【精编】2014-2015学年广东省深圳市罗湖区七年级(下)期末数学试卷(解析版)
- 格式:doc
- 大小:264.00 KB
- 文档页数:17
深圳罗湖区罗湖中学七年级下册数学期末压轴难题试卷及答案-百度文库 一、选择题1.如图,下列说法不正确的是( )A .1∠和A ∠是同旁内角B .2∠和B 是内错角C .3∠和A ∠是同位角D .4∠和C ∠是同旁内角 2.下列现象中是平移的是( ) A .翻开书中的每一页纸张 B .飞碟的快速转动 C .将一张纸沿它的中线折叠D .电梯的上下移动3.已知点()0,P a 在y 轴的负半轴上,则点(),5A a a --+在( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.下列命题中是假命题的是( )A .对顶角相等B .8的立方根是±2C .实数和数轴上的点是一一对应的D .平行于同一直线的两条直线平行5.一副直角三角板如图放置,其中∠F =∠ACB =90°,∠D =45°,∠B =60°,AB //DC ,则∠CAE 的度数为( )A .25°B .20°C .15°D .10°6.对于有理数a .b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,当b <a 时,min {a ,b }=b .例如:min {1,﹣2}=﹣2,已知min {30,a }=a ,min {30,b }=30,且a 和b 为两个连续正整数,则a ﹣b 的立方根为( ) A .﹣1B .1C .﹣2D .27.如图,//AB CD ,//BC DE ,若140CDE ∠=︒,则B 的度数是( )A .40°B .60°C .140°D .160°8.如图,在平面直角坐标系中,一动点从原点O 出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到()10,1A ,()21,1A ,()31,0A ,()42,0A ,…那么点2021A 的坐标为( )A .()505,0B .()505,1C .()1010,0D .()1010,1二、填空题9.0.0081的算术平方根是______10.平面直角坐标系中,点(3,2)A -关于x 轴的对称点是__________.11.如图,BD 、CE 为△ABC 的两条角平分线,则图中∠1、∠2、∠A 之间的关系为___________.12.如图:已知AB ∥CD ,CE ∥BF ,∠AEC =45°,则∠BFD =_____.13.如图1是长方形纸带,19DEF ∠=︒,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中的CFE ∠的度数是_________度.14.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.15.在平面直角坐标系中,第二象限内的点M 到横轴的距离为2,到纵轴的距离为3,则点M 的坐标是________.16.如图,在平面直角坐标系中,横坐标和纵坐标都为整数的点称为整点.观察图中每个正方形(实线)四条边上的整点的个数,假如按图规律继续画正方形(实线),请你猜测由里向外第15个正方形(实线)的四条边上的整点共有________个.三、解答题17.计算:(1)239(6)27----. (2)﹣12+(﹣2)3×31127()89--⨯- .18.求下列各式中的x 值 (1)x 2﹣614=(2)12(2x ﹣1)3=﹣419.如图,已知∠1=∠2,∠B =∠C ,可推得AB ∥CD .理由如下:∵∠1=∠2(已知),且∠l =∠CGD ( ) ∴∠2=∠CGD ∴.CE ∥BF ( ) ∴∠ =∠BFD ( ) 又∵∠B =∠C (已知) ∴ , ∴AB ∥CD ( )20.已知点A (-2,3),B (4,3),C (-1,-3).(1)在平面直角坐标系中标出点A ,B ,C 的位置; (2)求线段AB 的长;(3)求点C 到x 轴的距离,点C 到AB 的距离; (4)求三角形ABC 的面积;(5)若点P 在y 轴上,且三角形ABP 的面积与三角形ABC 的面积相等,求点P 的坐标.21.阅读下面文字:22的小数部分我们不可能全21221,将这个数减去其整数部分,差就是小数部分.又例如:由“平方与开平方互为逆运算”可知:22<2(7)<23,即273<<,∴7的整数部分是2,小数部72.(110的整数部分是________,小数部分是________;(25a 37整数部分是b ,求25b a -+ (3)已知103x y +=+,其中x 是整数,且01y <<,求y x -. 二十二、解答题22.已知在44⨯的正方形网格中,每个小正方形的边长为1. (1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数88-二十三、解答题23.已知//AB CD ,点E 在AB 与CD 之间. (1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.24.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论.25.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON =60°,在射线OM 上取一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (点C 不与O 、B 重合),若∠ACB =80°.判定△AOB 、△AOC 是否是“梦想三角形”,为什么?(3)如图2,点D 在△ABC 的边上,连接DC ,作∠ADC 的平分线交AC 于点E ,在DC 上取一点F ,使得∠EFC +∠BDC =180°,∠DEF =∠B .若△BCD 是“梦想三角形”,求∠B 的度数.26.如图,△ABC 和△ADE 有公共顶点A ,∠ACB =∠AED =90°,∠BAC =45°,∠DAE =30°. (1)若DE //AB ,则∠EAC = ;(2)如图1,过AC 上一点O 作OG ⊥AC ,分别交A B 、A D 、AE 于点G 、H 、F . ①若AO =2,S △AGH =4,S △AHF =1,求线段OF 的长;②如图2,∠AFO 的平分线和∠AOF 的平分线交于点M ,∠FHD 的平分线和∠OGB 的平分线交于点N ,∠N +∠M 的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、选择题1.B解析:B【分析】根据同旁内角、内错角、同位角的概念判断即可.【详解】解:如图,A.∠1和∠A是MN与AN被AM所截成的同旁内角,说法正确,故此选项不符合题意;B.∠2和∠B不是内错角,说法错误,故此选项符合题意;C.∠3和∠A是MN与AC被AM所截成的同位角,说法正确,故此选项不符合题意;D.∠4和∠C是MN与BC被AC所截成的同旁内角,说法正确,故此选项不符合题意;故选:B.【点睛】此题考查了同旁内角、内错角、同位角,熟记同旁内角、内错角、同位角的概念是解题的关键.2.D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选. 3.A 【分析】根据y 负半轴上点的纵坐标是负数判断出a ,再根据各象限内点的坐标特征解答. 【详解】∵点P (0,a )在y 轴的负半轴上, ∴0a <, ∴0a ->,55a -+>,∴点M (-a ,-a +5)在第一象限. 故选:A . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键. 4.B 【分析】根据平行线的判定、对顶角、立方根和实数与数轴关系进行判断即可. 【详解】解:A 、对顶角相等,是真命题; B 、8的立方根是2,原命题是假命题; C 、实数和数轴上的点是一一对应的,是真命题; D 、平行于同一直线的两条直线平行,是真命题; 故选:B . 【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角、立方根和实数与数轴,属于基础题,难度不大. 5.C 【分析】利用平行线的性质和给出的已知数据即可求出CAE ∠的度数. 【详解】解:90F ∠=︒,45D ∠=︒, 45DEF ∴∠=︒,90ACB ∠=︒,60B ∠=︒, 30BAC ∴∠=︒,//AB DC ,45BAE DEF ∴∠=∠=︒,453015CAE BAE BAC ∴∠=∠-∠=︒-︒=︒,故选:C . 【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质.6.A【分析】根据a,b的范围即可求出a−b的立方根.【详解】b解:根据题意得:a∵25<30<36,∴56,∵a和b为两个连续正整数,∴a=5,b=6,∴a﹣b=﹣1,∴﹣1的立方根是﹣1,故选:A.【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.7.A【分析】根据平行线的性质求出∠C,再根据平行线的性质求出∠B即可.【详解】解:∵BC∥DE,∠CDE=140°,∴∠C=180°-140°=40°,∵AB∥CD,∴∠B=40°,故选:A.【点睛】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.8.D【分析】根据图象移动的得出移动4次一个循环,得出结果即可;【详解】根据图象可得移动4次图象完成一个循环,∵,∴的坐标是;故答案选D.【点睛】本题主要考查了点的坐标规律题,准确计算解析:D 【分析】根据图象移动的得出移动4次一个循环,得出结果即可; 【详解】根据图象可得移动4次图象完成一个循环, ∵202145051÷=,∴2021A 的坐标是()()5052,11010,1⨯=; 故答案选D . 【点睛】本题主要考查了点的坐标规律题,准确计算是解题的关键.二、填空题 9.3 【分析】根据算术平方根的性质解答即可. 【详解】 解:,0.09的算术平方根是0.3. 故答案为:0.3. 【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.解析:3 【分析】根据算术平方根的性质解答即可. 【详解】0.09=, 0.09的算术平方根是0.3. 故答案为:0.3. 【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.10.【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】解:点关于轴的对称点的坐标是(3,2). 【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特 解析:()3,2【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点(3,2)A 关于x轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横坐标变为相反数;11.∠1+∠2-∠A=90°【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.【详解】∵BD、C解析:∠1+∠2-32∠A=90°【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.【详解】∵BD、CE为△ABC的两条角平分线,∴∠ABD=12∠ABC,∠ACE=12∠ACB,∵∠1=∠ACE+∠A,∠2=∠ABD+∠A ∴∠1+∠2=∠ACE+∠A+∠ABD+∠A=1 2∠ABC+12∠ACB+12∠A+32∠A=12(∠ABC+∠ACB+∠A)+32∠A=90°+32∠A故答案为∠1+∠2-32∠A=90°.【点睛】考查了三角形的内角和等于180°、外角与内角关系及角平分线的性质,是基础题.三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和.12.45°【分析】根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD.【详解】解:∵AB∥CD,∴∠ECD=∠AEC,∵CE∥BF,∴∠BFD=∠ECD,解析:45°【分析】根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD.【详解】解:∵AB∥CD,∴∠ECD=∠AEC,∵CE∥BF,∴∠BFD=∠ECD,∴∠BFD=∠AEC,∵∠AEC=45°,∴∠BFD=45°.故答案为:45°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.13.123【分析】由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG.【详解】解:∵AD//解析:123【分析】由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG.【详解】解:∵AD//BC,∴∠DEF=∠EFB=19°,在图2中,∠GFC=180°-∠FGD=180°-2∠EFG=142°,在图3中,∠CFE=∠GFC-∠EFG=123°.故答案为:123.【点睛】本题考查平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.14.;【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是,所以第个数是,第n 个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n -,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)n n -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.15.(-3,2)【分析】根据点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点到横轴的距离为,到纵轴的距离为,解析:(-3,2)【分析】根据点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点M 到横轴的距离为2,到纵轴的距离为3,∴|y|=2,|x|=3,由M 是第二象限的点,得:x=−3,y=2.即点M 的坐标是(−3,2),故答案为:(−3,2).【点睛】此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐16.60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一解析:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一个端点,这条边有1个整点.根据正方形是中心对称图形,则四条边共有4⨯1=4个整点,②第2个正方形,对于其中1条边,除去该边的一个端点,这条边有2个整点.根据正方形是中心对称图形,则四条边共有4⨯2=8个整点,③第3个正方形,对于其中1条边,除去该边的一个端点,这条边共有3个整点.根据正方形是中心对称图形,则四条边共有4⨯3=12个整点,④第4个正方形,对于其中1条边,除去该边的一个端点,这条边共有4个整点.根据正方形是中心对称图形,则四条边共有4⨯4=16个整点,⑤第5个正方形,对于其中1条边,除去该边的一个端点,这条边共有5个整点.根据正方形是中心对称图形,则四条边共有4⨯5=20个整点,...以此类推,第15个正方形,四条边上的整点共有4⨯15=60个.故答案为:60.【点睛】本题主要考查了坐标与图形的性质,图形中的数字的变化规律.准确找出每一个正方形(实线)四条边上的整点的个数与正方形序号的关系是解题的关键.三、解答题17.(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.【详解】解:(1)原式=3-6-解析:(1)0;(2)-3.(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.【详解】解:(1)原式=3-6-(-3)=3-6+3=0;(2)原式= -1+(-8)×18-(-3)×(-13)=-1-1-1=-3.故答案为(1)0;(2)-3.【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键.18.(1);(2).【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】(1)x2﹣6,移项得:,开方得:x,解得:;(2)(2x﹣1)3=﹣4,变形得:解析:(1)52x=±;(2)12x=-.【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】(1)x2﹣614 =,移项得:2125644x=+=,开方得:x=解得:52x=±;(2)12(2x﹣1)3=﹣4,变形得:(2x﹣1)3=﹣8,开立方得:212x-=-,解得:12x=-.【点睛】本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个.19.见解析【分析】首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,解析:见解析【分析】首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥C D.