距离之间的具体关系。
关键词:RS-485 现场总线信号衰减信号反射当前自动控制系统中常用的网络,如现场总线CAN、Profibus、INTERBUS-S以及ARCNet的物理层都是基于RS-485的总线进行总结和研究。
一、EIA RS-485标准在自动化领域,随着分布式控制系统的发展,迫切需要一种总线能适合远距离的数字通信。
在RS-422标准的基础上,EIA研究出了一种支持多节点、远距离和接收高灵敏度的RS-485总线标准。
RS-485标准采有用平衡式发送,差分式接收的数据收发器来驱动总线,具体规格要求:接收器的输入电阻RIN≥12kΩ驱动器能输出±7V的共模电压输入端的电容≤50pF在节点数为32个,配置了120Ω的终端电阻的情况下,驱动器至少还能输出电压1.5V(终端电阻的大小与所用双绞线的参数有关)接收器的输入灵敏度为200mV(即(V+)-(V-)≥0.2V,表示信号“0”;(V+)-(V-)≤-0.2V,表示信号“1”)因为RS-485的远距离、多节点(32个)以及传输线成本低的特性,使得EIA RS-485成为工业应用中数据传输的首选标准。
二、影响RS-485总线通讯速度和通信可靠性的三个因素1、在通信电缆中的信号反射在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。
阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射,如图1所示。
这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。
消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。
由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻,如图2所示。
从理论上分析,在传输电缆的末端只要跨接了与电缆特性阻抗相匹配的终端电阻,就再也不会出现信号反射现象。
但是,在实现应用中,由于传输电缆的特性阻抗与通讯波特率等应用环境有关,特性阻抗不可能与终端电阻完全相等,因此或多或少的信号反射还会存在。
引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。
这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。
信号反射对数据传输的影响,归根结底是因为反射信号触发了接收器输入端的比较器,使接收器收到了错误的信号,导致CRC校验错误或整个数据帧错误。
在信号分析,衡量反射信号强度的参数是RAF(Refection Attenuation Factor反射衰减因子)。
它的计算公式如式(1)。
RAF=20lg(V ref/V inc) (1)式中:V ref—反射信号的电压大小;V inc—在电缆与收发器或终端电阻连接点的入射信号的电压大小。
具体的测量方法如图3所示。
例如,由实验测得2.5MHz的入射信号正弦波的峰-峰值为+5V,反射信号的峰-峰值为+0.297V,则该通讯电缆在2.5MHz的通讯速率时,它的反射衰减因子为:RAF=20lg(0.297/2.5)=-24.52dB要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。
在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。
在通讯线路中,如何通过加偏置电阻提高通讯可靠性的原理,后面将做详细介绍。
2、在通讯电缆中的信号衰减第二个影响信号传输的因素是信号在电缆的传输过程中衰减。
一条传输电缆可以把它看出由分布电容、分布电感和电阻联合组成的等效电路,如图4所示。
电缆的分布电容C主要是由双绞线的两条平行导线产生。
导线的电阻在这里对信号的影响很小,可以忽略不计。
信号的损失主要是由于电缆的分布电容和分布电感组成的LC低通滤波器。
PROFIBUS用的LAN标准型二芯电感(西门子为DP总线选用的标准电缆),在不同波特率时的衰减系数如表1所示。
表1 电缆的衰减系数3、在通讯电缆中的纯阻负载影响通讯性能的第三个因素是纯阻性负载(也叫直流负载)的大小。
这里指的纯阻性负载主要由终端电阻、偏置电阻和RS-485收发器三者构成。
在叙述EIA RS-485规范时曾提到过RS-485驱动器在带了32个节点,配置了150Ω终端电阻的情况下,至少能输出1.5V的差分电压。
一个接收器的输入电阻为12kΩ,整个网络的等效电路如图5所示。
