2019年度高三物理一轮复习练习:第十二章 第1讲 光电效应 原子结构 氢原子光谱 Word版含解析
- 格式:doc
- 大小:184.00 KB
- 文档页数:12
配餐作业光电效应原子结构氢原子光谱A组·基础巩固题1.关于光电效应,下列表述正确的是( )A.光照时间越长,光电流越大B.入射光频率大于极限频率时就能产生光电子C.入射光足够强,就可以有光电流D.不同的金属逸出功都是一样的解析光电流的大小与入射光的强度有关,与光照射的时间长短无关,故A项错误;发生光电效应的条件是入射光频率大于极限频率,故B项正确;能否发生光电效应与入射光的强度无关,入射光足够强,不一定能产生光电流,故C项错误;不同的金属逸出功是不同的,故D项错误。
答案 B2.卢瑟福利用α粒子轰击金箔的实验研究原子结构,正确反映实验结果的示意图是图中的( )A.B.C. D.解析本题考查学生对α粒子散射实验现象的定性认识。
由教材中讲述的实验现象可知,只有D项符合题意。
答案 D3.关于物质的波粒二象性,下列说法不正确的是( )A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道C.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的D.实物的运动有特定的轨道,所以实物不具有波粒二象性解析光具有波粒二象性是微观世界具有的特殊规律,大量光子运动的规律表现出光的波动性,而单个光子的运动表现出光的粒子性。
光的波长越长,波动性越明显,光的频率越高,粒子性越明显。
而宏观物体的德布罗意波的波长太小,实际很难观察到波动性,不是不具有波粒二象性,D项错误。
答案 D4.(多选)用极微弱的可见光做双缝干涉实验,随着时间的增加,在照相底片上先后出现如图甲、乙、丙所示的图像,则( )A .图像甲表明光具有粒子性B .图像乙表明光具有波动性C .用紫外线观察不到类似的图像D .实验表明光是一种概率波解析 图像甲曝光时间短,通过光子数很少,呈现粒子性。
图像乙曝光时间长,通过了大量光子,呈现波动性,故A 、B 项正确;同时也表明光波是一种概率波,故D 项也正确;紫外线本质和可见光本质相同,也可以发生上述现象,故C 项错误。
课时提能练(三十三) 光电效应氢原子光谱(限时:40分钟)A级跨越本科线1.(多选)卢瑟福和他的学生用α粒子轰击不同的金属,并同时进行观测,经过大量的实验,最终确定了原子的核式结构.如图1218为该实验的装置,其中荧光屏能随显微镜在图中的圆面内转动.当用α粒子轰击金箔时,在不同位置进行观测,如果观测的时间相同,则下列说法正确的是( )图1218A.在1处看到的闪光次数最多B.2处的闪光次数比4处多C.3和4处没有闪光D.4处有闪光但次数极少ABD[卢瑟福和他的学生做α粒子散射实验时,得到以下结论:绝大多数α粒子直接穿过金箔,少数发生偏转,极少数发生大角度的偏转,偏转的角度甚至大于90°,A、B、D 正确.]2.下列关于原子光谱的说法不正确的是( )A.原子光谱是由物质的原子从高能级向低能级跃迁时辐射光子形成的B.不同的谱线分布对应不同的元素C.不同的谱线对应不同的发光频率D.利用光谱分析不可以准确确定元素的种类D[原子光谱即线状谱,是由物质的原子从高能级向低能级跃迁时辐射光子形成的;每种原子都有自己的特征谱线,可以利用它来鉴别物质或确定物质的组成部分.故D不正确,选D.]3.(多选)光电效应的实验结论是:对于某种金属( )A.无论光强多强,只要光的频率小于极限频率就不能产生光电效应B.无论光的频率多低,只要光照时间足够长就能产生光电效应C.超过极限频率的入射光强度越弱,所产生的光电子的最大初动能就越小D.超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大AD [根据光电效应规律可知A 正确,B 、C 错误.根据光电效应方程12mv 2m =hν-W 0,频率ν越高,初动能就越大,D 正确.]4.(多选)(2017·泰州摸底)下列说法正确的是( )A .普朗克通过研究黑体辐射提出能量子的概念,成为量子力学的奠基人之一B .玻尔原子理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功地解释了各种原子光谱的实验规律C .一束光照射到某种金属上不能发生光电效应,可能是因为这束光的光强太小D .德布罗意在爱因斯坦光子说的基础上提出物质波的猜想,而电子的衍射实验证实了他的猜想AD [普朗克通过研究黑体辐射提出能量子的概念,成为量子力学的奠基人之一,A 正确;玻尔原子理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功地解释了氢原子光谱的实验规律,B 错误;一束光照射到某种金属上不能发生光电效应,是因为这束光的频率太小,故C 错误;德布罗意在爱因斯坦光子说的基础上提出物质波的猜想,而电子的衍射实验证实了他的猜想,D 正确.]5.