【详解】解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定与性质.注意数形结合思想的应用是解答此题的关键.20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;(4)根据三角形面积=AB的长×C到直线AB的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解.【详解】解:(1)如图所示,即为所求;(2)∵A (-2,3),B (4,3),∴AB =4-(-2)=6;(3)∵C (-1,-3),∴C 到x 轴的距离为3,到直线AB 的距离为6;(4)∵AB =6,C 到直线AB 的距离为6, ∴1=66=182ABC S ⨯⨯△;(5)如图所示,三角形ABP与三角形ABC同底等高,即为所求∴P(0,-3);同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9);∴P(0,-3)或(0,9).【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出10+的范围,再求出x、y的值,最后代入求出解析:(1)33;(2)83)12【分析】(1的范围,再求出即可;(2的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出x、y的值,最后代入求出即可.【详解】解:(1)∵∴3<4,∴3-3,故答案为:3-3;(2)∵∴23,67,∴a,b=6,∴)-+=-+628b a(3)∵12,∴11<1012,∴x=11,y=10111=,y x--==∴1111212【点睛】本题考查了估算无理数的大小和求代数式的值,能估算出无理数的大小是解此题的关键.二十二、解答题22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】×3×1=10解:(1)正方形ABCD的面积为4×4-4×12则正方形ABCD的边长为10;×2×2=8,所以该正方形即为所求,如图建立(2)如下图所示,正方形的面积为4×4-4×12数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.二十三、解答题23.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.24.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.25.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=5407().【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB、△AOC都是“梦想三角形”证明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB为“梦想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“梦想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“梦想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=5407().【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.26.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。
(完整)广东省深圳市福田区2014-2015学年七年级下学期期末数学试卷【解析版】编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)广东省深圳市福田区2014-2015学年七年级下学期期末数学试卷【解析版】)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)广东省深圳市福田区2014-2015学年七年级下学期期末数学试卷【解析版】的全部内容。
广东省深圳市福田区七年级下学期期末数学试卷一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5 D.x2+x3=x53.(3分)下列多项式乘法中,可用平方差公式计算的是()A.(2a+b)(2a﹣3b)B.(x+1)(1+x) C.(x﹣2y)(x+2y)D.(﹣x﹣y)(x+y)4.(3分)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°5.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.[来源:学科网ZXXK]6.(3分)计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b27.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或178.(3分)星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路[来源:学科网ZXXK]9.(3分)如图,属于内错角的是()A.∠1和∠2B.∠2和∠3C.∠1和∠4D.∠3和∠410.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC 11.(3分)下列说法正确的是()A.内错角相等B.两直线平行,同旁内角相等C.不相交的两条直线交平行线D.过直线外一点有且只有一条直线与已知直线平行[来源:学科网ZXXK]12.(3分)如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B 与点A重合,折痕为DE,则△ACD的周长为()A.10cm B.12cm C.15cm D.20cm二、填空题:(本题共4小题,每小题3分,共12分)13.(3分)若x﹣y=8,xy=10,则x2+y2=.14.(3分)如图,一只小鸟自由自在的在空中飞翔,然后随意落在如图所示的图形表示的空地上(每个方格除颜色外完全相同),则落在图中阴影部分的概率是.15.(3分)如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于.16.(3分)如图a是长方形纸带,∠DEF=24°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是.三、解答题:(本题共7小题,其中第17题8分,第18题6分,第19题8分,第20题7分,第21题6分,第22题8分,第23题9分,共52分)17.(8分)计算:(1)(﹣1)2015+()﹣2﹣(3。
广东省深圳市七年级第二学期期末数学试卷一、选择题(本题有12小题,每题3分,共36分)1.如图所示的是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是()A.小车B.弹簧C.钩码D.三极管2.据外汇局网站5月16日消息:国家外汇管理局统计数据显示,2016年4月,银行结售汇逆差1534亿元人民币,其中“1534亿”用科学记数法表示为()A.1.534×103B.1.534×1011C.15.34×108D.1534×1083.下列计算正确是()A.a3+a2=a5 B.a8÷a4=a2C.(a4)2=a8D.(﹣a)3(﹣a)2=a54.下列算式中正确的是()A.3a3÷2a=B.﹣0.00010=(﹣9999)0C.3.14×10﹣3=0.000314 D.5.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=45°,那么∠1的度数为()A.45°B.35°C.25°D.15°7.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.9.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11 cm B.7.5 cmC.11 cm或7.5 cm D.以上都不对10.如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25m D.30m11.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.612.某中学七年级组织学生进行春游,景点门票价格情况如图,则下列说法正确的是()A.当旅游人数为50时,则门票价格为70元/人B.当旅游人数为50或者100的时,门票价格都是70元/人C.两个班级都是40名学生,则两个班联合起来购票比分别购票要便宜D.当人数增多时,虽然门票价格越来越低,但是购票总费用会越来越高二、填空题(本题有4小题,每题3分,共12分)13.5m2n(2n+3m﹣n2)的计算结果是次多项式.14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).15.若a+b=3,ab=2,则a2+b2=.16.如图,有一枚质地均匀的正十二面体形状的骰子,其中1个面标有“0”,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,其余的面标有“5”,将这枚骰子掷出后:①”6”朝上的概率是0;②“5”朝上的概率最大;③“0”朝上的概率和“1”朝上的概率一样大;④“4”朝上的概率是.以上说法正确的有.(填序号)三、解答题(本大题有7题,其中17题15分,18题6分,19题8分,20题7分,21题6分,22题4分,23题6分,共52分)17.(1)计算:(2x2y)3÷6x3y2(2)用简便方法计算:1232﹣122×124.(3)先化简,再求值:x(x﹣3y)+(2x+y)(2x﹣y)﹣(2x﹣y)(x﹣y),其中x=﹣2,.18.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)19.如图,已知,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2,求证:∠A=∠C.请完成证明过程.20.如图,已知:在△AFD和△CEB中,点A,E,F,C在同一条直线上,AE=CF,∠B=∠D,AD∥BC,请问:AD与BC相等吗?为什么?21.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm.(1)根据如图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2016cm吗?为什么?22.先阅读理解下面的例题,再按要求解答下列问题.求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+1的最小值;(2)求代数式4﹣x2+2x的最大值.23.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.广东省深圳市七年级第二学期期末数学试卷一、选择题(本题有12小题,每题3分,共36分)1.如图所示的是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是()A.小车B.弹簧C.钩码D.三极管【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.2.据外汇局网站5月16日消息:国家外汇管理局统计数据显示,2016年4月,银行结售汇逆差1534亿元人民币,其中“1534亿”用科学记数法表示为()A.1.534×103B.1.534×1011C.15.34×108D.1534×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1534亿有12位,所以可以确定n=12﹣1=11.【解答】解:1534亿=1543 0000 0000=1.534×1011,故选:B.3.下列计算正确是()A.a3+a2=a5 B.a8÷a4=a2C.(a4)2=a8D.(﹣a)3(﹣a)2=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除运算法则以及合并同类项法则和幂的乘方运算法则分别化简求出答案.【解答】解:A、a3+a2无法计算,故此选项错误;B、a8÷a4=a4,故此选项错误;C、(a4)2=a8,正确;D、(﹣a)3(﹣a)2=﹣a5,故此选项错误;故选:C.4.下列算式中正确的是()A.3a3÷2a=B.﹣0.00010=(﹣9999)0C.3.14×10﹣3=0.000314 D.【考点】整式的除法;零指数幂;负整数指数幂.【分析】分别利用整式的除法运算法则以及零指数幂的性质和负整数指数的幂的性质分别化简求出答案.【解答】解:A、3a3÷2a=a2,故此选项错误;B、﹣0.00010=﹣1,(﹣9999)0=1,故此选项错误;C、3.14×10﹣3=0.00314,故此选项错误;D、(﹣)﹣2=9,正确.故选:D.5.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单独的一个数字也是单项式,故A正确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D正确.故选B.6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=45°,那么∠1的度数为()A.45°B.35°C.25°D.15°【考点】平行线的性质.【分析】如图,利用平行线的性质可得到∠2=∠3,再由直角三角形的性质可求得∠1.【解答】解:如图,由题意可知BD∥CE,∴∠3=∠2=45°,∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∴∠1=60°﹣∠3=15°,故选D.7.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)【考点】作图—基本作图;全等三角形的判定与性质.【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.9.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11 cm B.7.5 cmC.11 cm或7.5 cm D.以上都不对【考点】等腰三角形的性质;三角形三边关系.【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解答】解:①当11cm为腰长时,则腰长为11cm,底边=26﹣11﹣11=4cm,因为11+4>11,所以能构成三角形;②当11cm为底边时,则腰长=(26﹣11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故选C.10.如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25m D.30m【考点】三角形三边关系.【分析】根据三角形的三边关系定理得到5<AB<25,根据AB的范围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,则AB的值在5和25之间.故选B.11.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.6【考点】角平分线的性质.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据(1)中所求S△ACD=3列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,∴DE=DF=2.=AC•DF=×3×2=3,∴S△ACD故选A.12.某中学七年级组织学生进行春游,景点门票价格情况如图,则下列说法正确的是()A.当旅游人数为50时,则门票价格为70元/人B.当旅游人数为50或者100的时,门票价格都是70元/人C.两个班级都是40名学生,则两个班联合起来购票比分别购票要便宜D.当人数增多时,虽然门票价格越来越低,但是购票总费用会越来越高【考点】函数的图象.【分析】根据景点门票价格情况图容易得出选项A、B、D错误,选项C正确;即可得出结论.【解答】解:根据题意得:当旅游人数不超过50人时,则门票价格为80元/人;当旅游人数为50﹣100时,门票价格都是70元/人;若两个班级都是40名学生,则两个班联合起来购票为70元/人,比分别购票要便宜;∵99×70>101×60,∴当人数增多时,虽然门票价格越来越低,但是购票总费用也不会越来越高;∴选项A、B、D错误,选项C正确;故选:C.二、填空题(本题有4小题,每题3分,共12分)13.5m2n(2n+3m﹣n2)的计算结果是五次多项式.【考点】单项式乘多项式;多项式.【分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:5m2n(2n+3m﹣n2)=10m2n2+15m3n﹣5m2n3,则计算结果是五次多项式,故答案为:五14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【考点】平方差公式的几何背景.【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.15.若a+b=3,ab=2,则a2+b2=5.【考点】完全平方公式.