高中物理微元法解决物理试题及其解题技巧及练习题
- 格式:doc
- 大小:573.00 KB
- 文档页数:15
高中物理高考物理微元法解决物理试题的技巧及练习题及练习题一、微元法解决物理试题1.如图所示,某个力F =10 N 作用在半径为R =1 m 的转盘的边缘上,力F 的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F 做的总功为( )A .0B .20π JC .10 JD .10π J【答案】B 【解析】本题中力F 的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W =F ·Δs 1+F ·Δs 2+F ·Δs 3+…=F (Δs 1+Δs 2+Δs 3+…)=F ·2πR =20πJ ,选项B 符合题意.故答案为B .【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W =FL 求出.2.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用.如图,一个人推磨,其推磨杆的力的大小始终为F ,方向与磨杆始终垂直,作用点到轴心的距离为r ,磨盘绕轴缓慢转动,则在转动一周的过程中推力F 做的功为A .0B .2πrFC .2FrD .-2πrF【答案】B 【解析】 【分析】cos W Fx α=适用于恒力做功,因为推磨的过程中力方向时刻在变化是变力,但由于圆周运动知识可知,力方向时刻与速度方向相同,根据微分原理可知,拉力所做的功等于力与路程的乘积; 【详解】由题可知:推磨杆的力的大小始终为F ,方向与磨杆始终垂直,即其方向与瞬时速度方向相同,即为圆周切线方向,故根据微分原理可知,拉力对磨盘所做的功等于拉力的大小与拉力作用点沿圆周运动弧长的乘积,由题意知,磨转动一周,弧长2L r π=,所以拉力所做的功2W FL rF π==,故选项B 正确,选项ACD 错误. 【点睛】本题关键抓住推磨的过程中力方向与速度方向时刻相同,即拉力方向与作用点的位移方向时刻相同,根据微分思想可以求得力所做的功等于力的大小与路程的乘积,这是解决本题的突破口.3.估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水上升了45mm 。
高中物理微元法解决物理试题解题技巧(超强)及练习题一、微元法解决物理试题1.雨打芭蕉是我国古代文学中重要的抒情意象.为估算雨天院中芭蕉叶面上单位面积所承受的力,小玲同学将一圆柱形水杯置于院中,测得10分钟内杯中雨水上升了15mm ,查询得知,当时雨滴落地速度约为10m /s ,设雨滴撞击芭蕉后无反弹,不计雨滴重力,雨水的密度为1×103kg /m 3,据此估算芭蕉叶面单位面积上的平均受力约为 A .0.25N B .0.5NC .1.5ND .2.5N【答案】A 【解析】 【分析】 【详解】由于是估算压强,所以不计雨滴的重力.设雨滴受到支持面的平均作用力为F .设在△t 时间内有质量为△m 的雨水的速度由v =10m/s 减为零.以向上为正方向,对这部分雨水应用动量定理:F △t =0-(-△mv )=△mv .得:F =mvtV V ;设水杯横截面积为S ,对水杯里的雨水,在△t 时间内水面上升△h ,则有:△m =ρS △h ;F =ρSvhtV V .压强为:3322151011010/0.25/1060F h P v N m N m S t ρ-⨯===⨯⨯⨯=⨯V V ,故A 正确,BCD 错误.2.水刀切割具有精度高、无热变形、无毛刺、无需二次加工以及节约材料等特点,得到广泛应用.某水刀切割机床如图所示,若横截面直径为d 的水流以速度v 垂直射到要切割的钢板上,碰到钢板后水的速度减为零,已知水的密度为ρ,则钢板受到水的冲力大小为A .2d v πρB .22d v πρC .214d v πρD .2214d v πρ【答案】D 【解析】 【分析】 【详解】设t 时间内有V 体积的水打在钢板上,则这些水的质量为:214m V Svt d vt ρρπρ===以这部分水为研究对象,它受到钢板的作用力为F ,以水运动的方向为正方向,由动量定理有:Ft =0-mv解得:2214mv F d v t πρ=-=- A. 2d v πρ与分析不符,故A 错误. B. 22d v πρ与分析不符,故B 错误. C. 214d v πρ与分析不符,故C 错误. D.2214d v πρ与分析相符,故D 正确.3.如图所示,长为l 均匀铁链对称挂在一轻质小滑轮上,由于某一微小扰动使铁链向一侧滑动,则铁链完全离开滑轮时速度大小为( )A 2glB glC 2gl D 12gl 【答案】C 【解析】 【分析】 【详解】铁链从开始到刚脱离滑轮的过程中,链条重心下降的高度为244l l l H =-= 链条下落过程,由机械能守恒定律,得:2142l mg mv ⋅= 解得:2gl v =2gl A 项与题意不相符; gl B 项与题意不相符; 2gl与分析相符,故C 项与题意相符;D.12gl 与分析不相符,故D 项与题意不相符.4.如图所示,某力10N F =,作用于半径1m R =的转盘的边缘上,力F 的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F 做的总功应为( )A .0JB .20J πC .10JD .20J【答案】B 【解析】 【详解】把圆周分成无限个微元,每个微元可认为与力F 在同一直线上,故W F s ∆=∆则转一周中做功的代数和为2π20πJ F R W ⨯==故选B 正确。
高中物理微元法解决物理试题解题技巧及经典题型及练习题一、微元法解决物理试题1.如图所示,半径为R 的1/8光滑圆弧轨道左端有一质量为m 的小球,在大小恒为F 、方向始终与轨道相切的拉力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时,此时小球的速率为v ,已知重力加速度为g ,则( )A .此过程拉力做功为2 FRB .此过程拉力做功为4FR πC .小球运动到轨道的末端时,拉力的功率为12Fv D .小球运动到轨道的末端时,拉力的功率为2Fv 【答案】B 【解析】 【详解】AB 、将该段曲线分成无数段小段,每一段可以看成恒力,可知此过程中拉力做功为1144W F R FR ππ=•=,故选项B 正确,A 错误;CD 、因为F 的方向沿切线方向,与速度方向平行,则拉力的功率P Fv =,故选项C 、D 错误。