(2017·湖南师大附中摸底)有关氢原子光谱的说法正确的是( ) A .氢原子的发射光谱是连续谱B .氢原子光谱说明氢原子只发出特定频率的光C .氢原子光谱说明氢原子能量是连续的D .氢原子光谱线的频率与氢原子能级的能级差无关B [由于氢原子的轨道是不连续的,而氢原子在不同的轨道上的能级E n =1n2E 1,故氢原子的能级是不连续的,即是分立的,故C 错误;当氢原子从较高能级轨道第n 能级跃迁到较低能级轨道第m 能级时,发射的光子的能量为E =E n -E m =1n 2E 1-1m 2E 1=m 2-n 2n 2m2E 1=hν,显然n 、m 的取值不同,发射光子的频率就不同,故氢原子光谱线的频率与氢原子能级的能级差有关,故D 错误;由于氢原子发射的光子的能量:E =E n -E m =1n 2E 1-1m 2E 1=m 2-n 2n 2m2E 1,所以发射的光子的能量值E 是不连续的,只能是一些特殊频率的谱线,故A 错误,B 正确.]6.(2017·枣庄模拟)如图1219所示为氢原子能级的示意图,现有大量的氢原子处于n =4的激发态,当向低能级跃迁时辐射出若干不同颜色的光.关于这些光下列说法正确的是( )图1219A.由n=4能级跃迁到n=1能级产生的光子波长最长B.由n=2能级跃迁到n=1能级产生的光子频率最小C.这些氢原子总共可辐射出3种不同频率的光D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34 eV的金属铂能发生光电效应D[根据E m-E n=h cλ,由n=4能级跃迁到n=3能级产生的光,能量最小,波长最长,故A错误;由n=4能级跃迁到n=3能级产生的光子能量最小,频率最小,故B错误;大量的氢原子处于n=4的激发态,可能发出光子频率的种数n=C24=6,故C错误;从n=2能级跃迁到n=1能级辐射出的光子的能量E=E2-E1=-3.4eV-(-13.6)eV=10.2eV>6.34eV,而使金属发生光电效应的条件是光子的能量大于电子的逸出功,故可以发生光电效应,故D 正确.]7.(多选)如图12110所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线,普朗克常量h=6.63×10-34J·s,由图可知( )【导学号:92492402】图12110A.该金属的极限频率为4.27×1014HzB.该金属的极限频率为5.5×1014HzC.该图线的斜率表示普朗克常量D.该金属的逸出功为0.5 eVAC[由光电效应方程E km=hν-W0知图线与横轴交点为金属的极限频率,即ν0=4.30×1014Hz,A对,B错;该图线的斜率为普朗克常量,C对;金属的逸出功W=hν0=6.63×10-34×4.30×1014/1.6×10-19eV≈1.8 eV,D错.]8.某光电管的阴极是用金属钾制成的,它的逸出功为2.21 eV,用波长为2.5×10-7 m 的紫外线照射阴极.已知真空中光速为3.0×108m/s,元电荷为1.6×10-19C,普朗克常量为 6.63×10-34J·s,求得钾的极限频率和该光电管发射的光电子的最大初动能应分别是( )A.5.3×1014 Hz,2.2 JB.5.3×1014Hz,4.4×10-19 JC.3.3×1033 Hz,2.2 JD .3.3×1033 Hz,4.4×10-19JB [由W =hν0得极限频率ν0=W 0h =2.21×1.6×10-196.63×10-34Hz =5.3×1014Hz 由光电效应方程hν=W 0+E km 得E km =hν-W 0=h cλ-W 0=⎝ ⎛⎭⎪⎫6.63×10-34×3.0×1082.5×10-7-2.21×1.6×10-19 J =4.4×10-19J]B 级 名校必刷题9.(多选)(2017·恩施模拟)用如图12111所示的装置演示光电效应现象.当用某种频率的光照射到光电管上时,电流表G 的读数为i .若改用更高频率的光照射,此时( )【导学号:92492403】图12111A .将电池正的极性反转,则光电管中没有光电子产生B .将开关S 断开,则有电流流过电流表GC .将变阻器的触点c 向b 移动,光电子到达阳极时的速度可能变小D .