【分析】根据a2+b2=(a+b)2﹣2ab,代入计算即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=5.故答案为:5.16.如图,有一枚质地均匀的正十二面体形状的骰子,其中1个面标有“0”,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,其余的面标有“5”,将这枚骰子掷出后:①”6”朝上的概率是0;②“5”朝上的概率最大;③“0”朝上的概率和“1”朝上的概率一样大;④“4”朝上的概率是.以上说法正确的有①③④.(填序号)【考点】概率的意义.【分析】正十二面每个面向上的机会相同,因而根据概率公式解答即可.【解答】解:没有6的面,所以①”6”朝上的概率是0,正确;②“5”朝上的概率=概率小,故②错误;③“0”朝上的概率=和“1”朝上的概率=一样大,正确;④“4”朝上的概率是.正确;故答案为:①③④三、解答题(本大题有7题,其中17题15分,18题6分,19题8分,20题7分,21题6分,22题4分,23题6分,共52分)17.(1)计算:(2x2y)3÷6x3y2(2)用简便方法计算:1232﹣122×124.(3)先化简,再求值:x(x﹣3y)+(2x+y)(2x﹣y)﹣(2x﹣y)(x﹣y),其中x=﹣2,.【考点】整式的混合运算—化简求值.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果;(3)原式利用单项式乘以多项式,平方差公式计算得到结果,将x与y的值代入计算即可求出值.【解答】解:(1)原式=8x6y3÷6x3y2=x3y;(2)原式=1232﹣×=1232﹣1232+1=1;(3)原式=x2﹣3xy+4x2﹣y2﹣2x2+2xy+xy﹣y2=3x2﹣2y2,当x=﹣2,y=﹣时,原式=12﹣=11.18.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)【考点】利用轴对称设计图案.【分析】(1)利用已知图形的特征分别得出其共同的特征;(2)利用(1)所写的特征画出符合题意的图形即可.【解答】解:(1)答案不唯一,例如,所给的四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③都是直线型图案;④图案中不含钝角等等.只要写出两个即可.(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如,同时具备特征①、②的部分图案如图:19.如图,已知,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2,求证:∠A=∠C.请完成证明过程.【考点】平行线的判定与性质.【分析】求出∠1=∠3,求出∠2=∠3,根据平行线的判定得出AB∥CD,根据平行线的性质得出∠A+∠ADC=180°,∠C+∠ABC=180°,即可得出答案.【解答】证明:∵BE、DF分别平分∠ABC、∠ADC,∴∠1=∠ABC,∠3=∠ADC(角平分线的定义),∵∠ABC=∠ADC,∴∠1=∠3(等量的代换),∵∠1=∠2,∴∠2=∠3(等量代换),∴AB∥DC(内错角相等,两直线平行),∴∠A+∠ADC=180°,∠C+∠ABC=180°(两直线平行,同旁内角互补)∴∠A=∠C(等量代换).20.如图,已知:在△AFD和△CEB中,点A,E,F,C在同一条直线上,AE=CF,∠B=∠D,AD∥BC,请问:AD与BC相等吗?为什么?【考点】全等三角形的判定与性质.【分析】先求出AF=CE,再由平行线的性质得出∠A=∠C,由AAS证明△ADF≌△CBE,得出对应边相等即可.【解答】解:AD=BC,理由如下:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AD=BC.21.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm.(1)根据如图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2016cm吗?为什么?【考点】函数关系式;函数值.【分析】(1)根据题意找出白纸张数跟纸条长度之间的关系,然后求解填空即可;(2)x张白纸黏合,需黏合(x﹣1)次,重叠5(x﹣1)cm,所以总长可以表示出来;(3)解当y=2016时得到的方程,若x为自变量取值范围内的值则能,反之不能.【解答】解:(1)75,180;(2)根据题意和所给图形可得出:y=40x﹣5(x﹣1)=35x+5.(3)不能.把y=2016代入y=35x+5,解得,不是整数,所以不能.22.先阅读理解下面的例题,再按要求解答下列问题.求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+1的最小值;(2)求代数式4﹣x2+2x的最大值.【考点】配方法的应用.【分析】(1)利用配方法把原式变形,根据非负数的性质解答;(2)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)m2+m+1==,所以m2+m+1的最小值是(2)4﹣x2+2x=﹣x2+2x﹣1+5=﹣(x﹣1)2+5≤5所以4﹣x2+2x的最大值是5.23.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)由GF垂直平分DC,可得GD=GC,同理可得,GA=GB,又由∠AGD=∠BGC,即可证得△ADG≌△BCG(SAS),继而证得结论;(2)首先延长AD,与CG相交于点O、与BC的延长线相交于点Q,由(1)可证得∠ADG=∠BCG,继而可求得∠Q的度数,【解答】解:(1)AD=BC.理由:∵GF垂直平分DC,∴GD=GC同理,GA=GB,在△ADG和△BCG中,,∴△ADG≌△BCG(SAS),∴AD=BC;(2)AD⊥BC.理由:延长AD,与CG相交于点O、与BC的延长线相交于点Q.∵△ADG≌△BCG,∴∠ADG=∠BCG,则∠GDO=∠QCO,∴∠QDC+∠QCD=∠DQC+∠DCG+∠QCG=∠QDC+∠GDQ+∠DCG=∠CDG+∠DCG,∵DG⊥GC,∴∠QDC+∠QCD=∠CDG+∠DCG=90°,∴∠Q=90°,∴AD⊥BC.第21页(共21页)。
深圳罗湖区罗芳中学人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷=2.从边长为a 的大正方形板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()()22a b a b a b +-=- 3.若一个多边形的每个内角都为108°,则它的边数为( ) A .5 B .8 C .6 D .104.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .65.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( )A .8312x y x y +=⎧⎨-=⎩B .8312x y x y -=⎧⎨-=⎩C .18312x y x y +=⎧⎨+=⎩D .8312x y x y -=⎧⎨+=⎩6.下列图形中,∠1和∠2是同位角的是( )A .B .C .D .7.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .6 8.下列运算中,正确的是( ) A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 6 9.下列计算不正确的是( ) A .527a a a =B .623a a a ÷=C .2222a a a +=D .(a 2)4=a 8 10.下列运算正确的是( ) A .236x x x ⋅= B .224(2)4x x -=- C .326()x x =D .55x x x ÷= 二、填空题11.如图,直线//AB CD ,直线GE 交直线AB 于点E ,EF 平分AEG ∠.若∠1=58°,则AEF ∠的大小为____.12.若(2x +3)x +2020=1,则x =_____.13.若多项式29x mx ++是一个完全平方式,则m =______.14.如果42x -与231x mx ++的乘积中不含x 2项,则m=______________.15.计算(﹣2xy )2的结果是_____.16.因式分解:224x x -=_________.17.计算:5-2=(____________)18.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.19.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.20.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=_____.三、解答题21.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+ 22.如图,网格中每个小正方形边长为1,△ABC 的顶点都在格点上.将△ABC 向左平移2格,再向上平移3格,得到△A ′B ′C ′.(1)请在图中画出平移后的△A ′B ′C ′;(2)画出平移后的△A ′B ′C ′的中线B ′D ′(3)若连接BB ′,CC ′,则这两条线段的关系是________(4)△ABC 在整个平移过程中线段AB 扫过的面积为________(5)若△ABC 与△ABE 面积相等,则图中满足条件且异于点C 的格点E 共有______个 (注:格点指网格线的交点)23.对于多项式x 3﹣5x 2+x +10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x +10的值为0,由此可以断定多项式x 3﹣5x 2+x +10中有因式(x ﹣2),(注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )),于是我们可以把多项式写成:x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),分别求出m 、n 后再代入x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),就可以把多项式x 3﹣5x 2+x +10因式分解.(1)求式子中m 、n 的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x 3+5x 2+8x +4.24.因式分解:(1)x 4﹣16;(2)2ax 2﹣4axy +2ay 2.25.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.26.计算:(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++- 27.已知:方程组2325x y a x y +=-⎧⎨+=⎩,是关于x 、y 的二元一次方程组. (1)求该方程组的解(用含a 的代数式表示);(2)若方程组的解满足0x <,0y >,求a 的取值范围.28.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确;C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。
深圳罗湖区莲城学校七年级下册数学期末压轴难题试卷(含答案)一、选择题1.如图,下列结论中错误的是( )A .∠1与∠2是同旁内角B .∠1与∠4是内错角C .∠5与∠6是内错角D .∠3与∠5是同位角2.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是() A .B .C .D .3.平面直角坐标系中,点()2,3P -所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列命题是假命题的是( ) A .两个锐角的和是钝角B .两条直线相交成的角是直角,则两直线垂直C .两点确定一条直线D .三角形中至少有两个锐角5.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180° 6.如图,数轴上的点A 所表示的数为x ,则x 2﹣10的立方根为( )A .2﹣10B .﹣2﹣10C .2D .﹣27.已知直线//m n ,将一块含30°角的直角三角板按如图所示方式放置(∠ABC =30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=25°,则∠2的度数为( )A .55°B .45°C .30°D .25°8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2020, 0)B .(2021,1)C .(2021,2)D .(2021,0)二、填空题9.已知非零实数a.b 满足|2a-4|+|b+2|+()23a b -+4=2a ,则2a+b=_______.10.平面直角坐标系中,点(3,2)A -关于x 轴的对称点是__________.11.如图,在ABC ∆中A α∠=,作ABC ∠的角平分线与ACB ∠的外角的角平分线交于点1A ;1A BC ∠的角平分线与1A CB ∠角平分线交于2A ,如此下去,则2021A ∠=__________.12.如图,直线//a b ,//AB CD ,160∠=︒,则4∠=________.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.15.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________16.如图,在平面直角坐标系中,点P 由原点O 出发,第一次跳动至点()11,1P ,第二次向左跳动3个单位至点()22,1P -,第三次跳动至点()32,2P ,第四次向左跳动5个单位至点()43,2P -,第五次跳动至点()53,3P ,…,依此规律跳动下去,点P 的第2020次跳动至点2020P 的坐标是_______.三、解答题17.(1()2228(2()()2232527243⎛⎫---+÷- ⎪⎝⎭(3)已知()2116x +=,求x 的值. 18.求下列各式中的x 值: (1)169x 2=144; (2)(x -2)2-36=0. 19.完成下面的证明:已知:如图,130∠=︒,60B ∠=︒,AB AC ⊥. 求证://AD BC .证明:AB AC ⊥(已知),∵∠______90=︒(____________________). ∴130∠=︒,60B ∠=︒(已知), ∵1BAC B ∠+∠+∠=__________. 即∠______180B +∠=︒∴//AD BC (______________________________).20.在平面直角坐标系中,△ABC 三个顶点的坐标分别是A (﹣2,2)、B (2,0),C (﹣4,﹣2).(1)在平面直角坐标系中画出△ABC ;(2)若将(1)中的△ABC 平移,使点B 的对应点B ′坐标为(6,2),画出平移后的△A ′B ′C ′;(3)求△A ′B ′C ′的面积.21.已知21a -的平方根是3±,11a b 1+-的立方根是4,b a -的算术平方根是m . (1)求m 的值;(2)如果10m x y +=+,其中x 是整数,且01y <<,求x y -的值.二十二、解答题22.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23.已知点C 在射线OA 上.(1)如图①,CD //OE ,若∠AOB =90°,∠OCD =120°,求∠BOE 的度数;(2)在①中,将射线OE 沿射线OB 平移得O ′E '(如图②),若∠AOB =α,探究∠OCD 与∠BO ′E ′的关系(用含α的代数式表示)(3)在②中,过点O ′作OB 的垂线,与∠OCD 的平分线交于点P (如图③),若∠CPO ′=90°,探究∠AOB 与∠BO ′E ′的关系.24.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.25.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由26.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD-∠A1BD=1(∠ACD-∠ABD)2∴∠A1=______°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系______;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.【参考答案】一、选择题1.B解析:B【分析】根据同位角、内错角、同旁内角的定义结合图形进行判断即可.【详解】解:如图,∠1与∠2是直线a与直线b被直线c所截的同旁内角,因此选项A不符合题意;∠1与∠6是直线a与直线b被直线c所截的内错角,而∠6与∠4是邻补角,所以∠1与∠4不是内错角,因此选项B符合题意;∠5与∠6是直线c与直线d被直线b所截的内错角,因此选项C不符合题意;∠3与∠5是直线c与直线d被直线b所截的同位角,因此选项D不符合题意;故选:B.【点睛】本题主要考查同位角、内错角、同旁内角,掌握同位角、内错角、同旁内角的定义是关键.2.D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A、是由基本图形旋转得到的,故不选.B、是轴对称图形,故不选.C、是由基本图形旋转得到的,故不选.