一次函数的应用教案
- 格式:doc
- 大小:79.50 KB
- 文档页数:5
北师大版数学八年级上册《4.4一次函数的应用》教案一. 教材分析《4.4一次函数的应用》这一节内容,主要让学生了解一次函数在实际生活中的应用,通过具体的实例,让学生学会用一次函数解决实际问题,培养学生的动手操作能力和解决实际问题的能力。
教材中给出了丰富的实例,为学生提供了充足的学习材料。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对于一次函数的图像和表达式有一定的了解。
但学生在实际应用中,可能会对如何将实际问题转化为一次函数模型感到困惑。
因此,在教学过程中,教师需要引导学生正确地将实际问题抽象为一次函数模型,并运用一次函数的知识解决实际问题。
三. 教学目标1.了解一次函数在实际生活中的应用。
2.学会将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
3.培养学生的动手操作能力和解决实际问题的能力。
四. 教学重难点1.教学重点:一次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
五. 教学方法采用案例分析法、问题驱动法、小组合作学习法等,引导学生通过自主学习、合作探讨,提高解决实际问题的能力。
六. 教学准备1.准备与一次函数应用相关的实例。
2.准备教学课件。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容,例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
让学生思考如何用数学模型来表示这个问题。
2.呈现(15分钟)呈现教材中的实例,引导学生了解一次函数在实际生活中的应用,如:手机话费套餐、出租车计费等。
让学生观察这些实例中的一次函数表达式,分析一次函数的构成和特点。
3.操练(15分钟)让学生分组讨论,每组选择一个实例,尝试将实际问题转化为一次函数模型,并求解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)请各组学生汇报他们的解题过程和结果,其他学生和教师进行评价和讨论。
通过这个环节,巩固学生对一次函数模型的理解和应用。
了解一次函数的应用场景及其图象的教案一、教学目标1.学生能够通过观察一次函数图象,准确地描述函数的斜率、截距、自变量、因变量以及函数的单调性、奇偶性等特征。
2.学生能够掌握一次函数在现实生活中的应用场景,并分析其中蕴含的数学模型及其特征。
二、教学重点1.学习一次函数的相关概念及其图象特征。
2.探究一次函数在现实生活中的应用场景,并分析其数学模型及其特征。
三、教学难点1.如何结合实际生活场景,完整地描述一次函数的数学模型及其特征。
2.如何通过一次函数的图象,准确地描述函数的各个特征。
四、教学准备黑板、彩色粉笔、一次函数的示意图、实物图片及其应用场景的相关材料等。
五、教学过程1.导入环节通过实物图片或视频等方式,让学生了解一次函数在现实生活中的应用场景,并引导学生思考这些应用场景中蕴含的数学模型及其特征。
2.学习环节(1)学习一次函数的相关概念通过黑板上的示意图,引导学生认识一次函数的概念及其主要特征:函数自变量和因变量之间的线性关系、常数斜率、常数截距、正比例、反比例、单调性和奇偶性等。
(2)学习一次函数的图象特征通过黑板上的示意图,引导学生观察一次函数在图象上的斜率、截距、自变量、因变量、单调性以及奇偶性等特征。
同时,通过举例分析和解答问题的方式,帮助学生掌握准确描述函数图象特征的方法。
(3)探究一次函数在现实生活中的应用场景引导学生通过现实生活场景,发掘一次函数的应用场景,并探究其中蕴含的数学模型及其特征。
例如,计算机CPU频率与性能的关系、公交车站人流量与时间的关系、飞机起降距离与空速的关系、水龙头水流量与水压的关系等。
3.实践环节通过分组实验、模拟仿真、场景体验等方式,让学生实际感受一次函数的数学模型及其特征,并探究其中的规律。
4.总结环节归纳总结一次函数的相关概念、图象特征以及在现实生活中的应用场景,让学生对所学内容进行总结复习。
六、教学评价1.基于教学目标和教学重点,设计合适的评价方式,例如课堂小测、学习笔记、小组报告等。
4 一次函数的应用第1课时 一次函数的应用(1)教学目标【知识与技能】会用待定系数法求一次函数的表达式,并能运用一次函数知识解决简单的实际问题.【过程与方法】通过运用一次函数知识解决实际问题,进一步加深理解并掌握所学知识.【情感、态度与价值观】体会数形结合的思想,了解数学来源于生活,又服务于生活,培养学生的数学应用意识.教学重难点【重点】用待定系数法求一次函数的表达式,并能解决简单的实际问题.【难点】灵活运用所学知识解决实际问题.教学过程一、复习引入1.提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数的相关性质.2.做一做.(1)直线y=3x+1经过点(1, ),与y轴的交点是( , ),与x轴的交点是( , ).(2)点(-2,7)是否在直线y=-5x-3上?3.引入.在前面学习一次函数时,我们根据函数关系式知道它的图象,知道图象上相应的点的坐标满足关系式,那么反过来,我们是否能根据图象、点的坐标等信息确定函数关系式呢?这就是我们今天要学习的内容——待定系数法求函数关系式.二、讲授新课师:下面我们来看几个例题.【例1】在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5 cm,当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b,根据题意,得14.5=b,①16=3k+b.