只要电源的电动势足够大,将变阻器的触点c 向a 端移动,电流表G 的读数必将变大BC [电流表有示数说明发生了光电效应,有光电子产生,光电管左侧是正极右侧是负极,电场线向右,产生的光电子受向左的电场力,逸出后做加速运动,将电池正的极性反转,光电子逸出后做减速运动,也可能到达左极板,选项A 错误;将开关S 断开,产生的光电子匀速运动到左侧,有电流流过电流表G ,选项B 正确;将变阻器的触点c 向b 移动,光电管两侧电压减小,光电子到达阳极时的速度可能变小,选项C 正确;当光强一定,光电流达到饱和时,即使再增大光电管两端的电压,光电流也不会再增加,故即使电源的电动势足够大,将变阻器的触点c 向a 端移动,电流表G 的读数不一定变大,选项D 错误;故选B 、C.]10.(2017·保定模拟)可见光光子的能量在1.61 eV ~3.10 eV 范围内.如图12112所示,氢原子从第4能级跃迁到低能级的过程中,根据氢原子能级图可判断( )图12112A .从第4能级跃迁到第3能级将释放出紫外线B .从第4能级跃迁到第3能级放出的光子,比从第4能级直接跃迁到第2能级放出的光子频率更高C .从第4能级跃迁到第3能级放出的光子,比从第4能级直接跃迁到第1能级放出的光子波长更长D .氢原子从第4能级跃迁到第3能级时,原子要吸收一定频率的光子,原子的能量增加C [从n =4能级跃迁到n =3能级时辐射的光子能量ΔE 43=-0.85 eV -(-1.51 eV)=0.66 eV ,不在可见光光子能量范围之内,属于红外线,故A 错误;从n =4能级跃迁到n =2能级时辐射的光子能量ΔE 42=-0.85 eV -(-3.40 eV)=2.55 eV >ΔE 43,光子的频率ν=ΔEh,所以ν43<ν42,故B 错误;从n =4能级跃迁到n =1能级时辐射的光子能量ΔE 41=-0.85 eV -(-13.60 eV)=12.75 eV >ΔE 43,光子的波长λ=hcΔE ,所以λ43>λ41,故C 正确;从第4能级跃迁到第3能级时,原子要辐射一定频率的光子,原子的能量减少,故D 错误.]11.氢原子在基态时轨道半径r 1=0.53×10-10m ,能量E 1=-13.6 eV.求氢原子处于基态时:(1)电子的动能; (2)原子的电势能;(3)用波长是多少的光照射可使其电离?【解析】 (1)设处于基态的氢原子核外电子速度为v 1,则:k ·e 2r 21=mv 21r 1电子动能E k1=12mv 21=ke22r 1=9×109× 1.6×10-1922×0.53×10-10×1.6×10-19eV =13.6 eV. (2)E 1=E k1+E p1E p1=E 1-E k1=-13.6 eV -13.6 eV =-27.2 eV.(3)设用波长λ的光照射可使氢原子电离:hcλ=0-E 1 λ=-hc E 1=-6.63×10-34×3×108-13.6×1.6×10-19m=0.914 1×10-7m.【答案】 (1)13.6 eV (2)-27.2 eV (3)0.914 1×10-7 m12.氢原子处于基态时,原子能量E 1=-13.6 eV ,已知电子电量e =1.6×10-19C ,电子质量m =0.91×10-30kg ,氢的核外电子的第一条可能轨道的半径为r 1=0.53×10-10m.(1)若要使处于n =2能级的氢原子电离,至少要用频率为多大的电磁波照射该氢原子? (2)氢原子核外电子的绕核运动可等效为一环形电流,则氢原子处于n =2的激发态时,核外电子运动的等效电流为多大?(3)若已知钠的极限频率为6.00×1014Hz ,今用一群处于n =4的激发态的氢原子发射的光谱照射钠,试通过计算说明有几条谱线可使钠发生光电效应?【导学号:92492404】【解析】 (1)要使处于n =2能级的氢原子电离,照射光光子的能量应能使电子从n =2能级跃迁到无限远处,最小频率的电磁波的光子能量应为:hν=0-E 14得ν=8.21×1014Hz.(2)氢原子核外电子绕核做匀速圆周运动,库仑力提供向心力,有ke 2r 22=4π2mr 2T 2其中r 2=4r 1.根据电流强度的定义I =e T由以上两式得I =e 216πr 1k mr 1将数据代入得I =1.3×10-4A.(3)由于钠的极限频率为6.00×1014Hz ,则使钠发生光电效应的光子的能量至少为 E 0=hν=6.63×10-34×6.00×10141.6×10-19eV =2.486 eV 一群处于n =4能级的激发态的氢原子发射的光子,要使钠发生光电效应,应使跃迁时两能级的差ΔE ≥E 0,所以在6条光谱线中有E 41、E 31、E 21、E 42这4条谱线可使钠发生光电效应.【答案】(1)8.21×1014 Hz (2)1.3×10-4 A (3)4条。