解析:D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A、是由基本图形旋转得到的,故不选.B、是轴对称图形,故不选.C、是由基本图形旋转得到的,故不选.D、是由基本图形平移得到的,故选此选项.综上,本题选择D.【点睛】本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断.3.D【分析】根据点在各象限的坐标特点即可得答案. 【详解】∵点的横坐标2>0,纵坐标-3<0, ∴点()2,3P -所在的象限是第四象限, 故选:D . 【点睛】本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.A 【分析】选出假命题只要举出反例即可,两个锐角的和是钝角,反例:两个锐角分别是有20°、30°,和是50°,还是锐角,因此是假命题. 【详解】A.两个锐角的和是钝角是假命题,如两个锐角分别是20°、30°, 而它们的和是50°,还是锐角,不是钝角;B.两条直线相交成的角是直角则两直线垂直是真命题;C.两点确定一条直线是真命题;D.三角形中至少有两个锐角是真命题. 故选: A 【点睛】本题通过判断真假命题来考查了解各类知识的概念和意义,熟练掌握各类知识是解题的关键. 5.D 【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°. 【详解】 ∵EF ∥CD ∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE ∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180° 故选:D . 【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 6.D 【分析】先根据在数轴上的直角三角形运用勾股定理可得斜边长,即可得x 的值,进而可得则2(13)x -的值,再根据立方根的定义即可求得其立方根.【详解】根据图象:直角三角形两边长分别为2和1, ∴22215x =+= ∴x 在数轴原点左面, ∴5x =-,则2135138x -=-=-, 则它的立方根为2-; 故选:D . 【点睛】本题考查的知识点是实数与数轴上的点的对应关系及勾股定理,解题关键是应注意数形结合,来判断A 点表示的实数. 7.A 【分析】易求ABD ∠的度数,再利用平行线的性质即可求解. 【详解】解:30ABC =︒∠,125∠=︒,155ABD ABC ∴∠=∠+∠=︒,直线//m n ,255ABD ∴∠=∠=︒,故选:A .【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.8.B 【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P 的坐标. 【详解】解:观察点的坐标变化可知: 第1次从原解析:B 【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P 的坐标. 【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故选:B.【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.二、填空题9.4【分析】首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.【详解】解:解析:4【分析】首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.【详解】解:由题意可得a≥3,∴2a-4>0,已知等式整理得:,∴a=3,b=-2,∴2a+b=2×3-2=4.故答案为4.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键.10.【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特解析:()3,2【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点(3,2)A -关于x 轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x 轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y 轴对称的点的坐标纵坐标不变,横 坐标变为相反数;11.【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵,的角平分线与的外角的角平分线交于点,∴,同 解析:202112α【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出A ∠与1A ∠,A ∠与2A ∠的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵180ACD ACB ∠=︒-∠,ABC ∠的角平分线与ACD ∠的外角的角平分线交于点1A ,∴111180()A A BC ACB ACA ∠=︒-∠+∠+∠11180(180)22ABC ACB ACB =︒-∠-∠-︒-∠ 190()2ABC ACB =︒-∠+∠ 190(180)2A =︒-︒-∠ 12A =∠, 同理可得1221122A A A ∠=∠=∠, 2331122A A A ∠=∠=∠, ∴2021202112A A ∠=∠,∵A α∠=, ∴2021202112A α∠=, 故答案为:202112α.【点睛】 本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键.12.120°.【分析】延长AB 交直线b 于点E ,可得,则 ,再由,可得 ,即可求解.【详解】解:如图,延长AB 交直线b 于点E ,∵,∴,∴ ,∵,,∴ ,∴.故答案为: .【点睛】解析:120°.【分析】延长AB 交直线b 于点E ,可得//AE CD ,则4180AED ∠+∠=︒ ,再由//a b ,可得1AED ∠=∠ ,即可求解.【详解】解:如图,延长AB 交直线b 于点E ,∵//AB CD ,∴//AE CD ,∴4180AED ∠+∠=︒ ,∵//a b ,160∠=︒,∴160AED ∠=∠=︒ ,∴4180120∠=︒-∠=︒AED .故答案为:120︒ .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC 到点F ,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF =∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC 到点F ,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.15.或【分析】已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标.【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(0,4)或(0,-4)故答案为:(0,4)解析:(0,4)或(0,4) -【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∴AB=8∵ABC ∆的面积为16 ∴12AB OC ⨯⨯=16 ∴OC=4∴点C 的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解. 16.【分析】根据点的坐标、坐标的平移寻找规律即可求解.【详解】解:因为P1(1,1),P2(-2,1),P3(2,2),P4(-3,2),P5(3,3),P6(-4,3),P7(4,解析:()1011,1010-【分析】根据点的坐标、坐标的平移寻找规律即可求解.【详解】解:因为P 1(1,1),P 2(-2,1),P 3(2,2),P 4(-3,2),P 5(3,3),P 6(-4,3),P 7(4,4),P 8(-5,4), …P 2n-1(n ,n ),P 2n (-n -1,n )(n 为正整数),所以2n =2020, ∴n =1010, 所以P 2020(-1011,1010),故答案为(-1011,1010).【点睛】本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.三、解答题17.(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; 解析:(1)2;(2)6;(3) 3x =或5x =-【解析】【分析】(1 (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;(3)直接利用平方根的定义计算得出答案.【详解】解:(1)22=-2=;(2()22243⎛⎫-+÷- ⎪⎝⎭()353442⎛⎫=--++⨯- ⎪⎝⎭, 5346=++-,6=;(3)∵()2116x +=∴14x +=±解得:3x =或5x =-.故答案为:(1)2;(2)6;(3) 3x =或5x =-.【点睛】本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键. 18.(1)x =±;(2)x =8或x =-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=,解得:x =±.解析:(1)x =±1213;(2)x =8或x =-4. 【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x 2=144,移项得:x 2=144169, 解得:x =±1213. (2)(x -2)2-36=0,移项得:(x -2)2=36,开方得:x-2=6或x-2=-6解得:x =8或x =-4.故答案为(1)x =±1213;(2)x =8或x =-4. 【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念. 19.BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD ,即,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵(已知),∴∠BAC (解析:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD 180B +∠=︒,即1180BAC B ∠+∠+∠=︒,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵AB AC ⊥(已知),∴∠BAC 90=︒(垂直的定义).∵130∠=︒,60B ∠=︒(已知),∴1BAC B ∠+∠+∠=180°即∠BAD 180B +∠=︒∴//AD BC (同旁内角互补,两直线平行)故答案为:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【点睛】本题主要考查了垂直定义和平行线的判定,证明∠BAD 180B +∠=︒是解题关键. 20.(1)见解析;(2)见解析;(3)10【分析】(1)根据点A 、B 、C 的坐标描点,从而可得到△ABC ;(2)利用点B 和B′的坐标关系可判断△ABC 先向右平移4个单位,再向上平移2个单位得到△A′解析:(1)见解析;(2)见解析;(3)10【分析】(1)根据点A 、B 、C 的坐标描点,从而可得到△ABC ;(2)利用点B 和B ′的坐标关系可判断△ABC 先向右平移4个单位,再向上平移2个单位得到△A ′B ′C ′,利用此平移规律写出A ′、C ′的坐标,然后描点即可得到△A ′B ′C ′;(3)用一个矩形的面积分别减去三个三角形的面积去计算△A ′B ′C ′的面积.【详解】解:(1)如图,△ABC 为所作;(2)如图,△A ′B ′C ′为所作;(3)△A ′B ′C ′的面积=1116426244210222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1);(2).【分析】(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y2)14解析:(1【分析】(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;+,得到其整数部分,则y为小数部分,分别求出x,y即可计算.(2)先估算x y【详解】(1)依题意得2a-1=9,11a+b-1=64,解得a=5,b=10,∴b-a=5∴(2)∵23,∴12<13,∴x=12,∴1?4【点睛】此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算.二十二、解答题22.(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x y x y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米,∴米,∵∴他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE 的度数,再根据直角、周角的定义即可求得∠BOE 的度数;(2)解析:(1)150°;(2)∠OCD +∠BO ′E ′=360°-α;(3)∠AOB =∠BO ′E ′【分析】(1)先根据平行线的性质得到∠AOE 的度数,再根据直角、周角的定义即可求得∠BOE 的度数;(2)如图②,过O 点作OF ∥CD ,根据平行线的判定和性质可得∠OCD 、∠BO ′E ′的数量关系;(3)由已知推出CP ∥OB ,得到∠AOB +∠PCO =180°,结合角平分线的定义可推出∠OCD =2∠PCO =360°-2∠AOB ,根据(2)∠OCD +∠BO ′E ′=360°-∠AOB ,进而推出∠AOB =∠BO ′E ′.【详解】解:(1)∵CD ∥OE ,∴∠AOE =∠OCD =120°,∴∠BOE =360°-∠AOE -∠AOB =360°-90°-120°=150°;(2)∠OCD +∠BO ′E ′=360°-α.证明:如图②,过O 点作OF ∥CD ,∵CD ∥O ′E ′,∴OF ∥O ′E ′,∴∠AOF =180°-∠OCD ,∠BOF =∠E ′O ′O =180°-∠BO ′E ′,∴∠AOB =∠AOF +∠BOF =180°-∠OCD +180°-∠BO ′E ′=360°-(∠OCD +∠BO ′E ′)=α, ∴∠OCD +∠BO ′E ′=360°-α;(3)∠AOB =∠BO ′E ′.证明:∵∠CPO ′=90°,∴PO ′⊥CP ,∵PO ′⊥OB ,∴CP ∥OB ,∴∠PCO +∠AOB =180°,∴2∠PCO =360°-2∠AOB ,∵CP 是∠OCD 的平分线,∴∠OCD =2∠PCO =360°-2∠AOB ,∵由(2)知,∠OCD +∠BO ′E ′=360°-α=360°-∠AOB ,∴360°-2∠AOB +∠BO ′E ′=360°-∠AOB ,∴∠AOB =∠BO ′E ′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.24.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=, ∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.25.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠; (2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.26.(1)∠A ;70°;35°;(2)∠A=2n ∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC ,∠A1CD解析:(1)∠A ;70°;35°;(2)∠A=2n ∠A n(3)25°(4)①∠Q+∠A 1的值为定值正确,Q+∠A 1=180°.【分析】(1)根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD-∠A1BD=1(∠ACD-∠ABD)2∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,故答案为:∠A=2∠A n.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=1(∠A+∠D)-90°,2∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=12∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=12(∠AEC+∠ACE)=12∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-12∠BAC,∴∠Q+∠A1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.。