②将①代入②,得k=0.5,所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即物体的质量为4 kg时,弹簧长度为16.5 cm.师:在这个例题中,我们首先根据题意设出一次函数的表达式,再利用待定系数法将已知数据代入表达式中,求得了一次函数的表达式,从而进一步解决了实际问题.【例2】某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?【解】观察图象,得(1)当x=0时,y=10.因此,油箱最多可储油10 L.(2)当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.(4)当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.师:请同学们思考教材P92的“做一做”.学生观察并思考.生:(1)从图象中可以看出,当y=0时,x=-2;(2)这个函数的表达式为y=x+2.师:很好!那么你们知道方程0.5x+1=0与一次函数y=0.5x+1之间有什么联系吗?学生思考并讨论.教师总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、课堂小结师:通过本节课的学习,同学们有什么收获?与同伴交流一下.学生发言,教师予以点评.第2课时 一次函数的应用(2)教学目标【知识与技能】会应用一次函数表达式与图象之间的相互关系,处理一些较为复杂的问题,领会数形结合的思想.【过程与方法】经历对实际问题建立数学模型的过程,体验数形结合的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数知识来建立实际问题的函数模型、解决实际问题的过程,使它们感受到数学的用途和数学与生活的紧密联系.2.让学生参与到教学活动中来,提高学习数学、应用数学的积极性.教学重难点【重点】用一次函数知识解决实际问题.【难点】获取一次函数图象中的信息,领会数形结合的思想.教学过程一、共同探究,获取新知问题1:某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.(注:销售提成是销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量x(件),销售人员的月工资y(元),如图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题:(1)求y1的函数关系式;(2)求点A的坐标,并说出A点的实际意义;(3)请问方案二中每月付给销售人员的底薪是多少元?分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)利用(1)中表达式,即可得出A 点坐标.(3)把图象上点的坐标代入,即可求出b 的值,从而求出答案.【解】(1)设y 1的函数表达式为y =kx(x≥0).∵y 1经过点(30,720),∴30k =720.∴k =24.∴y 1的函数表达式为y 1=24x(x≥0).(2)根据图象可知x =50,把x =50代入y 1=24x 得:y 1=24×50=1 200,∴A(50,1 200)当销售量为50件时两种方案工资相同,都是1 200元.(3)设y 2的函数表达式为y 2=ax +b(x≥0),经过点(30,960),(50,1 200)∴{960=30a +b 1 200=50a +b ,解得:{a =12b =600,∴b =600,即方案二中每月付给销售人员的底薪为600元.问题2:一家公司招聘销售员,给出以下两种薪金方案供求职人员选择,方案甲:每月的底薪为1500元,再加每月销售额的10%;方案乙:每月的底薪为750元,再加每月销售额的20%,如果你是应聘人员,你认为应该选择怎样的薪金方案?【解】设月薪y(元),月销售额为x(元).方案甲:y =1 500+110x(x≥0)方案乙:y =750+15x(x≥0)当y 甲=y 乙时,1 500+110x =750+15x ,解得x =7 500.求得y 甲=y 乙=2 250即销售额为7 500元时,这两种方案所定的月薪相同.在同一坐标系中画出两种方案中y 关于x 的函数图象.由图象可知:当0≤x<7 500,y甲>y乙,x>7 500时,y甲<y乙.提问:说一说用图象的方法解决问题有哪些优点?二、例题讲解【例】 我边防局接到情报,近海外有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(图①).图②中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?【解】(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min,A行驶了2n mile,B行驶了5n mile,所以B的速度快.(3)延长l1,l2(图③),可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B尚未追上A.(4)如图③,l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)图③中,l1与l2交点P的纵坐标小于12,这说明,在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2nmile/min,快艇B的速度是0.5n mile/min.三、练习新知教师多媒体出示课件:小明步行离开家去上学,开始的速度是0.6 m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s的速度用5分钟走完了剩余的路程到达学校.1.求小明家离学校的大致距离和小明走路的平均速度.2.请用函数图象描述小明走路的过程.教师引导学生思考交流,然后找一生板演,其余同学在下面做,订正得到:距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中x表示小明离开家的时间,y表示小明离开家的距离.四、课堂小结师:本节我们学习了什么内容?生:对于实际问题,初步了解如何根据函数表达式和图象描出它的现实意义.。