按这样计算,RS-485驱动器的负载能力为:RL=32个输入电阻并联||2个终端电阻=((12000/32)×(150/2))/(12000/32)+(150/2))≈51.7Ω现在比较常用的RS-485驱动器有MAX485、DS3695、MAX1488/1489以及和利时公司使用的SN75176A/D 等,其中有的RS-485驱动器负载能力可以达到20Ω。
在不考虑其它诸多因素的情况下,按照驱动能力和负载的关系计算,一个驱动器可带节点的最大数量将远远大于32个。
在通讯波特率比较高的时候,在线路上偏置电阻是很有必要的。
偏置电阻的连接方法如图6。
它的作用是在线路进入空闲状态后,把总线上没有数据时(空闲方式)的电平拉离0电平,如图7。
这样一来,即使线路中出现了比较小的反射信号或干扰,挂接在总线上的数据接收器也不会由于这些信号的到来而产生误动作。
通过下面后例子了,可以计算出偏置电阻的大小:终端电阻Rt1=Rr2=120Ω;假设反射信号最大的峰-峰值Vref≤0.3Vp-p,则负半周的电压Vref≤0.15V;终端的电阻上由反射信号引起的反射电流Iref≤0.15/(120||120)=2.5mA。
一般RS-485收发器(包括SN75176)的滞后电压值(hysteresis value)为50mV,即:(Ibias-Iref)×(Rt1||Rt2)≥50mV于是可以计算出偏置电阻产生的偏置电流Ibias≥3.33mA+5V=Ibias(R上拉+R下拉+(Rt1||Rt2)) (2)通过式2可以计算出R上拉=R下拉=720Ω在实际应用中,RS-485总线加偏置电阻有两种方法:(1)把偏置电阻平衡分配给总线上的每一个收发器。
这种方法给挂接在RS-485总线上的每一个收发器加了偏置电阻,给每一个收发器都加了一个偏置电压。
(2)在一段总线上只用一对偏置电阻。
这种方法对总线上存在大的反射信号或干扰信号比较有效。
值得注意的是偏置电阻的加入,增加了总线的负载。
三、R S-485总线的负载能力和通讯电缆长度之间的关系在设计RS-485总线组成的网络配置(总线长度和带负载个数)时,应该考虑到三个参数:纯阻性负载、信号衰减和噪声容限。
纯阻性负载、信号衰减这两个参数,在前面已经讨论过,现在要讨论的是噪声容限(Noise Margin)。
RS-485总线接收器的噪声容限至少应该大于200mV。
前面的论述者是在假设噪声容限为0的情况下进行的。
在实际应用中,为了提高总线的抗干扰能力,总希望系统的噪声容限比EIA RS-485标准中规定的好一些。
从下面的公式能看出总线带负载的多少和通讯电缆长度之间的关系:Vend=0.8(Vdriver-Vloss-Vnoise-Vbias) (3)其中:Vend为总线末端的信号电压,在标准测定时规定为0.2V;Vdriver为驱动器的输出电压(与负载数有关。
负载数在5~35个之间,Vdriver=2.4V;当负载数小于5,Vdriver=2.5V;当负载数大于35,Vdriver≤2.3V);Vloss为信号在总线中的传输过程中的损耗(与通讯电缆的规格和长度有关),由表1提供的标准电缆的衰减系数,根据公式衰减系数b=20lg(Vout/Vin)可以计算出Vloss=Vin-Vout=0.6V(注:通讯波特率为9.6kbps,电缆长度1km,如果特率增加,Vloss会相应增大);Vnoise为噪声容限,在标准测定时规定为0.1V;Vbias是由偏置电阻提供的偏置电压(典型值为0.4V)。
式(3)中乘以0.8是为了使通信电缆不进入满载状态。
从式(3)可以看出,Vdriver的大小和总线上带负载数的多少成反比,Vloss的大小和总线长度成反比,其他几个参数只和用的驱动器类型有关。
因此,在选定了驱动器的RS-495总线上,在通信波特率一定的情况下,带负载数的多少,与信号能传输的最大距离是直接相关的。
具体关系是:在总线允许的范围内,带负载数越多,信号能传输的距离就越小;带负载数据少,信号能传输的距离就发越远。
四、分布电容对RS-485总线传输性能的影响电缆的分布电容主是由双绞线的两条平行导线产生。
另外,导线和地之间也存在分布电容,虽然很小,但在分析时也不能忽视。
分布电容对总线传输性能的影响,主要是因为总线上传输的是基波信号,信号的表达方式只有“1”和“0”。
在特殊的字节中,例如0x01,信号“0”使得分布电容有足够的充电时间,而信号“1”到来时,由于分布电容中的电荷,来不及放电,(Vin+)—(Vin-)-还大于200mV,结果使接爱误认为是“0”,而最终导致CRC校验错误,整个数据帧传输错误。
具体过程如图8所示。
由于总线上分布影响,导致数据传输错误,从而使整个网络性能降低。
解决这个问题有两种方法:(1)降低数据传输的波特率;(2)使用分布电容小的电缆,提高传输线的质量。