2.为估算雨水对伞面产生的平均撞击力,小明在大雨天将一圆柱形水杯置于露台,测得10分钟内杯中水位上升了45mm ,当时雨滴竖直下落速度约为12m/s 。
设雨滴撞击伞面后无反弹,不计雨滴重力,雨水的密度为33110kg/m ⨯,伞面的面积约为0.8m 2,据此估算当时雨水对伞面的平均撞击力约为( )A .0.1NB .1.0NC .10ND .100N【答案】B 【解析】 【分析】 【详解】对雨水由动量定理得Ft mv Shv ρ=∆=则0.72N 1.0N ShvF tρ==≈所以B 正确,ACD 错误。
故选B 。
3.如图所示,水龙头开口处A 的直径d 1=1cm ,A 离地面B 的高度h =75cm ,当水龙头打开时,从A 处流出的水流速度v 1=1m/s ,在空中形成一完整的水流束,则该水流束在地面B 处的截面直径d 2约为(g 取10m/s 2)( )A .0.5cmB .1cmC .2cmD .应大于2cm ,但无法计算 【答案】A 【解析】 【详解】设水在水龙头出口处速度大小为v 1,水流到B 处的速度v 2,则由22212v v gh -=得24m/s v =设极短时间为△t ,在水龙头出口处流出的水的体积为2111π()2dV v t =∆⋅水流B 处的体积为2222π()2d V v t =∆⋅ 由12V V =得20.5cm d =故A 正确。
高中物理微元法解决物理试题技巧和方法完整版及练习题含解析一、微元法解决物理试题1.如图甲所示,静止于光滑水平面上的小物块,在水平拉力F的作用下从坐标原点O开始沿x轴正方向运动,F随物块所在位置坐标x的变化关系如图乙所示,图线右半部分为四分之一圆弧,则小物块运动到2x0处时的动能可表示为()A.0 B.12F m x0(1+π)C.12F m x0(1+2π)D.F m x0【答案】C 【解析】【详解】F-x图线围成的面积表示拉力F做功的大小,可知F做功的大小W=12F m x0+14πx02,根据动能定理得,E k=W=12F m x0+14πx02 =01122mF xπ⎛⎫+⎪⎝⎭,故C正确,ABD错误。
故选C。
2.超强台风“利奇马”在2019年8月10日凌晨在浙江省温岭市沿海登陆,登陆时中心附近最大风力16级,对固定建筑物破坏程度非常大。
假设某一建筑物垂直风速方向的受力面积为s,风速大小为v,空气吹到建筑物上后速度瞬间减为零,空气密度为ρ,则风力F 与风速大小v关系式为( )A.F =ρsv B.F =ρsv2C.F =ρsv3D.F=12ρsv2【答案】B【解析】【分析】【详解】设t时间内吹到建筑物上的空气质量为m,则有:m=ρsvt根据动量定理有:-Ft=0-mv=0-ρsv2t 得:F=ρsv2 A.F =ρsv,与结论不相符,选项A错误;B .F =ρsv 2,与结论相符,选项B 正确;C .F =ρsv 3,与结论不相符,选项C 错误;D .F =12ρsv 2,与结论不相符,选项D 错误; 故选B 。
3.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量,为简化问题,我们假定粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f 与mn 、和v 的关系正确的是( )A .216nsmv B .213nmvC .216nmv D .213nmv t ∆【答案】B 【解析】 【详解】一个粒子每与器壁碰撞一次给器壁的冲量2I mv ∆=,如图所示,以器壁上面积为S 的部分为底、v t ∆为高构成柱体,由题设可知,其内有16的粒子在t ∆时间内与器壁上面积为S 的部分发生碰撞,碰撞粒子总数16N n Sv t =⋅∆,t ∆时间内粒子给器壁的冲量21·3I N I nSmv t =∆=∆,由I F t =∆可得213I F nSmv t ==∆,213F f nmv S ==,故选B .4.为估算雨水对伞面产生的平均撞击力,小明在大雨天将一圆柱形水杯置于露台,测得10分钟内杯中水位上升了45mm ,当时雨滴竖直下落速度约为12m/s 。
高中物理微元法解决物理试题的基本方法技巧及练习题及练习题一、微元法解决物理试题1.2019年8月11日超强台风“利奇马”登陆青岛,导致部分高层建筑顶部的广告牌损毁。
台风“利奇马”登陆时的最大风力为11级,最大风速为30m/s 。
某高层建筑顶部广告牌的尺寸为:高5m 、宽20m ,空气密度31.2kg/m ρ=,空气吹到广告牌上后速度瞬间减为0,则该广告牌受到的最大风力约为( ) A .33.610N ⨯ B .51.110N ⨯C .41.010N ⨯D .49.010N ⨯【答案】B 【解析】 【分析】 【详解】 广告牌的面积S =5×20m 2=100m 2设t 时间内吹到广告牌上的空气质量为m ,则有m =ρSvt根据动量定理有-Ft =0-mv =0-ρSv 2t得251.110N F Sv ρ≈⨯=故选B 。
2.如图所示,有一条长为2m L =的均匀金属链条,有一半长度在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂在空中,链条由静止释放后开始滑动,则链条刚好全部滑出斜面时的速度为(g 取210m /s )( )A .2.5m /sB .52m /s 2C 5m /sD .35m /s 2【答案】B 【解析】 【分析】 【详解】设链条的质量为2m ,以开始时链条的最高点为零势能面,链条的机械能为1132sin 302024248p k L L E E E mg mg mgL =+=-⨯⨯︒-⨯⨯+=-链条全部滑出后,动能为2122k E mv '=⨯重力势能为22p LE mg '=-⨯由机械能守恒定律可得k p E E E ''=+即238mgL mv mgL -=- 解得52m /2v s =故B 正确,ACD 错误。
故选B 。