高中数学教案:一次函数的应用一次函数是高中数学中的重要内容,它在实际生活中有着广泛的应用。
本教案将从一次函数的基本概念和特点开始介绍,然后结合实际问题,讨论一次函数在经济、物理以及几何等领域中的应用。
第一部分:一次函数的基本概念和特点1. 什么是一次函数?一次函数又称为线性函数,其形式为 y = kx + b ,其中 k 和 b 分别表示斜率和截距。
2. 一次函数的图像特点- 斜率 k 的意义:表示直线上每单位 x 的增加所对应的 y 的增加量。
- 截距 b 的意义:表示直线与 y 轴交点的纵坐标值。
- 直线方程与图像之间的关系:斜率决定了直线的倾斜方向和角度,截距决定了直线与 y 轴的位置关系。
第二部分:经济领域中一次函数的应用1. 成本收益问题在经济学中,成本收益问题是非常重要且常见的一个应用场景。
利用一次函数模型可以分析企业成本和产量之间的关系。
斜率表示边际收益率,截距表示固定成本。
2. 销售价格和销量之间的关系一次函数模型也可以用来分析销售价格和销量之间的关系。
通过找到最大收入点,可以帮助企业制定合理的市场定价策略。
第三部分:物理领域中一次函数的应用1. 物体运动问题在物理学中,一次函数常常被用来描述物体的运动状态。
速度就是位移随时间变化率的斜率,而初始位置则对应着直线在 y 轴上截距。
2. 力与距离之间的关系一次函数模型还可以用于分析力和距离之间的关系。
力是物体受到的外力作用引起加速度变化率,而原点处对应着直线在 y 轴上截距。
第四部分:几何领域中一次函数的应用1. 直线与平面图形相交如果给定一个直线方程和一个平面图形(如矩形、三角形等),我们可以利用一次函数求解它们相交的点。
2. 凸多边形内角和问题对于一个凸多边形而言,其任意两条对角线交点构成了若干个三角形。
通过应用一次函数,我们可以计算出凸多边形内角和的总和。
通过以上内容的讨论与分析,我们了解了一次函数的基本概念和特点,并深入探讨了其在经济、物理以及几何领域中的应用。
一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。
一次函数的应用——方案选择问题“微课”教案一. 教材分析本次微课的主题为“一次函数的应用——方案选择问题”,教材选自人教版初中数学八年级上册第五章“一次函数与不等式”部分。
本节课的主要内容是一次函数在实际生活中的应用,通过解决实际问题,让学生掌握一次函数的性质,提高学生运用数学知识解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一次函数的基本知识,包括一次函数的定义、图像和性质。
但学生在解决实际问题时,往往不能将数学知识与实际问题相结合,因此,在教学过程中,需要教师引导学生将数学知识运用到实际问题中,提高学生的应用能力。
三. 教学目标1.理解一次函数在实际生活中的应用;2.掌握一次函数的性质;3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.一次函数在实际生活中的应用;2.一次函数的性质。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置实际问题,引导学生运用一次函数的知识解决问题,从而提高学生的应用能力。
同时,通过小组合作,让学生在讨论中巩固知识,提高学生的合作能力。
六. 教学准备1.准备相关的实际问题,如购物问题、行程问题等;2.准备一次函数的图像和性质的相关资料;3.准备PPT,用于展示问题和知识点。
七. 教学过程1.导入(5分钟)通过一个购物问题引入本节课的主题,让学生思考如何运用一次函数解决实际问题。
2.呈现(15分钟)呈现一系列实际问题,如购物问题、行程问题等,让学生独立思考如何运用一次函数解决这些问题。
3.操练(20分钟)学生分组讨论,每组选择一个实际问题,运用一次函数的知识解决。
教师巡回指导,帮助学生解决问题。
4.巩固(10分钟)教师总结一次函数在实际问题中的应用,强调一次函数的性质,并通过PPT展示相关实例。
5.拓展(10分钟)学生分组讨论,尝试解决更复杂的实际问题,如利润最大化问题、路程最短问题等。
6.小结(5分钟)教师引导学生总结本节课所学内容,让学生明确一次函数在实际生活中的应用和一次函数的性质。
第四章一次函数4一次函数的应用第1课时确定一次函数表达式教学目标教学反思1.了解确定一次函数的条件,能用待定系数法求出一些简单的一次函数的表达式;2.能通过函数图象获取信息,解决简单的实际问题;3.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系.教学重难点重点:1.了解确定一次函数的条件;2.能用待定系数法求出一些简单的一次函数的表达式.难点:能利用一次函数解决简单的实际问题.教学过程导入新课知识回顾1.什么是一次函数?什么是正比例函数?2.一次函数的图象是什么?正比例函数的图象呢?3.表示函数的方法有哪些?4.画出y=-2x-4的图象,根据图象回答下列问题:(1)y的值随x值的增大而__________;(2)图象与x轴的交点坐标是________,与y轴的交点坐标是_________;(3)判断下列各点是否在函数y=-2x-4的图象上.A(1,-6);B(-3,1)学生思考,给出答案.1.若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.