深圳市罗湖区桂园中学七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.不等式3x+2≥5的解集是( ) A .x≥1B .x≥73C .x≤1D .x≤﹣12.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣b B .a +bC .b ﹣aD .﹣a ﹣b3.下列各式由左边到右边的变形,是因式分解的是( )A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++⎪⎝⎭4.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 25.如图,下列结论中不正确的是( )A .若∠1=∠2,则AD ∥BCB .若AE ∥CD ,则∠1+∠3=180°C .若∠2=∠C ,则AE ∥CDD .若AD ∥BC ,则∠1=∠B6.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩7.计算a 2•a 3,结果正确的是( ) A .a 5 B .a 6 C .a 8D .a 9 8.下列计算中,正确的是( )A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 29.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )A .90°B .100°C .105°D .110° 10.比较255、344、433的大小( )A .255<344<433B .433<344<255C .255<433<344D .344<433<255二、填空题11.多项式2412xy xyz +的公因式是______.12.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.13.已知5m a =,3n a =,则2m n a -的值是_________.14.已知关于x 的不等式组521{0x x a -≥-->无解,则a 的取值范围是________. 15.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______. 16.已知a+b=5,ab=3,求: (1)a 2b+ab 2; (2)a 2+b 2.17.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .18.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.19.计算:23()a =____________.20.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.三、解答题21.计算: (1)-22+30 (2)(2a )3+a 8÷(-a )5 (3)(x +2y -3)(x -2y +3) (4)(m +2)2(m -2)2 22.因式分解:(1)3()6()x a b y b a ---(2)222(1)6(1)9y y ---+23.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a +b )4=__________; (2)利用上面的规律计算: ①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________. 24.因式分解: (1)12abc ﹣9a 2b ; (2)a 2﹣25; (3)x 3﹣2x 2y +xy 2; (4)m 2(x ﹣y )﹣(x ﹣y ).25.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.26.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?27.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值.(2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.28.已知:如图EF ∥CD ,∠1+∠2=180°. (1)试说明GD ∥CA ;(2)若CD 平分∠ACB ,DG 平分∠CDB ,且∠A =40°,求∠ACB 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:根据一元一次不等式的解法即可求出答案. 详解:3x+2≥5, 3x≥3, ∴x≥1. 故选A .点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.2.A解析:A 【分析】根据多项式与多项式相乘知(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab ,据此可以求得k 的值. 【详解】解:∵(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab , 又∵x 2﹣kx ﹣ab =(x ﹣a )(x +b ), ∴x 2﹣kx ﹣ab =x 2+(b ﹣a )x ﹣ab , ∴﹣k =b ﹣a , k =a ﹣b , 故选:A . 【点睛】本题主要考查多项式与多项式相乘,熟记计算方法是解题的关键.3.B解析:B 【分析】根据因式分解的意义求解即可. 【详解】A 、从左边到右边的变形不属于因式分解,故A 不符合题意;B 、把一个多项式转化成几个整式积的形式,故B 符合题意;C 、从左边到右边的变形不属于因式分解,故C 不符合题意;D 、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D 不符合题意. 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.C解析:C 【分析】直接利用图形面积求法得出等式,进而得出答案. 【详解】 梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2, 故a 2-b 2=(a +b )(a -b ). 故选:C . 【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.5.D解析:D 【分析】由平行线的性质和判定解答即可. 【详解】解:A 、∵∠1=∠2,∴AD ∥BC ,原结论正确,故此选项不符合题意; B 、∵AE ∥CD ,∴∠1+∠3=180°,原结论正确,故此选项不符合题意; C 、∵∠2=∠C ,∴AE ∥CD ,原结论正确,故此选项不符合题意; D 、∵AD ∥BC ,∴∠1=∠2,原结论不正确,故此选项符合题意; 故选:D . 【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键,注意它们之间的区别.6.B解析:B 【解析】 【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组. 【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B . 【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.7.A解析:A 【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答..【详解】同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=所以23235.a a a a +⋅== 故选A. 【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.8.D解析:D 【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出答案. 【详解】解:A 、(a 2)3=a 6,故此选项错误; B 、a 8÷ a 2=a 6,故此选项错误; C 、(2a )3=8a 3,,故此选项错误; D 、a 2+ a 2=2 a 2,故此选项正确. 故选:D 【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.9.C解析:C 【分析】根据等腰直角三角形求出∠BAC ,根据平行线求出∠ACF ,根据三角形内角和定理求出即可. 【详解】解:∵△ACB 是等腰直角三角形, ∴∠BAC =45°, ∵CF //AB ,∴∠ACF =∠BAC =45°, ∵∠E =30°,∴∠EFC =180°﹣∠E ﹣∠ACF =105°, 故选:C . 【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.10.C解析:C 【分析】根据幂的乘方的知识,可得255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,再比较底数的大小,即可得结论. 【详解】解:∵255=(25)11=3211,344=(34)11=8111,433=(43)11=6411, 又∵32<64<81, ∴255<433<344. 故选C . 【点睛】本题考查了幂的乘方,解题的关键是根据幂的乘方的公式,转化为底数相同的幂.二、填空题11.【分析】根据公因式的定义即可求解. 【详解】 ∵=(y+3z ), ∴多项式的公因式是, 故答案为:. 【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义. 解析:4xy【分析】根据公因式的定义即可求解. 【详解】∵2412xy xyz +=4xy (y+3z ), ∴多项式2412xy xyz +的公因式是4xy ,故答案为:4xy . 【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.12.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可. 【详解】 = 故答案为. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可. 【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯⎪⎝⎭=12019 故答案为12019. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.13.【分析】根据同底数幂的乘除法计算法则进行计算即可. 【详解】 解:, ∵, ∴, ∴,故答案为:. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减. 解析:253【分析】根据同底数幂的乘除法计算法则进行计算即可. 【详解】解:22m n m n a a a -=÷, ∵5m a =, ∴22525m a ==, ∴22252533m nm n aa a -=÷=÷=, 故答案为:253. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减.14.a≥3 【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.15.24xy【解析】∵(3x+2y)2=(3x﹣2y)2+A,∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+解析:24xy【解析】∵(3x+2y)2=(3x﹣2y)2+A,∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+4y2+A∴A=24xy,故答案为24xy.【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.16.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a 2b +ab 2=ab (a +b )=3×5=15(2)a 2+b 2=(a +b )2-2ab =52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.17.【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩∴小长方形的面积为:22515375xy mm【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程. 18.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:1(5﹣2)×180°=108°,5则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.19..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.解析:6a【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236a a a.()=(1)()-.故答案为:6a【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.20.【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.三、解答题21.(1)-3 (2)7a 3(3)x 2-4y 2+12y -9(4)m 4-8m 2+16【分析】(1)原式利用零指数幂法则及乘方的意义化简,计算即可得到结果;(2)先 利用积的乘方公式和同底数幂的除法公式计算,然后合并即可得到结果; (3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式先利用平方差方式计算,再利用完全平方公式计算即可得到结果.【详解】(1)2042331=-+-=-+;(2)()()533833()872a a a a a a ÷=+-=+-; (3) ()()()()23232323x y x y y x x y +--+---=+⎡⎤⎡⎤⎣⎦⎣⎦()2222234129x y x y y =--=-+-;(4)()()()()2222222m m m m +-+-=⎡⎤⎣⎦ ()42228146m m m =-+-=.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22.(1)3()(2)a b x y -+;(2)22(2)(2)y y +-【分析】(1)提取公因式3(a-b),即可求解.(2)将(y 2-1)看成一项,根据完全平方公式进行因式分解,之后再利用平方差公式即可求解.【详解】(1)原式=3()6()x a b y b a ---=3()(2)a b x y -+故答案为:3()(2)a b x y -+(2)原式=222(1)6(1)9y y ---+ =22(y 13)--=22(4)y -=22(2)(2)y y +-故答案为:22(2)(2)y y +-【点睛】本题考查了因式分解的方法,本题分别采用了提取公因式法和公式法进行因式分解,一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.运用公式法因式分解,一般有平方差公式,完全平方公式,立方和公式,完全立方公式.23.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.24.(1)3ab (4c ﹣3a );(2)(a +5)(a ﹣5);(3)x (x ﹣y )2;(4)(x ﹣y )(m +1)(m ﹣1)【分析】(1)由题意原式直接提取公因式即可;(2)根据题意原式利用平方差公式分解即可;(3)由题意原式提取公因式,再利用完全平方公式分解即可;(4)根据题意原式提取公因式,再利用平方差公式分解即可.【详解】解:(1)12abc ﹣9a 2b =3ab (4c ﹣3a );(2)a 2﹣25=(a +5)(a ﹣5);(3)x 3﹣2x 2y +xy 2=x (x 2﹣2xy +y 2)=x (x ﹣y )2;(4)m 2(x ﹣y )﹣(x ﹣y )=(x ﹣y )(m 2﹣1)=(x ﹣y )(m +1)(m ﹣1).【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.25.()2223a ab b ++平方米;40平方米.【分析】(1)根据平移的原理,四块绿化面积可拼成一个长方形,其边长为原边长减去再减去道路宽为a 米,由此即可求绿化的面积的代数式;然后利用多项式乘多项式法则计算,去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.【详解】解:根据题意得:22(3)(2)(2)()23a b a a b a a b a b a ab b +-+-=++=++(平方米).则绿化的面积是()2223a ab b ++平方米; 当3a =,2b =时,原式2223233240=⨯+⨯⨯+=(平方米).故当a =3,b =2时,绿化面积为40平方米.答:绿化的面积是()2223a ab b ++平方米;当a =3,b =2时,绿化面积为40平方米. 【点睛】此题考查整式的混合运算与代数式求值,掌握长方形的面积计算方法是解决问题的关键.26.见解析.【分析】先根据平行线的性质得出ABC BCD ∠=∠,再根据角的和差得出EBC BCF ∠=∠,然后根据平行线的判定即可得.【详解】//BE CF ,理由如下:∵//AB CD∴ABC BCD ∠=∠(两直线平行,内错角相等)∵12∠=∠∴12ABC BCD ∠-∠=∠-∠即EBC BCF ∠=∠∴//BE CF .(内错角相等,两直线平行)【点睛】本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键.27.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,22∴-++-+=6912360,a ab b22∴-+-=a b(3)(6)0,∴==a b3,6,a=为腰时,三角形不存在,当3b=为腰时,三角形三边分别为:6,6,3,当6∴△ABC的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.28.(1)见解析;(2)∠ACB=80°【分析】(1)利用同旁内角互补,说明GD∥CA;(2)由GD∥CA,得∠A=∠GDB=∠2=40°=∠ACD,由角平分线的性质可求得∠ACB 的度数.【详解】解:(1)∵EF∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD∥CA;(2)由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.【点睛】本题考查了角平分线的性质和平行线的性质.解决本题的关键熟练利用所学的性质进行解题.。