3.如图所示,粗细均匀的U 形管内装有同种液体,在管口右端用盖板A 密闭,两管内液面的高度差为h ,U 形管中液柱的总长为4h 。现拿去盖板A ,液体开始流动,不计液体内部及液体与管壁间的阻力,则当两液面高度相等时,右侧液面下降的速度是A gh 8B 4gh C 2gh D gh 【答案】A 【解析】试题分析:拿去盖板,液体开始运动,当两液面高度相等时,液体的机械能守恒,即可求出右侧液面下降的速度.当两液面高度相等时,右侧高为h 液柱重心下降了1 4h ,液柱的重力势能减小转化为整个液体的动能.设管子的横截面积为S ,液体的密度为ρ.拿去盖板,液体开始运动,根据机械能守恒定律得211442hSg h hSv ρρ⋅=,解得8ghv =A 正确.4.如图所示,摆球质量为m ,悬线长为L ,把悬线拉到水平位置后放手.设在摆球运动过程中空气阻力f 的大小不变,则摆球从A 摆到位置B 的过程中,下列说法正确的是A .重力做功为mgLB .悬线的拉力做功为0C .空气阻力f 做功为-mgLD .空气阻力f 做功为12f L π- 【答案】ABD 【解析】 【详解】A.重力在整个运动过程中始终不变,所以重力做功为 W G =mgL ,故A 正确;B.因为拉力在运动过程中始终与运动方向垂直,故拉力对小球不做功,即W F =0,故B 正确;CD.阻力所做的总功等于每个小弧段上f 所做功的代数和,即1211(...)ππ22f W f x f x fs f L f L =-∆+∆+=-=-⋅=-,故C 错误,D 正确。
高中物理微元法解决物理试题技巧小结及练习题一、微元法解决物理试题1.如图所示,长为l 均匀铁链对称挂在一轻质小滑轮上,由于某一微小扰动使铁链向一侧滑动,则铁链完全离开滑轮时速度大小为( )A 2glB glC 2gl D 12gl 【答案】C 【解析】 【分析】 【详解】铁链从开始到刚脱离滑轮的过程中,链条重心下降的高度为244l l l H =-= 链条下落过程,由机械能守恒定律,得:2142l mg mv ⋅= 解得:2gl v =2gl A 项与题意不相符; gl B 项与题意不相符; 2gl与分析相符,故C 项与题意相符; D.12gl D 项与题意不相符.2.如图所示,有一连通器,左右两管的横截面积均为S ,内盛密度为ρ的液体,开始时两管内的液面高度差为h .打开底部中央的阀门K ,液体开始流动,最终两液面相平.在这一过程中,液体的重力加速度为g 液体的重力势能( )A .减少214gSh ρ B .增加了214gSh ρ C .减少了212gSh ρ D .增加了212gSh ρ 【答案】A 【解析】打开阀门K ,最终两液面相平,相当于右管内 2h 的液体流到了左管中,它的重心下降了2h ,这部分液体的质量122h m V S Sh ρρρ===,由于液体重心下降,重力势能减少,重力势能的减少量:211224p h E mgh Sh g Sgh ρρ∆='=⋅⋅=,减少的重力势能转化为内能,故选项A 正确.点睛:求出水的等效重心下移的高度,然后求出重力势能的减少量,再求出重力势能的变化量,从能量守恒的角度分析答题.3.2019年8月11日超强台风“利奇马”登陆青岛,导致部分高层建筑顶部的广告牌损毁。
台风“利奇马”登陆时的最大风力为11级,最大风速为30m/s 。
某高层建筑顶部广告牌的尺寸为:高5m 、宽20m ,空气密度31.2kg/m ρ=,空气吹到广告牌上后速度瞬间减为0,则该广告牌受到的最大风力约为( ) A .33.610N ⨯ B .51.110N ⨯C .41.010N ⨯D .49.010N ⨯【答案】B 【解析】 【分析】 【详解】 广告牌的面积S =5×20m 2=100m 2设t 时间内吹到广告牌上的空气质量为m ,则有m =ρSvt根据动量定理有-Ft =0-mv =0-ρSv 2t得251.110N F Sv ρ≈⨯=故选B 。
高中物理微元法解决物理试题的技巧及练习题及练习题一、微元法解决物理试题1.如图甲所示,静止于光滑水平面上的小物块,在水平拉力F 的作用下从坐标原点O 开始沿x 轴正方向运动,F 随物块所在位置坐标x 的变化关系如图乙所示,图线右半部分为四分之一圆弧,则小物块运动到2x 0处时的动能可表示为( )A .0B .12F m x 0(1+π) C .12F m x 0(1+2π) D .F m x 0【答案】C 【解析】 【详解】F -x 图线围成的面积表示拉力F 做功的大小,可知F 做功的大小W =12F m x 0+14πx 02,根据动能定理得,E k =W =12F m x 0+14πx 02 =01122m F x π⎛⎫+ ⎪⎝⎭,故C 正确,ABD 错误。
故选C 。
2.如图所示,长为l 均匀铁链对称挂在一轻质小滑轮上,由于某一微小扰动使铁链向一侧滑动,则铁链完全离开滑轮时速度大小为( )A 2glB glC 2glD 12gl 【答案】C 【解析】 【分析】 【详解】铁链从开始到刚脱离滑轮的过程中,链条重心下降的高度为244l l l H =-=链条下落过程,由机械能守恒定律,得:2142l mg mv ⋅= 解得:2gl v =A. 2gl 与分析不相符,故A 项与题意不相符;B. gl 与分析不相符,故B 项与题意不相符;C. 2gl与分析相符,故C 项与题意相符; D.12gl 与分析不相符,故D 项与题意不相符.3.如图所示,有一连通器,左右两管的横截面积均为S ,内盛密度为ρ的液体,开始时两管内的液面高度差为h .打开底部中央的阀门K ,液体开始流动,最终两液面相平.在这一过程中,液体的重力加速度为g 液体的重力势能( )A .减少214gSh ρ B .增加了214gSh ρ C .减少了212gSh ρ D .增加了212gSh ρ 【答案】A 【解析】打开阀门K ,最终两液面相平,相当于右管内 2h 的液体流到了左管中,它的重心下降了2h ,这部分液体的质量122h m V S Sh ρρρ===,由于液体重心下降,重力势能减少,重力势能的减少量:211224p h E mgh Sh g Sgh ρρ∆='=⋅⋅=,减少的重力势能转化为内能,故选项A 正确.点睛:求出水的等效重心下移的高度,然后求出重力势能的减少量,再求出重力势能的变化量,从能量守恒的角度分析答题.4.如图所示,有一条长为2m L =的均匀金属链条,有一半长度在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂在空中,链条由静止释放后开始滑动,则链条刚好全部滑出斜面时的速度为(g 取210m /s )( )A .2.5m /sB 52/s C 5m /sD 35/s 【答案】B 【解析】 【分析】 【详解】设链条的质量为2m ,以开始时链条的最高点为零势能面,链条的机械能为1132sin 302024248p k L L E E E mg mg mgL =+=-⨯⨯︒-⨯⨯+=-链条全部滑出后,动能为2122k E mv '=⨯重力势能为22p LE mg '=-⨯由机械能守恒定律可得k p E E E ''=+即238mgL mv mgL -=- 解得52m /2v s =故B 正确,ACD 错误。