当b=0时,即y=kx,称y是x的正比例函数.2.一次函数的图象是一条直线;正比例函数的图象是过原点的一条直线.3.列表法、图象法和关系式法.4.(1)减小;(2)(-2,0),(0,-4);(3)A.探究新知假定甲、乙二人在一项赛跑中路程与时间的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.想一想:1.确定正比例函数的表达式需要几个条件?(1个)2.确定一次函数的表达式呢?(2个)例1某物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间t(s)的关系如图所示.(1)写出v与t之间的关系式.(2)下滑3秒时物体的速度是多少?【解】(1)设函数表达式为v=kt (k为常数且k≠0).∵(2,5)在图象上,把点(2,5)的坐标代入,得5=2k,∴ k=2.5,∴v=2.5 t.(2)当t=3s时,v=2.5×3=7.5(m/s).所以下滑3s时物体的速度是7.5 m/s.例2在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数,一根弹簧不挂物体时长14.5 cm;当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b(k≠0),由题意,得14.5=b, 16=3k+b,解得b=14.5 ,k=0.5.所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即当所挂物体的质量为4 kg时,弹簧长度为16.5 cm.教师总结:教学反思求一次函数表达式的步骤 :1.设——设一次函数表达式为y =kx +b (k ≠0);2.代——将点的坐标代入y =kx +b 中,列出关于k ,b 的方程组;3.解——解方程组求出k ,b 值;4.定——把求出的k ,b 值代回到表达式中即可.像这种求函数表达式的方法叫做待定系数法.课堂练习 1.若一次函数y =2x +b 的图象经过A (-1,1),则=b ,该函数图象经过点B (1, )和点C ( ,0).2.如图,直线l 是一次函数y =kx +b 的图象,填空:(1)=b ,=k ,所以函数关系式为___________;(2)当x =30时,=y ;(3)当y =30时,=x .3.如图,直线l 是一次函数y =kx +b 的图象,求它的表达式.4.已知一次函数的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的表达式.5.某市出租车计费方法如图所示,x (km )表示行驶里程,y (元)表示车费,请根据图象回答下列问题:(1)求出租车的起步价是多少元,并求当x >3时,y 关于x 的函数表达式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.参考答案1.3,5,-1.5教学反思2.(1)2,23-,y =23x -+2 (2)-18 (3)-423.解:y =-3x4.解:设一次函数的表达式为y =kx +b (k ≠0), ∵一次函数y =kx +b 的图象过点(0,2),∴ b =2.∵一次函数的图象与x 轴的交点是2,0k ⎛⎫- ⎪⎝⎭,∴ 12222k⨯-⨯=,解得k =1或-1.∴ 一次函数的表达式为y =x +2或y =-x +2. 5.解:(1)8,y =2x +2;(2)令y =32,则2x +2=32,x =15,∴ 这位乘客乘车的里程为15 km.课堂小结(学生总结,老师点评)用待定系数法确定一次函数表达式的步骤布置作业习题4.5 必做题:第2题 选做题:3,4题任选一题板书设计第四章 一次函数4 一次函数的应用第1课时 确定一次函数表达式用待定系数法确定一次函数表达式的步骤: 1.设—— 设一次函数表达式为y =kx +b (k ≠0);2.代—— 将点的坐标代入y =kx +b 中,列出关于k ,b 的方程组;3.解—— 解方程组求出k ,b 值;4.定—— 把求出的k ,b 值代回到表达式中即可.。
有关八年级数学一次函数的应用教案4篇【学情分析】本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图象与性质的基础上进行的。
原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。
【教学目标】知识技能:1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图象,并能结合图象进一步研究相关的性质;3、巩固一次函数的性质,并会应用。
过程与方法:1、通过先基础在提升的过程,使学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;2、通过习题,使学生进一步体会“数形结合”、“方城思想”、“分类思想”以及“待定系数法”。
情感态度:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点难点教学重点:复习巩固一次函数的图象和性质,并能简单应用。
教学难点:在理解的基础上结合数学思想分析、解决问题。
【教法学法】1、教学方法依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。
因此我选用了以下教学方法:1、自学体验法——让学生通过作图经历体验并发现问题,分析问题,进一步解决问题。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过几何画板动画演示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。