2014-2015学年广东省深圳市罗湖区七年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列计算正确的是()A.a8÷a4=a8÷4=a2B.10﹣2=﹣20C.D.(﹣m)4÷(﹣m)2=﹣m22.(3分)地球绕太阳每小时转运通过的路程约是1.1×105千米,用科学记数法表示地球一天(以24小时计)转动通过的路程约是()A.0.264×107千米B.2.64×106千米C.26.4×105千米D.264×104千米3.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A. B. C. D.4.(3分)如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()A.35°B.45°C.55°D.65°5.(3分)如图,AB∥CD,CE∥BF,A、E、F、D在一直线上,BC与AD交于点O,且OE=OF,则图中有全等三角形的对数为()A.2 B.3 C.4 D.56.(3分)下列事件为必然事件的是()A.王华期末考试数学成绩会是100分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和一个白球,从中摸出2个球,其中必有红球7.(3分)下列运算中,正确的是()A.(a+b)2=a2+b2B.(﹣x﹣y)2=x2+2xy+y2C.(x+3)(x﹣2)=x2﹣6 D.(﹣a﹣b)(a+b)=a2﹣b28.(3分)边长为1和2的两个正方形的一边在同一水平线上,小正方形沿水平线自左向右匀速穿过大正方形,下图反映了这个运动的全过程.设小正方形的运动时间为t,两正方形重叠部分面积为s,则s与t的函数图象大约为()A.B.C.D.9.(3分)已知等腰三角形的一个内角为70°,则另外两个角的度数为()A.55°,55°B.55°,70°C.70°,40°D.55°,55°或70°,40°10.(3分)在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是()A.B.C.D.111.(3分)下列图案是由斜边相等的等腰直角三角形按照一定的规律拼接而成的.依此规律,第8个图案中的三角形与第一个图案中的三角形能够全等的共有()个.A.49 B.64 C.65 D.8112.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG 和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6二、填空题(共4小题,每小题3分,满分12分)13.(3分)计算:16×2﹣4=.14.(3分)等腰三角形的两边长分别为2和7,则它的周长是.15.(3分)已知a2+b2=7,ab=1,则(a+b)2=.16.(3分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠2=.三、解答题(本题有7小题,其中第17题13分,其中第18题6分,其中第19题5分,其中第20题5分,其中第21题7分,其中第22题8分,其中第23题8分,共52分)17.(13分)计算与化简求值:(1)计算:(﹣1)2015+(﹣)﹣2﹣(3.14﹣π)0;(2)运用乘法公式计算:1982﹣4;(3)先化简,再求值:[(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣,y=1.18.(6分)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中画出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C 与C1相对应)(2)在(1)问的结果下,连接AA1,CC1,求四边形AA1C1C的面积.19.(5分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个记下颜色,再把它放回口袋中,不断重复,如表是活动进行中的一组数据统计:(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑球有个,白球有个.20.(5分)如图所示,∠ABC、∠ACB的平分线相交于点F,过点F作DE∥BC 交AB于D,交AC于E.若AB=9cm,AC=8cm,则△ADE的周长是多少?21.(7分)在△ABC中,已知∠A=90°,AB=AC,BD平分∠ABC,DE⊥BC于E,请解答下列问题:(1)若AD=2cm,则D点到BC边的距离是.(2)若BC=7cm,则△CDE的周长为.(3)连接AE,试判断线段AE与BD的位置,并说明理由.22.(8分)某周末的一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某旅游景点游玩.该校汽车离家的距离s(千米)与时间t(时)的关系可以用图中的折线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了小时.(2)返程途中小汽车的速度是每小时千米,小明全家到家时的时间是时.(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为40升,汽车每行驶1千米耗油升.汽车行驶时油箱中的余油量不能少于5升,小明家最迟应在时加油.(加油所用时间忽略不计)23.(8分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.2014-2015学年广东省深圳市罗湖区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列计算正确的是()A.a8÷a4=a8÷4=a2B.10﹣2=﹣20C.D.(﹣m)4÷(﹣m)2=﹣m2【解答】解:A、a8÷a4=a8﹣4=a4,故本选项错误;B、10﹣2=,故选项错误;C、()0=1,故本选项正确;D、(﹣m)4÷(﹣m)2=(﹣m)2=m2,故本选项错误.故选:C.2.(3分)地球绕太阳每小时转运通过的路程约是1.1×105千米,用科学记数法表示地球一天(以24小时计)转动通过的路程约是()A.0.264×107千米B.2.64×106千米C.26.4×105千米D.264×104千米【解答】解:1.1×105×24=26.4×105=2.64×106.故选:B.3.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A. B. C. D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.4.(3分)如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()A.35°B.45°C.55°D.65°【解答】解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°(两直线平行,内错角相等),又∵∠ACB=90°,∴∠A=90°﹣35°=55°(在直角三角形中,两个锐角互余).故选:C.5.(3分)如图,AB∥CD,CE∥BF,A、E、F、D在一直线上,BC与AD交于点O,且OE=OF,则图中有全等三角形的对数为()A.2 B.3 C.4 D.5【解答】解:①∵CE∥BF,∴∠OEC=∠OFB,又OE=OF,∠COE=∠BOF,∴△OCE≌△OBF;②∵△OCE≌△OBF,∴OC=OB,∵AB∥CD,∴∠ABO=∠DCO,又∵∠COD=∠AOB,∴△AOB≌△DOC;③∵△AOB≌△DOC,∴AB=CD,∵AB∥CD,CE∥BF,∴∠ABF=∠ECD,又∵CE=BF,∴△CDE≌△BAF.故选:B.6.(3分)下列事件为必然事件的是()A.王华期末考试数学成绩会是100分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和一个白球,从中摸出2个球,其中必有红球【解答】解:A.王华期末考试数学成绩会是100分是随机事件;B.某射击运动员射靶一次,正中靶心是随机事件;C.打开电视机,CCTV第一套节目正在播放新闻是随机事件;D.口袋中装有2个红球和一个白球,从中摸出2个球,其中必有红球是必然事件,故选:D.7.(3分)下列运算中,正确的是()A.(a+b)2=a2+b2B.(﹣x﹣y)2=x2+2xy+y2C.(x+3)(x﹣2)=x2﹣6 D.(﹣a﹣b)(a+b)=a2﹣b2【解答】解:A、(a+b)2=a2+2ab+b2≠a2+b2,故本选项错误;B、(﹣x﹣y)2=x2+2xy+y2,故本选项正确;C、(x+3)(x﹣2)=x2+x﹣6≠x2﹣6,故本选项错误;D、(﹣a﹣b)(a+b)=﹣(a+b)2≠a2﹣b2,故本选项错误.故选:B.8.(3分)边长为1和2的两个正方形的一边在同一水平线上,小正方形沿水平线自左向右匀速穿过大正方形,下图反映了这个运动的全过程.设小正方形的运动时间为t,两正方形重叠部分面积为s,则s与t的函数图象大约为()A.B.C.D.【解答】解:重叠部分为矩形,长随t的变化而变化,宽为1,不变,∴函数图象为三条线段,面积不变时,函数图象平行于x轴.故选:B.9.(3分)已知等腰三角形的一个内角为70°,则另外两个角的度数为()A.55°,55°B.55°,70°C.70°,40°D.55°,55°或70°,40°【解答】解:①当70°是用三角形的顶角,另外两个角是=55°,55°,所以另外两个角55°,55°.②当70°是顶角,那么顶角为180°﹣2×70°=40°,所以另外两个角是40°,70°,故选:D.10.(3分)在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是()A.B.C.D.1【解答】解:卡片中,轴对称图形有等腰三角形、钝角、线段,根据概率公式,P(轴对称图形)=.故选:C.11.(3分)下列图案是由斜边相等的等腰直角三角形按照一定的规律拼接而成的.依此规律,第8个图案中的三角形与第一个图案中的三角形能够全等的共有()个.A.49 B.64 C.65 D.81【解答】解:第2个中有4个全等的小等腰直角三角形,即有22个全等的小等腰直角三角形,第3个中有9个全等的小等腰直角三角形,即有32个全等的小等腰直角三角形,则第8个中应有82个全等的小等腰直角三角形,所以第8个图案中的全等的小等腰直角三角形的个数为64个.故选:B.12.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG 和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),=S△GDH,设面积为S,∴S△EDF同理Rt△ADF≌Rt△ADH,=S△ADH,∴S△ADF即38+S=50﹣S,解得S=6.故选:D.二、填空题(共4小题,每小题3分,满分12分)13.(3分)计算:16×2﹣4=1.【解答】解:原式=16×=16×=1.故答案为:1.14.(3分)等腰三角形的两边长分别为2和7,则它的周长是16.【解答】解:当7为腰时,周长=7+7+2=16;当2为腰时,因为2+2<7,所以不能构成三角形.故答案为:16.15.(3分)已知a2+b2=7,ab=1,则(a+b)2=9.【解答】解:∵a2+b2=7,ab=1,∴原式=a2+b2+2ab=7+2=9,故答案为:916.(3分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠2=110°.【解答】解:∵AD∥BC,∠EFG=55°,∴∠DEF=∠EFG=55°(两直线平行,内错角相等),∠1+∠2=180°(两直线平行,同旁内角互补),由折叠的性质可得:∠GEF=∠DEF=55°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣55°﹣55°=70°,∴∠2=180°﹣∠1=110°.故答案为:110°.三、解答题(本题有7小题,其中第17题13分,其中第18题6分,其中第19题5分,其中第20题5分,其中第21题7分,其中第22题8分,其中第23题8分,共52分)17.(13分)计算与化简求值:(1)计算:(﹣1)2015+(﹣)﹣2﹣(3.14﹣π)0;(2)运用乘法公式计算:1982﹣4;(3)先化简,再求值:[(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣,y=1.【解答】解:(1)原式=﹣1+4﹣1=2;(2)原式=1982﹣22=(198+2)×(198﹣2)=200×196=39200;(3)原式=(x2+4xy+4y2﹣9x2+y2﹣5y2)÷2x=(﹣8x2+4xy)÷2x=﹣4x+2y,当x=﹣,y=1时,原式=2+2=4.18.(6分)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中画出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C 与C1相对应)(2)在(1)问的结果下,连接AA1,CC1,求四边形AA1C1C的面积.【解答】解:(1)如图所示;=(2+8)×2=10.(2)S四边形AA1C1C19.(5分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个记下颜色,再把它放回口袋中,不断重复,如表是活动进行中的一组数据统计:(1)请估计:当n很大时,摸到白球的频率将会接近0.60;(2)假如你去摸一次,你摸到白球的概率是0.60,摸到黑球的概率是0.40;(3)试估算口袋中黑球有8个,白球有12个.【解答】解;(1)根据表格中数据的第六行摸到白球的频率,可知当n很大时,摸到白球的频率将会接近0.60;(2)由(1)知,当摸球的次数n很大,根据频率与概率的关系,摸到白球的实验概率近似等于摸到白球的频率,所以摸到白球的概率约为0.60,摸到黑球的概率是0.40;(3)盒子中白球的个数约为20×0.6=12(个),则黑球个数为:20﹣12=8(个);故答案为:0.60;0.60;0.40;8;12.20.(5分)如图所示,∠ABC、∠ACB的平分线相交于点F,过点F作DE∥BC 交AB于D,交AC于E.若AB=9cm,AC=8cm,则△ADE的周长是多少?【解答】解:∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴△AED的周长=AD+AE+ED=AB+AC=8+9=17cm.故答案为17.21.(7分)在△ABC中,已知∠A=90°,AB=AC,BD平分∠ABC,DE⊥BC于E,请解答下列问题:(1)若AD=2cm,则D点到BC边的距离是2cm.(2)若BC=7cm,则△CDE的周长为7cm.(3)连接AE,试判断线段AE与BD的位置,并说明理由.【解答】解:(1)∵BD平分∠ABC,DE⊥BC,∠A=90°,∴DE=AD=2cm,故答案为:2cm;(2)在△ABD和△EBD中,,∴△ABD≌△EBD,∴BA=BE,△CDE的周长=CD+CE+DE=CD+AD+CE=AC+CE=AB+CE=AE+CE=BC=7cm,故答案为:7cm;(3)∵DA=DE,BA=BE,∴BD⊥AE.22.(8分)某周末的一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某旅游景点游玩.该校汽车离家的距离s(千米)与时间t(时)的关系可以用图中的折线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了4小时.(2)返程途中小汽车的速度是每小时60千米,小明全家到家时的时间是17时.(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为40升,汽车每行驶1千米耗油升.汽车行驶时油箱中的余油量不能少于5升,小明家最迟应在9时加油.(加油所用时间忽略不计)【解答】解(1)14﹣10=4(小时).则小明全家在旅游景点游玩了4小时;故答案为:4;(2)(180﹣120)÷(51﹣14)=60(千米/小时);设返程途中s与t的函数解析式是:s=kt+b,则,解得:,则函数解析式是:s=﹣60t+1020;令s=0,即﹣60t+1020=0,解得:t=17,则17点到家;故答案为:60,17;(3)(15﹣5)÷=90(千米),速度=180÷(10﹣8)=90(千米/小时),90÷90=1(小时),8+1=9;∵汽车行驶时油箱中的余油量不能少于5升,∴小明家最迟应在9时加油.故答案为:9.23.(8分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=25°,∠DEC=115°;点D从B向C运动时,∠BDA逐渐变小(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.【解答】解:(1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°,∠DEC=180°﹣∠EDC﹣∠C=180°﹣40°﹣25°=115°,∠BDA逐渐变小;故答案为:25°,115°,小;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(AAS),(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由:∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°,∴∠DAC=∠AED,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴∠DAC=∠ADE,∴△ADE的形状是等腰三角形.。