高中物理微元法解决物理试题的基本方法技巧及练习题及练习题一、微元法解决物理试题1.如图所示,长为l 均匀铁链对称挂在一轻质小滑轮上,由于某一微小扰动使铁链向一侧滑动,则铁链完全离开滑轮时速度大小为( )A 2glB glC 2gl D 12gl 【答案】C 【解析】 【分析】 【详解】铁链从开始到刚脱离滑轮的过程中,链条重心下降的高度为244l l l H =-= 链条下落过程,由机械能守恒定律,得:2142l mg mv ⋅= 解得:2gl v =2gl A 项与题意不相符; gl B 项与题意不相符; 2gl与分析相符,故C 项与题意相符; D.12gl D 项与题意不相符.2.如图所示,半径为R 的1/8光滑圆弧轨道左端有一质量为m 的小球,在大小恒为F 、方向始终与轨道相切的外力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时立即撤去外力,此时小球的速率为v ,已知重力加速度为g ,则( )A.此过程外力做功为FRB.此过程外力做功为C.小球离开轨道的末端时,拉力的功率为D.小球离开轨道末端时,拉力的功率为Fv【答案】B【解析】【详解】AB、将该段曲线分成无数段小段,每一段可以看成恒力,可知此过程中外力做功为:,故B正确,A错误;CD、因为F的方向沿切线方向,与速度方向平行,则拉力的功率P=Fv,故C、D错误;故选B。
【点睛】关键是将曲线运动分成无数段,每一段看成恒力,结合功的公式求出此过程中外力做功的大小;根据瞬时功率公式求出小球离开轨道末端时拉力的功率。
3.一条长为L、质量为m的均匀链条放在光滑水平桌面上,其中有三分之一悬在桌边,如图所示,在链条的另一端用水平力缓慢地拉动链条,当把链条全部拉到桌面上时,需要做多少功()A.16mgL B.19mgL C.118mgL D.136mgL【答案】C 【解析】【分析】【详解】悬在桌边的13l长的链条重心在其中点处,离桌面的高度:111236h l l =⨯=它的质量是13m m '=当把它拉到桌面时,增加的重力势能就是外力需要做的功,故有1113618P W E mg l mgl =∆=⨯=A .16mgL ,与结论不相符,选项A 错误; B .19mgL ,与结论不相符,选项B 错误;C .118mgL ,与结论相符,选项C 正确; D .136mgL ,与结论不相符,选项D 错误; 故选C . 【点睛】如果应用机械能守恒定律解决本题,首先应规定零势能面,确定初末位置,列公式时要注意系统中心的变化,可以把整体分成两段来分析.4.水柱以速度v 垂直射到墙面上,之后水速减为零,若水柱截面为S ,水的密度为ρ,则水对墙壁的冲力为( ) A .12ρSv B .ρSv C .12ρS v 2 D .ρSv 2【答案】D 【解析】 【分析】 【详解】设t 时间内有V 体积的水打在钢板上,则这些水的质量为:S m V vt ρρ==以这部分水为研究对象,它受到钢板的作用力为F ,以水运动的方向为正方向,由动量定理有:0Ft mv =-即:2mvF Sv tρ=-=- 负号表示水受到的作用力的方向与水运动的方向相反;由牛顿第三定律可以知道,水对钢板的冲击力大小也为2S v ρ ,D 正确,ABC 错误。
高中物理微元法解决物理试题技巧(很有用)及练习题及解析一、微元法解决物理试题1.如图所示,某个力F=10 N作用在半径为R=1 m的转盘的边缘上,力F的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F做的总功为()A.0 B.20π J C.10 J D.10π J【答案】B【解析】本题中力F的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W=F·Δs1+F·Δs2+F·Δs3+…=F(Δs1+Δs2+Δs3+…)=F·2πR=20πJ,选项B符合题意.故答案为B.【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W=FL求出.2.如图甲所示,静止于光滑水平面上的小物块,在水平拉力F的作用下从坐标原点O开始沿x轴正方向运动,F随物块所在位置坐标x的变化关系如图乙所示,图线右半部分为四分之一圆弧,则小物块运动到2x0处时的动能可表示为()A.0 B.12F m x0(1+π)C.12F m x0(1+2π)D.F m x0【答案】C 【解析】【详解】F-x图线围成的面积表示拉力F做功的大小,可知F做功的大小W=12F m x0+14πx02,根据动能定理得,E k=W=12F m x0+14πx02 =01122mF xπ⎛⎫+⎪⎝⎭,故C正确,ABD错误。
故选C。
3.如图所示,半径为R的1/8光滑圆弧轨道左端有一质量为m的小球,在大小恒为F、方向始终与轨道相切的外力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时立即撤去外力,此时小球的速率为v,已知重力加速度为g,则( )A.此过程外力做功为FRB.此过程外力做功为C.小球离开轨道的末端时,拉力的功率为D.小球离开轨道末端时,拉力的功率为Fv【答案】B【解析】【详解】AB、将该段曲线分成无数段小段,每一段可以看成恒力,可知此过程中外力做功为:,故B正确,A错误;CD、因为F的方向沿切线方向,与速度方向平行,则拉力的功率P=Fv,故C、D错误;故选B。
高中物理微元法解决物理试题技巧(很有用)及练习题及解析一、微元法解决物理试题1.雨打芭蕉是我国古代文学中重要的抒情意象.为估算雨天院中芭蕉叶面上单位面积所承受的力,小玲同学将一圆柱形水杯置于院中,测得10分钟内杯中雨水上升了15mm ,查询得知,当时雨滴落地速度约为10m /s ,设雨滴撞击芭蕉后无反弹,不计雨滴重力,雨水的密度为1×103kg /m 3,据此估算芭蕉叶面单位面积上的平均受力约为A .0.25NB .0.5NC .1.5ND .2.5N 【答案】A【解析】【分析】【详解】由于是估算压强,所以不计雨滴的重力.设雨滴受到支持面的平均作用力为F .设在△t 时间内有质量为△m 的雨水的速度由v =10m/s 减为零.以向上为正方向,对这部分雨水应用动量定理:F △t =0-(-△mv )=△mv .得:F =mv tV V ;设水杯横截面积为S ,对水杯里的雨水,在△t 时间内水面上升△h ,则有:△m =ρS △h ;F =ρSvh t V V .压强为:3322151011010/0.25/1060F h P v N m N m S t ρ-⨯===⨯⨯⨯=⨯V V ,故A 正确,BCD 错误.2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量,为简化问题,我们假定粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f 与mn 、和v 的关系正确的是( )A .216nsmv B .213nmv C .216nmv D .213nmv t ∆ 【答案】B【解析】【详解】 一个粒子每与器壁碰撞一次给器壁的冲量2I mv ∆=,如图所示,以器壁上面积为S 的部分为底、v t ∆为高构成柱体,由题设可知,其内有16的粒子在t ∆时间内与器壁上面积为S 的部分发生碰撞,碰撞粒子总数16N n Sv t =⋅∆,t ∆时间内粒子给器壁的冲量21·3I N I nSmv t =∆=∆,由I F t =∆可得213I F nSmv t ==∆,213F f nmv S ==,故选B . 3.一条长为L 、质量为m 的均匀链条放在光滑水平桌面上,其中有三分之一悬在桌边,如图所示,在链条的另一端用水平力缓慢地拉动链条,当把链条全部拉到桌面上时,需要做多少功( )A .16mgL B .19mgL C .118mgL D .136mgL 【答案】C【解析】【分析】【详解】 悬在桌边的13l 长的链条重心在其中点处,离桌面的高度: 111236h l l =⨯= 它的质量是13m m '= 当把它拉到桌面时,增加的重力势能就是外力需要做的功,故有1113618P W E mg l mgl =∆=⨯=A .16mgL ,与结论不相符,选项A 错误; B .19mgL ,与结论不相符,选项B 错误; C .118mgL ,与结论相符,选项C 正确; D .136mgL ,与结论不相符,选项D 错误; 故选C .【点睛】如果应用机械能守恒定律解决本题,首先应规定零势能面,确定初末位置,列公式时要注意系统中心的变化,可以把整体分成两段来分析.4.根据量子理论,光子的能量为E=hv ,其中h 是普朗克常量.(1)根据爱因斯坦提出的质能方程E=mc 2,光子的质量可表示为m=E/c 2,由动量的定义和相关知识,推导出波长为λ的光子动量的表达式p=h/λ;(2)光子能量和动量的关系是E=pc .既然光子有动量,那么光照到物体表面,光子被物体吸收或反射时,都会对物体产生压强,这就是“光压”.a. 一台二氧化碳气体激光器发出的激光功率为P 0=103W ,发出的一细束激光束的横截面积为S=1mm 2.若该激光束垂直照射到物体表面,且光子全部被该物体吸收,求激光束对该物体产生的光压P 0的大小;b. 既然光照射物体会对物体产生光压,科学家设想在遥远的宇宙探测中,可以用光压为动力使航天器加速,这种探溅器被称做“太阳帆”.设计中的某个太阳帆,在其运行轨道的某一阶段,正在朝远离太阳的方向运动,太阳帆始终保持正对太阳.已知太阳的质量为2×1030kg ,引力常量G=7×10-11Nm 2/kg 2,太阳向外辐射能量的总功率为P=4×1026W ,太阳光照到太阳帆后有80%的太阳光被反射.探测器的总质量为m=50kg .考虑到太阳对探测器的万有引力的影响,为了使由太阳光光压产生的推动力大于太阳对它的万有引力,太阳帆的面积S 至少要多大?(计算结果保留1位有效数字)【答案】(1)证明见解析;(2)a.0 3.3Pa P = ;b. 42310s m =⨯【解析】【分析】【详解】(1)光子的能量 E=mc 2E =h ν=h cλ光子的动量 p=mc 可得E h p c λ== (2)一小段时间△t 内激光器发射的光子数0 P t n c h λV =光照射物体表面,由动量定理 F △t=np产生的光压I = F S解得I =0P cS带入数据解得:I =3.3pa(3)由(2)同理可知,当光80%被反射,20%被吸收时,产生的光压 9 5P I cS=距太阳为r 处光帆受到的光压 2954PI c r=π⋅ 太阳光对光帆的压力需超过太阳对探测器的引力IS ′>G 2 Mm r解得S ′>20 9cGMm Pπ 带入数据解得 42310S m ⨯'≥【点睛】考查光子的能量与动量区别与联系,掌握动量定理的应用,注意建立正确的模型是解题的关键;注意反射的光动量变化为2mv ,吸收的光动量变化为mv .5.如图1所示,一端封闭的两条平行光滑长导轨相距L ,距左端L 处的右侧一段被弯成半径为的四分之一圆弧,圆弧导轨的左、右两段处于高度相差的水平面上.以弧形导轨的末端点O 为坐标原点,水平向右为x 轴正方向,建立Ox 坐标轴.圆弧导轨所在区域无磁场;左段区域存在空间上均匀分布,但随时间t 均匀变化的磁场B (t ),如图2所示;右段区域存在磁感应强度大小不随时间变化,只沿x 方向均匀变化的磁场B (x ),如图3所示;磁场B (t )和B (x )的方向均竖直向上.在圆弧导轨最上端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,金属棒由静止开始下滑时左段磁场B (t )开始变化,金属棒与导轨始终接触良好,经过时间t 0金属棒恰好滑到圆弧导轨底端.