2014-2015学年深圳市罗湖区第二实验中学七下期末数学试卷一、选择题(共12小题;共60分)1. 下面每组数分别是三根小木棒的长度,它们中能摆成三角形的是A. ,,B. ,,C. ,,D. ,,2. 下列式子一定成立的是A. B. C. D.3. 下列几何图形:①等腰三角形;②圆;③长方形;④梯形;⑤等腰梯形;⑥直角三角形;⑦四边形;⑧平行四边形.其中一定是轴对称图形的有A. 个B. 个C. 个D. 个4. 如图,下列条件中,能判定的是A. B.C. D.5. 如图,中,的垂直平分线交于点,若,,,则的周长为A. B. C. D.6. 已知,点在的内部,点和点关于直线对称,点和点关于直线对称,则以,,三点为顶点的三角形是A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形7. 下列事件为必然事件的是A. 小王参加本次数学考试,成绩是分B. 某射击运动员射靶一次,正中靶心C. 打开电视机,第一套节目正在播放新闻D. 口袋中装有个红球和个白球,从中摸出个球,其中必有红球8. 赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(为距离,为时间),符合以上情况的是A. B.C. D.9. 用直尺和圆规作一个角的平分线的示意图如图所示,则能说明的依据是A.B.C.D. 角平分线上的点到角两边距离相等10. 直角三角形两锐角的平分线所夹的钝角的度数为A. B. C. D.11. 在下列说法中,正确的有①两点确定一条直线;②过一点有且只有一条直线与已知直线平行;③垂直于同一条直线的两条直线垂直;④平行于同一条直线的两条直线平行;⑤过一点有且只有一条直线和已知直线垂直.A. 个B. 个C. 个D. 个12. 如图是长方形纸带,,将纸带沿折叠成图,再沿折叠成图,则图中的的度数是A. B. C. D.二、填空题(共4小题;共20分)13. 等腰三角形的一个角为,则它的两底角的度数为.14. 一个角的余角等于,则这个角的补角等于.15. 如图,把的一角折叠,若,则的度数为.16. 如图,已知,为的角平分线上一点,连接,:如图,已知,,为的角平分线上面两点,连接,,,;如图,已知,,,为的角平分线上三点,连接,,,,,;,依此规律,第个图形中全等三角形的对数是对.三、解答题(共7小题;共91分)17. 计算:(1);(2).18. 已知,求代数式的值.19. 已知:如图,,.求证:.20. 如图所示,图象反映的是:张阳从家里跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后走回家,其中表示时间,表示张阳离家的距离.根据图象回答下列问题:(1)体育场离张阳家千米;(2)体育场离文具店千米;张阳在文具店逗留了分钟;(3)请计算:张阳从文具店到家的平均速度为每小时多少千米?21. 超市举行有奖促销活动:凡一次性购物满元者即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成等份,摇中红、黄、蓝色区域,分获一、二、三等奖,奖金依次为,,元.一次性购物满元者,如果不摇奖可返现金元.(1)摇奖一次,获一等奖的概率是多少?(2)老李一次性购物满了元,他是参与摇奖划算还是领元现金划算,请你帮他算算.22. 如图,在中,,,延长至点,使,连接,以为直角边作等腰三角形,其中,连接.(1)求证:;(2)若,则.(3)与有何位置关系?请说明理由.23. 如图,在中,,,点在线段上运动(不与,重合),连接,,与交于点.(1)当时,,;当点从向运动时,逐渐变(填“大”或“小”);(2)当等于多少时,与全等?请说明理由;(3)在点的运动过程中,的形状可以是等腰三角形吗?若可以,请直接写出的度数;若不可以,请说明理由.答案第一部分1. D2. B3. D4. D5. D6. D7. D8. B9. A 10. C11. B 12. A第二部分13. ,14.15.16.第三部分17. (1)原式原式(2)原式18.,即,原式.19. ,,,,,.20. (1)(2);(3)从图象可知:文具店离张阳家千米,张阳从文具店散步走回家花了(分),所以张阳从文具店回家的平均速度是千米分千米时.21. (1)整个圆周被分成了等份,红色为份,获得一等奖的概率为:.(2)转转盘:(元),元元,转转盘划算.22. (1)和都是等腰直角三角形,,,,,,即,在和中,;(2)(3)与垂直.理由如下:如图,,,,,.23. (1);;小(2)当时,,理由:,,,又,,,在和中,;(3)可以是等腰三角形,当的度数为或时,的形状是等腰三角形.。
深圳罗湖区东方学校七年级下学期期末数学试题题一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .4.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 5.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77 D .1396.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )A .10-B .10C .5-D .57.-2的倒数是( ) A .-2B .12-C .12D .28.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0 B .1- C . 2.5- D .39.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯10.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃B .7℃C .﹣7℃D .9℃11.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查12.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .3二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.15.若523m x y +与2n x y 的和仍为单项式,则n m =__________.16.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 17.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.18.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.19.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.20.已知代数式235x -与233x -互为相反数,则x 的值是_______. 21.当12点20分时,钟表上时针和分针所成的角度是___________. 22.钟表显示10点30分时,时针与分针的夹角为________.23.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .24.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、压轴题25.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.26.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.27.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______;()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.28.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?29.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.30.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.31.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.32.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.B解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B 、1+3×6+2×6×6=91(颗),故本选项正确;C 、2+3×6+1×6×6=56(颗),故本选项错误;D 、1+2×6+3×6×6=121(颗),故本选项错误; 故选:B . 【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.3.A解析:A 【解析】 【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形. 【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形, ∴从正面看到的平面图形是,故选:A . 【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4.C解析:C 【解析】 【分析】利用等式的性质对每个式子进行变形即可找出答案. 【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C .本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.5.B解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.6.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.7.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握8.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.9.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 10.D解析:D 【解析】 【分析】这天的温差就是最高气温与最低气温的差,列式计算. 【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃), 故选:D .本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.11.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.12.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.二、填空题13.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.14.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解. 解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,且4AB=,则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.15.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9. 16.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b=1a b - 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.17.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 18.3(x ﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x 辆车,则可列方程:3(x ﹣2)解析:3(x ﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x 辆车,则可列方程:3(x ﹣2)=2x+9.故答案是:3(x ﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.19.72【解析】【分析】用360度乘以C 等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 20.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.21.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.22.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.23.5【解析】【分析】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.24.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.三、压轴题25.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.26.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-=1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+=()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.27.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ; Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变. 【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.28.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;②当点P 运动到点B 的左侧时:∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP-NP=AP-BP=(AP-BP )=AB=15,∴综上所述,线段MN 的长度不发生变化,其值为15.(3)若点P 、Q 同时出发,设点P 运动t 秒时与点Q 距离为4个单位长度.①点P 、Q 相遇之前,由题意得4+5t=30+3t ,解得t=13;②点P 、Q 相遇之后,由题意得5t-4=30+3t ,解得t=17.答:若点P 、Q 同时出发,13或17秒时P 、Q 之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.29.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314. 【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143.综上,t 的值为3或143秒 ②存在,理由如下: 当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.30.问题一、(1)32;(2)3-2x ;2x -3;13-6x ;问题一、(1)35;120;24011. 【解析】【分析】问题一根据等量关系,路程=速度⨯时间,路程差=路程1-路程2,即可列出方程求解。