已知金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g.(1)求金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E;(2)如果根据已知条件,金属棒能离开右段磁场B(x)区域,离开时的速度为v,求金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q;(3)如果根据已知条件,金属棒滑行到x=x1位置时停下来,a.求金属棒在水平轨道上滑动过程中通过导体棒的电荷量q;b.通过计算,确定金属棒在全部运动过程中感应电流最大时的位置.【答案】(1)L2B0/t0(2)+ mgL/2-mv2(3)金属棒在x=0处,感应电流最大【解析】试题分析:(1)由图看出,左段区域中磁感应强度随时间线性变化,其变化率一定,由法拉第电磁感应定律得知,回路中磁通量的变化率相同,由法拉第电磁感应定律求出回路中感应电动势.(2)根据欧姆定律和焦耳定律结合求解金属棒在弧形轨道上滑行过程中产生的焦耳热.再根据能量守恒求出金属棒在水平轨道上滑行的过程中产生的焦耳热,即可得到总焦耳热.(3)在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,在很短的时间△t内,根据法拉第电磁感应定律和感应电流的表达式,求出感应电荷量q.再进行讨论.解:(1)由图2可:=根据法拉第电磁感应定律得感应电动势为:E==L2=L2(2)金属棒在弧形轨道上滑行过程中,产生的焦耳热为:Q1==金属棒在弧形轨道上滑行过程中,根据机械能守恒定律得:mg=金属棒在水平轨道上滑行的过程中,产生的焦耳热为Q2,根据能量守恒定律得:Q2=﹣=mg﹣所以,金属棒在全部运动过程中产生的焦耳热为:Q=Q1+Q2=+mg﹣(3)a.根据图3,x=x1(x1<x)处磁场的磁感应强度为:B1=.设金属棒在水平轨道上滑行时间为△t.由于磁场B(x)沿x方向均匀变化,根据法拉第电磁感应定律△t时间内的平均感应电动势为:===所以,通过金属棒电荷量为:q=△t=△t=b.金属棒在弧形轨道上滑行过程中,感应电流为:I1==金属棒在水平轨道上滑行过程中,由于滑行速度和磁场的磁感应强度都在减小,所以,此过程中,金属棒刚进入磁场时,感应电流最大.刚进入水平轨道时,金属棒的速度为:v=所以,水平轨道上滑行过程中的最大电流为:I2==若金属棒自由下落高度,经历时间t=,显然t>t所以,I1=<==I2.综上所述,金属棒刚进入水平轨道时,即金属棒在x=0处,感应电流最大.答:(1)金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E是L2.(2)金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q为+mg﹣.(3)a.金属棒在水平轨道上滑动过程中通过导体棒的电荷量q为.b.金属棒在全部运动过程中金属棒刚进入水平轨道时,即金属棒在x=0处,感应电流最大.【点评】本题中(1)(2)问,磁通量均匀变化,回路中产生的感应电动势和感应电流均恒定,由法拉第电磁感应定律研究感应电动势是关键.对于感应电荷量,要能熟练地应用法拉第定律和欧姆定律进行推导.6.消防车的供水系统主要由水泵、输水管道和水炮组成.如图所示,消防水炮离地高度为H=80 m,建筑物上的火点离地高度为h=60 m,整个供水系统的效率η=60%(供水效率η定义为单位时间内抽水过程水所获得的机械能与水泵功率的比值×100%).假设水从水炮水平射出,水炮的出水速度v0=30 m/s,水炮单位时间内的出水量m0=60 kg/s,取g=10 m/s2,不计空气阻力.(1)求水炮与火点的水平距离x ,和水炮与火点之间的水柱的质量m ;(2)若认为水泵到炮口的距离也为H =80 m ,求水泵的功率P ;(3)如图所示,为流速稳定分布、体积不可压缩且粘性可忽略不计的液体(比如水)中的一小段液柱,由于体积在运动中不变,因此当S 1面以速度v 1向前运动了x 1时,S 2面以速度v 2向前运动了x 2,若该液柱前后两个截面处的压强分别为p 1和p 2,选用恰当的功能关系证明:流速稳定分布、体积不可压缩且粘性可忽略不计的液体水平流动(或者高度差的影响不显著)时,液体内流速大的地方压强反而小.【答案】(1) 120kg (2) 1.25×102 kW (3)见解析;【解析】【分析】【详解】(1)根据平抛运动规律,有H -h =12gt 2 ① x =v 0t ②联立上述两式,并代入数据得t 2()H h g- 2 s x =v 2()H h g -60 m ③ 水炮与火点之间的水柱的质量m = m 0t =120kg ④(2)设在Δt 时间内出水质量为Δm ,则Δm = m 0Δt ,由功能关系得:2012P t mv mgH η∆=+⑤ 即200012Pt m tv m tgH η∆=∆+∆ 解得:P =200012m v m gH η+=1.25×102 kW ⑥(3)表示一个细管,其中流体由左向右流动.在管的a 1处和a 2处用横截面截出一段流体,即a 1处和a 2处之间的流体,作为研究对象.a 1处的横截面积为S 1,流速为v 1,高度为h 1,a 1处左边的流体对研究对象的压强为p 1,方向垂直于S 1向右.a 2处的横截面积为S 2,流速为v 2,高度为h 2,a 2处左边的流体对研究对象的压强为p 2,方向垂直于S 2向左.经过很短的时间间隔Δt ,这段流体的左端S 1由a 1移到b 1.右端S 2由a 2移到b 2.两端移动的距离分别为Δl 1和Δl 2.左端流入的流体体积为ΔV 1=S 1Δl 1,右端流出的流体体积为ΔV 2=S 2Δl 2,理想流体是不可压缩的,流入和流出的体积相等,ΔV 1=ΔV 2,记为ΔV . 现在考虑左右两端的力对这段流体所做的功.作用在液体左端的力F 1=p 1S 1向右,所做的功W 1=F 1Δl 1=(p 1S 1)Δl 1=p 1(S 1Δl 1) =p 1ΔV .作用在液体右端的力F 2=p 2S 2向左,所做的功W 2=-F 2Δl 2=-(p 2S 2)Δl 2=-p 2(S 2Δl 2) =-p 2ΔV .