2014-2015学年广东省深圳市罗湖区七年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列计算正确的是()A.a8÷a4=a8÷4=a2B.10﹣2=﹣20C.D.(﹣m)4÷(﹣m)2=﹣m22.(3分)地球绕太阳每小时转运通过的路程约是1.1×105千米,用科学记数法表示地球一天(以24小时计)转动通过的路程约是()A.0.264×107千米B.2.64×106千米C.26.4×105千米D.264×104千米3.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A. B. C. D.4.(3分)如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()A.35°B.45°C.55°D.65°5.(3分)如图,AB∥CD,CE∥BF,A、E、F、D在一直线上,BC与AD交于点O,且OE=OF,则图中有全等三角形的对数为()A.2 B.3 C.4 D.56.(3分)下列事件为必然事件的是()A.王华期末考试数学成绩会是100分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和一个白球,从中摸出2个球,其中必有红球7.(3分)下列运算中,正确的是()A.(a+b)2=a2+b2B.(﹣x﹣y)2=x2+2xy+y2C.(x+3)(x﹣2)=x2﹣6 D.(﹣a﹣b)(a+b)=a2﹣b28.(3分)边长为1和2的两个正方形的一边在同一水平线上,小正方形沿水平线自左向右匀速穿过大正方形,下图反映了这个运动的全过程.设小正方形的运动时间为t,两正方形重叠部分面积为s,则s与t的函数图象大约为()A.B.C.D.9.(3分)已知等腰三角形的一个内角为70°,则另外两个角的度数为()A.55°,55°B.55°,70°C.70°,40°D.55°,55°或70°,40°10.(3分)在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是()A.B.C.D.111.(3分)下列图案是由斜边相等的等腰直角三角形按照一定的规律拼接而成的.依此规律,第8个图案中的三角形与第一个图案中的三角形能够全等的共有()个.A.49 B.64 C.65 D.8112.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6二、填空题(共4小题,每小题3分,满分12分)13.(3分)计算:16×2﹣4=.14.(3分)等腰三角形的两边长分别为2和7,则它的周长是.15.(3分)已知a2+b2=7,ab=1,则(a+b)2=.16.(3分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠2=.三、解答题(本题有7小题,其中第17题13分,其中第18题6分,其中第19题5分,其中第20题5分,其中第21题7分,其中第22题8分,其中第23题8分,共52分)17.(13分)计算与化简求值:(1)计算:(﹣1)2015+(﹣)﹣2﹣(3.14﹣π)0;(2)运用乘法公式计算:1982﹣4;(3)先化简,再求值:[(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣,y=1.18.(6分)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中画出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接AA1,CC1,求四边形AA1C1C的面积.19.(5分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个记下颜色,再把它放回口袋中,不断重复,如表是活动进行中的一组数据统计:(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑球有个,白球有个.20.(5分)如图所示,∠ABC、∠ACB的平分线相交于点F,过点F作DE∥BC 交AB于D,交AC于E.若AB=9cm,AC=8cm,则△ADE的周长是多少?21.(7分)在△ABC中,已知∠A=90°,AB=AC,BD平分∠ABC,DE⊥BC于E,请解答下列问题:(1)若AD=2cm,则D点到BC边的距离是.(2)若BC=7cm,则△CDE的周长为.(3)连接AE,试判断线段AE与BD的位置,并说明理由.22.(8分)某周末的一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某旅游景点游玩.该校汽车离家的距离s(千米)与时间t(时)的关系可以用图中的折线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了小时.(2)返程途中小汽车的速度是每小时千米,小明全家到家时的时间是时.(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为40升,汽车每行驶1千米耗油升.汽车行驶时油箱中的余油量不能少于5升,小明家最迟应在时加油.(加油所用时间忽略不计)23.(8分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.2014-2015学年广东省深圳市罗湖区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列计算正确的是()A.a8÷a4=a8÷4=a2B.10﹣2=﹣20C.D.(﹣m)4÷(﹣m)2=﹣m2【解答】解:A、a8÷a4=a8﹣4=a4,故本选项错误;B、10﹣2=,故选项错误;C、()0=1,故本选项正确;D、(﹣m)4÷(﹣m)2=(﹣m)2=m2,故本选项错误.故选:C.2.(3分)地球绕太阳每小时转运通过的路程约是1.1×105千米,用科学记数法表示地球一天(以24小时计)转动通过的路程约是()A.0.264×107千米B.2.64×106千米C.26.4×105千米D.264×104千米【解答】解:1.1×105×24=26.4×105=2.64×106.故选:B.3.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A. B. C. D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.4.(3分)如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()A.35°B.45°C.55°D.65°【解答】解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°(两直线平行,内错角相等),又∵∠ACB=90°,∴∠A=90°﹣35°=55°(在直角三角形中,两个锐角互余).故选:C.5.(3分)如图,AB∥CD,CE∥BF,A、E、F、D在一直线上,BC与AD交于点O,且OE=OF,则图中有全等三角形的对数为()A.2 B.3 C.4 D.5【解答】解:①∵CE∥BF,∴∠OEC=∠OFB,又OE=OF,∠COE=∠BOF,∴△OCE≌△OBF;②∵△OCE≌△OBF,∴OC=OB,∵AB∥CD,∴∠ABO=∠DCO,又∵∠COD=∠AOB,∴△AOB≌△DOC;③∵△AOB≌△DOC,∴AB=CD,∵AB∥CD,CE∥BF,∴∠ABF=∠ECD,又∵CE=BF,∴△CDE≌△BAF.故选:B.6.(3分)下列事件为必然事件的是()A.王华期末考试数学成绩会是100分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和一个白球,从中摸出2个球,其中必有红球【解答】解:A.王华期末考试数学成绩会是100分是随机事件;B.某射击运动员射靶一次,正中靶心是随机事件;C.打开电视机,CCTV第一套节目正在播放新闻是随机事件;D.口袋中装有2个红球和一个白球,从中摸出2个球,其中必有红球是必然事件,故选:D.7.(3分)下列运算中,正确的是()A.(a+b)2=a2+b2B.(﹣x﹣y)2=x2+2xy+y2C.(x+3)(x﹣2)=x2﹣6 D.(﹣a﹣b)(a+b)=a2﹣b2【解答】解:A、(a+b)2=a2+2ab+b2≠a2+b2,故本选项错误;B、(﹣x﹣y)2=x2+2xy+y2,故本选项正确;C、(x+3)(x﹣2)=x2+x﹣6≠x2﹣6,故本选项错误;D、(﹣a﹣b)(a+b)=﹣(a+b)2≠a2﹣b2,故本选项错误.故选:B.8.(3分)边长为1和2的两个正方形的一边在同一水平线上,小正方形沿水平线自左向右匀速穿过大正方形,下图反映了这个运动的全过程.设小正方形的运动时间为t,两正方形重叠部分面积为s,则s与t的函数图象大约为()A.B.C.D.【解答】解:重叠部分为矩形,长随t的变化而变化,宽为1,不变,∴函数图象为三条线段,面积不变时,函数图象平行于x轴.故选:B.9.(3分)已知等腰三角形的一个内角为70°,则另外两个角的度数为()A.55°,55°B.55°,70°C.70°,40°D.55°,55°或70°,40°【解答】解:①当70°是用三角形的顶角,另外两个角是=55°,55°,所以另外两个角55°,55°.②当70°是顶角,那么顶角为180°﹣2×70°=40°,所以另外两个角是40°,70°,故选:D.10.(3分)在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是()A.B.C.D.1【解答】解:卡片中,轴对称图形有等腰三角形、钝角、线段,根据概率公式,P(轴对称图形)=.故选:C.11.(3分)下列图案是由斜边相等的等腰直角三角形按照一定的规律拼接而成的.依此规律,第8个图案中的三角形与第一个图案中的三角形能够全等的共有()个.A.49 B.64 C.65 D.81【解答】解:第2个中有4个全等的小等腰直角三角形,即有22个全等的小等腰直角三角形,第3个中有9个全等的小等腰直角三角形,即有32个全等的小等腰直角三角形,则第8个中应有82个全等的小等腰直角三角形,所以第8个图案中的全等的小等腰直角三角形的个数为64个.故选:B.12.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG 和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),=S△GDH,设面积为S,∴S△EDF同理Rt△ADF≌Rt△ADH,∴S=S△ADH,△ADF即38+S=50﹣S,解得S=6.故选:D.二、填空题(共4小题,每小题3分,满分12分)13.(3分)计算:16×2﹣4=1.【解答】解:原式=16×=16×=1.故答案为:1.14.(3分)等腰三角形的两边长分别为2和7,则它的周长是16.【解答】解:当7为腰时,周长=7+7+2=16;当2为腰时,因为2+2<7,所以不能构成三角形.故答案为:16.15.(3分)已知a2+b2=7,ab=1,则(a+b)2=9.【解答】解:∵a2+b2=7,ab=1,∴原式=a2+b2+2ab=7+2=9,故答案为:916.(3分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠2=110°.【解答】解:∵AD∥BC,∠EFG=55°,∴∠DEF=∠EFG=55°(两直线平行,内错角相等),∠1+∠2=180°(两直线平行,同旁内角互补),由折叠的性质可得:∠GEF=∠DEF=55°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣55°﹣55°=70°,∴∠2=180°﹣∠1=110°.故答案为:110°.三、解答题(本题有7小题,其中第17题13分,其中第18题6分,其中第19题5分,其中第20题5分,其中第21题7分,其中第22题8分,其中第23题8分,共52分)17.(13分)计算与化简求值:(1)计算:(﹣1)2015+(﹣)﹣2﹣(3.14﹣π)0;(2)运用乘法公式计算:1982﹣4;(3)先化简,再求值:[(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣,y=1.【解答】解:(1)原式=﹣1+4﹣1=2;(2)原式=1982﹣22=(198+2)×(198﹣2)=200×196=39200;(3)原式=(x2+4xy+4y2﹣9x2+y2﹣5y2)÷2x=(﹣8x2+4xy)÷2x=﹣4x+2y,当x=﹣,y=1时,原式=2+2=4.18.(6分)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中画出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C 与C1相对应)(2)在(1)问的结果下,连接AA1,CC1,求四边形AA1C1C的面积.【解答】解:(1)如图所示;=(2+8)×2=10.(2)S四边形AA1C1C19.(5分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个记下颜色,再把它放回口袋中,不断重复,如表是活动进行中的一组数据统计:(1)请估计:当n很大时,摸到白球的频率将会接近0.60;(2)假如你去摸一次,你摸到白球的概率是0.60,摸到黑球的概率是0.40;(3)试估算口袋中黑球有8个,白球有12个.【解答】解;(1)根据表格中数据的第六行摸到白球的频率,可知当n很大时,摸到白球的频率将会接近0.60;(2)由(1)知,当摸球的次数n很大,根据频率与概率的关系,摸到白球的实验概率近似等于摸到白球的频率,所以摸到白球的概率约为0.60,摸到黑球的概率是0.40;(3)盒子中白球的个数约为20×0.6=12(个),则黑球个数为:20﹣12=8(个);故答案为:0.60;0.60;0.40;8;12.20.(5分)如图所示,∠ABC、∠ACB的平分线相交于点F,过点F作DE∥BC 交AB于D,交AC于E.若AB=9cm,AC=8cm,则△ADE的周长是多少?【解答】解:∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴△AED的周长=AD+AE+ED=AB+AC=8+9=17cm.故答案为17.21.(7分)在△ABC中,已知∠A=90°,AB=AC,BD平分∠ABC,DE⊥BC于E,请解答下列问题:(1)若AD=2cm,则D点到BC边的距离是2cm.(2)若BC=7cm,则△CDE的周长为7cm.(3)连接AE,试判断线段AE与BD的位置,并说明理由.【解答】解:(1)∵BD平分∠ABC,DE⊥BC,∠A=90°,∴DE=AD=2cm,故答案为:2cm;(2)在△ABD和△EBD中,,∴△ABD≌△EBD,∴BA=BE,△CDE的周长=CD+CE+DE=CD+AD+CE=AC+CE=AB+CE=AE+CE=BC=7cm,故答案为:7cm;(3)∵DA=DE,BA=BE,∴BD⊥AE.22.(8分)某周末的一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某旅游景点游玩.该校汽车离家的距离s(千米)与时间t(时)的关系可以用图中的折线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了4小时.(2)返程途中小汽车的速度是每小时60千米,小明全家到家时的时间是17时.(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为40升,汽车每行驶1千米耗油升.汽车行驶时油箱中的余油量不能少于5升,小明家最迟应在9时加油.(加油所用时间忽略不计)【解答】解(1)14﹣10=4(小时).则小明全家在旅游景点游玩了4小时;故答案为:4;(2)(180﹣120)÷(51﹣14)=60(千米/小时);设返程途中s与t的函数解析式是:s=kt+b,则,解得:,则函数解析式是:s=﹣60t+1020;令s=0,即﹣60t+1020=0,解得:t=17,则17点到家;故答案为:60,17;(3)(15﹣5)÷=90(千米),速度=180÷(10﹣8)=90(千米/小时),90÷90=1(小时),8+1=9;∵汽车行驶时油箱中的余油量不能少于5升,∴小明家最迟应在9时加油.故答案为:9.23.(8分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=25°,∠DEC=115°;点D从B向C运动时,∠BDA逐渐变小(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.【解答】解:(1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°,∠DEC=180°﹣∠EDC﹣∠C=180°﹣40°﹣25°=115°,∠BDA逐渐变小;故答案为:25°,115°,小;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(AAS),(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由:∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°,∴∠DAC=∠AED,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴∠DAC=∠ADE,∴△ADE的形状是等腰三角形.。