外力所做的总功W = W 1+W 2=(p 1-p 2)ΔV ①外力做功使这段流体的机械能发生改变.初状态的机械能是a 1处和a 2处之间的这段流体的机械能E 1,末状态的机械能是b 1处和b 2处之间的这段流体的机械能E 2.由b 1到a 2这一段,经过时间Δt ,虽然流体有所更换,但由于我们研究的是理想流体的定常流动,流体的密度ρ和各点的流速v 没有改变,动能和重力势能都没有改变,所以这一段的机械能没有改变,这样机械能的改变(E 2-E 1)就等于流出的那部分流体的机械能减去流入的那部分流体的机械能.由于m =ρΔV ,所以流入的那部分流体的动能为22111122mv Vv ρ=∆ 重力势能为mgh 1=ρΔVgh 1流出的那部分流体的动能为22221122mv Vv ρ=∆ 重力势能为mgh 2=ρΔVgh 2机械能的改变为211212221122E E V Vv v Vgh Vgh ρρρρ-=∆-∆+∆-∆ ② 理想流体没有粘滞性,流体在流动中机械能不会转化为内能,所以这段流体两端受的力所做的总功W 等于机械能的改变,即W =E 2-E 1 ③将①式和②式代入③式,得()221221211122p p V Vv Vv Vgh Vgh ρρρρ-∆=∆-∆+∆-∆ ④ 整理后得 221112221122p v gh p v gh ρρρρ++=++ ⑤ a 1和a 2是在流体中任意取的,所以上式可表示为对管中流体的任意处:212p v gh C ρρ++=(常量)⑥ ④式和⑤式称为伯努利方程. 流体水平流动时,或者高度差的影响不显著时(如气体的流动),伯努利方程可表达为212p v C ρ+=(常量)⑦ 从⑥式可知,在流动的流体中,压强跟流速有关,流速v 大的地方要强p 小,流速v 小的地方压强p 大.【点睛】7.如图所示,有两根足够长的平行光滑导轨水平放置,右侧用一小段光滑圆弧和另一对竖直光滑导轨平滑连接,导轨间距L =1m 。
高中物理微元法解决物理试题及其解题技巧及练习题一、微元法解决物理试题1.水刀切割具有精度高、无热变形、无毛刺、无需二次加工以及节约材料等特点,得到广泛应用.某水刀切割机床如图所示,若横截面直径为d 的水流以速度v 垂直射到要切割的钢板上,碰到钢板后水的速度减为零,已知水的密度为ρ,则钢板受到水的冲力大小为A .2d v πρB .22d v πρC .214d v πρD .2214d v πρ【答案】D 【解析】 【分析】 【详解】设t 时间内有V 体积的水打在钢板上,则这些水的质量为:214m V Svt d vt ρρπρ===以这部分水为研究对象,它受到钢板的作用力为F ,以水运动的方向为正方向,由动量定理有:Ft =0-mv解得:2214mv F d v t πρ=-=- A. 2d v πρ与分析不符,故A 错误. B. 22d v πρ与分析不符,故B 错误. C. 214d v πρ与分析不符,故C 错误. D.2214d v πρ与分析相符,故D 正确.2.如图所示,半径为R 的1/8光滑圆弧轨道左端有一质量为m 的小球,在大小恒为F 、方向始终与轨道相切的拉力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时,此时小球的速率为v ,已知重力加速度为g ,则( )A .此过程拉力做功为2FR B .此过程拉力做功为4FR πC .小球运动到轨道的末端时,拉力的功率为12FvD .小球运动到轨道的末端时,拉力的功率为2Fv 【答案】B 【解析】 【详解】AB 、将该段曲线分成无数段小段,每一段可以看成恒力,可知此过程中拉力做功为1144W F R FR ππ=•=,故选项B 正确,A 错误;CD 、因为F 的方向沿切线方向,与速度方向平行,则拉力的功率P Fv =,故选项C 、D 错误。
3.2019年8月11日超强台风“利奇马”登陆青岛,导致部分高层建筑顶部的广告牌损毁。
台风“利奇马”登陆时的最大风力为11级,最大风速为30m/s 。
某高层建筑顶部广告牌的尺寸为:高5m 、宽20m ,空气密度31.2kg/m ρ=,空气吹到广告牌上后速度瞬间减为0,则该广告牌受到的最大风力约为( ) A .33.610N ⨯ B .51.110N ⨯C .41.010N ⨯D .49.010N ⨯【答案】B 【解析】 【分析】 【详解】 广告牌的面积S =5×20m 2=100m 2设t 时间内吹到广告牌上的空气质量为m ,则有m =ρSvt根据动量定理有-Ft =0-mv =0-ρSv 2t得251.110N F Sv ρ≈⨯=故选B 。
4.如图所示,摆球质量为m ,悬线长为L ,把悬线拉到水平位置后放手.设在摆球运动过程中空气阻力f 的大小不变,则摆球从A 摆到位置B 的过程中,下列说法正确的是A.重力做功为mgLB.悬线的拉力做功为0 C.空气阻力f做功为-mgLD.空气阻力f做功为1 2f Lπ-【答案】ABD【解析】【详解】A.重力在整个运动过程中始终不变,所以重力做功为W G=mgL,故A正确;B.因为拉力在运动过程中始终与运动方向垂直,故拉力对小球不做功,即W F=0,故B正确;CD.阻力所做的总功等于每个小弧段上f所做功的代数和,即1211(...)ππ22fW f x f x fs f L f L=-∆+∆+=-=-⋅=-,故C错误,D正确。
5.如图所示为固定在水平地面上的顶角为α的圆锥体,其表面光滑.有一质量为m、长为L的链条静止在圆锥体的表面上,已知重力加速度为g,若圆锥体对圆环的作用力大小为F,链条中的张力为T,则有()A.F=mg B.C.D.【答案】AD【解析】试题分析:因为圆环受重力和圆锥体对圆环的作用力处于平衡,则圆锥体对圆环的作用力等于圆环的重力,即F=mg,故A对B错.取圆环上很小的一段分析,设对应圆心角为θ,分析微元受力有重力0m g、支持力N、两边圆环其余部分对微元的拉力T,由平衡条件02sin2tan2m gTθα=,由于微元很小,则对应圆心角很小,故sin22θθ=,Rm mgLθ=,而2LR π=,联立求解得:.故C 错D 对.故选AD .考点:物体平衡问题.【名师点睛】本题为平衡问题,在求解圆锥体对圆环作用力时,可以圆环整体为研究对象进行分析.在求解圆环内部张力时,可选其中一个微元作为研究对象分析.由于微元很小,则对应圆心角很小,故sin22θθ=,0Rm mg Lθ=,而2LR π=,然后对微元进行受力分析,列平衡方程联立求解即可.6.位于光滑水平面上的小车受到水平向右的拉力作用从静止开始运动,已知这一过程中拉力大小由F 1随时间均匀增大到F 2,所用时间为t ,小车的位移为s ,小车末速度为v 。
则下列判断正确的是( ) A .小车增加的动能等于()1212F F s + B .小车增加的动能大于()1212F F s + C .小车增加的动量等于()1212F F t + D .小车的位移小于12vt 【答案】BCD 【解析】 【详解】AB .因为拉力大小由F 1随时间均匀增大到F 2,而小车做加速运动,位移在单位时间内增加的越来越大,所以若将位移s 均分为无数小段,则在每一小段位移内F 增加的越来越慢,如图所示(曲线表示题所示情况,直线表示拉力随s 均匀变化情况),而图像的面积表示拉力做的功。
其中拉力随s 均匀变化时,拉力做功为:()1212W F F s =+,故当拉力大小由F 1随时间均匀增大到F 2时(曲线情况),做功大于()1212F F s +,根据动能定理可知小车增加的动能大于()1212F F s +,A 错误B 正确; C .因为拉力是随时间均匀增大,故在t 时间内拉力的平均值为:()1212F F F +=, 所以物体动量增加量为:()1212p F F t ∆=+, C 正确;D .根据牛顿第二定律可知在力随时间均匀增大的过程中物体运动的加速度逐渐增大,即v t -图像的斜率增大(图中红线所示,而黑线表示做匀加速直线运动情况)。
根据v t -图像的面积表示位移可知小车的位移小于12vt ,D 正确。
故选BCD 。
7.如图所示,两条光滑足够长的金属导轨,平行置于匀强磁场中,轨道间距0.8m L =,两端各接一个电阻组成闭合回路,已知18ΩR =,22ΩR =,磁感应强度0.5T B =,方向与导轨平面垂直向下,导轨上有一根电阻0.4Ωr =的直导体ab ,杆ab 以05m /s v =的初速度向左滑行,求:(1)此时杆ab 上感应电动势的大小,哪端电势高? (2)此时ab 两端的电势差。
(3)此时1R 上的电流强度多大?(4)若直到杆ab 停下时1R 上通过的电量0.02C q =,杆ab 向左滑行的距离x 。
【答案】(1)杆ab 上感应电动势为2V ,a 点的电势高于b 点;(2)ab 两端的电势差为1.6V (3)通过R 1的电流为0.2A ;(4)0.5m x =。
【解析】 【详解】(1)ab 棒切割产生的感应电动势为0.50.85V 2V E BLv ==创=根据右手定则知,电流从b 流向a ,ab 棒为等效电源,可知a 点的电势高于b 点; (2)电路中的总电阻1212820.4282R R R r R R ΩΩ´++++=== 则电路中的总电流2A 1A 2E I R === 所以ab 两端的电势差为ab 210.4V 1.6V U E Ir =-=-?(3)通过R 1的电流为11 1.6A 0.2A 8ab U I R ===(4)由题意知,流过电阻1R 和2R 的电量之比等于电流之比,则有流过ab 棒的电荷量1110.20.020.020.1C 0.2I I q q q I --=+=+⨯=总 ab 棒应用动量定理有:-BIL t m v ∆=∆或-BLvBL t m v R∆=∆ 两边求和得:BLq mv =总或22B L xmv R=以上两式整理得:q Rx BL=总 代入数据解得:0.5m x =8.如图所示,在方向竖直向上、磁感应强度大小为B 的匀强磁场中,有两条相互平行且相距为d 的光滑固定金属导轨P 1P 2P 3和Q 1Q 2Q 3,两导轨间用阻值为R 的电阻连接,导轨P 1P 2、Q 1Q 2的倾角均为θ,导轨P 2P 3、 Q 2Q 3在同一水平面上,P 2Q 2⊥P 2 P 3,倾斜导轨和水平导轨用相切的小段光滑圆弧连接.质量为m 的金属杆CD 从与P 2Q 2处时的速度恰好达到最大,然后沿水平导轨滑动一段距离后停下.杆CD 始终垂直导轨并与导轨保持良好接触,空气阻力、导轨和杆CD 的电阻均不计,重力加速度大小为g ,求:(1)杆CD 到达P 2Q 2处的速度大小v m ;(2)杆CD 沿倾斜导轨下滑的过程通过电阻R 的电荷量q 1以及全过程中电阻R 上产生的焦耳热Q ;(3)杆CD 沿倾斜导轨下滑的时间Δt 1及其停止处到P 2Q 2的距离s .【答案】(1)222sin cos m mgR v B d θθ=(2)sin Q mgL θ=(3)22442sin cos m gR s B d θθ= 【解析】(1)经分析可知,杆CD 到达22P Q 处同时通过的电流最大(设为m I ),且此时杆CD 受力平衡,则有cos sin m B dI mg θθ⋅=此时杆CD 切割磁感线产生的感应电动势为cos m E B dv θ=⋅ 由欧姆定律可得m m E I R=,解得222sin cos m mgR v B d θθ=(2)杆CD 沿倾斜导轨下滑过程中的平均感应电动势为11E t ∆Φ=∆,1cos B Ld θ∆Φ=⋅ 该过程中杆CD 通过的平均电流为11E I R=,又111q I t =∆,解得1cos BdL q R θ=对全过程,根据能量守恒定律可得sin Q mgL θ= (3)在杆CD 沿倾斜导轨下滑的过程中,根据动量定理有111sin cos 0m mg t B I d t mv θθ⋅∆-⋅∆=-解得2221222cos cos sin mR B d L t B d mgR θθθ∆=+在杆CD 沿水平导轨运动的过程中,根据动量定理有220m BI d t mv -⋅∆=-,该过程中通过R 的电荷量为222q I t =∆由求1q 得方法同理可得2Bdsq R=, 解得22442sin cos m gR s B d θθ= 点睛:解决本题时,推导电量的经验公式Фq R=V 和运用动量定理求速度是解题的关键,并能抓住感应电荷量与动量定理之间的内在联系.9.随着电磁技术的日趋成熟,新一代航母已准备采用全新的电磁阻拦技术,它的原理是,飞机着舰时利用电磁作用力使它快速停止。