(精品推荐)2019高考物理复习考前强化必刷练习题《光电效应原子结构和原子核》高考精品典型练习题(整理含答案)1.关于近代物理学,下列说法正确的是( )A.β射线与γ射线都是电磁波,但γ射线的穿透本领远比β射线强B.放射性元素的原子核有半数发生衰变所需要的时间叫半衰期C.比结合能越小表示原子核中的核子结合得越牢固,原子核越稳定D.氢原子的核外电子由离原子核较远的轨道跃迁到离原子核较近的轨道上时,氢原子的能量增大2.核能作为一种新能源在现代社会中已不可缺少,我国在完善核电安全基础上将加大核电站建设.核泄漏中的钚(Pu)是一种具有放射性的超铀元素,它可破坏细胞基因,提高罹患癌症的风险.已知钚的一种同位素23994Pu的半衰期为24 100年,其衰变方程为23994Pu→X+42He+γ,下列有关说法正确的是( )A.X原子核中含有143个中子B.100个23994Pu经过24 100年后一定还剩余50个C.由于衰变时释放巨大能量,根据E=mc2,衰变过程总质量增加D.衰变发出的γ放射线是波长很长的光子,穿透能力较弱3.(多选)下列的若干叙述中正确的是( )A.将核子束缚在原子核内的核力,是不同于万有引力和电磁力的另一种相互作用B.对于同种金属产生光电效应时逸出光电子的最大初动能E k与照射光的频率成线性关系C.一块纯净的放射性元素的矿石经过一个半衰期以后它的总质量仅剩下一半D.按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,原子的能量也减小了4.(多选)下列说法中正确的是( )A .氢原子由较高能级跃迁到较低能级时,电子的动能增加,原子的电势能减少B .微观粒子也具有波动性,粒子动量越大其对应的波长越长C .α射线是由原子核放射出的氦核,与β射线和γ射线相比它具有很强的电离作用D .电磁波的波长越短,其波动性越明显5.国家大科学工程——中国散裂中子源(CSNS)于2017年8月28日首次打靶成功,获得中子束流,可以为诸多领域的研究和工业应用提供先进的研究平台.下列核反应中放出的粒子为中子的是( )A.147N 俘获一个α粒子,产生17 8O 并放出一个粒子B.2713Al 俘获一个α粒子,产生3015P 并放出一个粒子C.115B 俘获一个质子,产生84Be 并放出一个粒子D.63Li 俘获一个质子,产生32He 并放出一个粒子6.一对正负电子相遇后转化为光子的过程被称为湮灭.速度足够大且等值反向的一对正负电子发生湮灭时产生两个光子,每个光子的能量均为E .已知电子的质量为m ,光速为c ,普朗克常量为h .则( )A .两个光子可能同向运动B .两个光子的波长均为hc EC .两个光子的动量均为mcD .每个光子的能量E =mc 27.某同学用如图(甲)所示的电路研究光电效应中电子发射的情况与光照强度、光的频率等物理量之间的关系.阴极K 和阳极A 是密封在真空玻璃中的两个电极,K 在受到光照射时能够发射光电子.K 、A 之间的电压大小可以调节,电源极性也可以对调.当分别用a 、b 、c 三束不同的光照射阴极K ,得到的I U 关系分别如图(乙)中a 、b 、c 三条曲线所示.下列关于三束光的频率ν、三束光的强度E 大小关系,正确的是( )A.νa>νb>νc,E a>E b>E c B.νa>νb>νc,E a=E c<E bC.νb>νa=νc,E a>E b>E c D.νa<νb<νc,E a<E b<E c8.下列说法正确的是( )A.处于n=3激发态的一个氢原子回到基态时一定会辐射三种频率的光子B.α射线的穿透能力比γ射线强C.β衰变中的电子来自原子的内层电子D.放射性元素的半衰期与压力、温度无关9.某静止的原子核发生核反应且放出能量Q. 其方程为B A X→D C Y+F E Z,并假设释放的能量全都转化为新核Y和Z的动能,测得其中Z的速度为v,以下结论正确的是( )A.Y原子核的速度大小为E C vB.Y原子核的动能是Z原子核的动能的D F 倍C.Y原子核和Z原子核的质量之和比X原子核的质量大Qc(c为光速)D.Y和Z的结合能之和一定大于X的结合能10.(多选)下列说法正确的是( )A.根据玻尔理论,氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能增大,电势能减小B.放射性物质的温度升高,则半衰期减小C.用能量等于氘核结合能的光子照射静止氘核,不可能使氘核分解为一个质子和一个中子D.某放射性原子核经过2次α衰变和一次β衰变,核内质子数减少3个(精品推荐)2019高考物理复习考前强化必刷练习题《光电效应原子结构和原子核》高考精品典型练习题(整理含答案)1.关于近代物理学,下列说法正确的是( )A.β射线与γ射线都是电磁波,但γ射线的穿透本领远比β射线强B.放射性元素的原子核有半数发生衰变所需要的时间叫半衰期C.比结合能越小表示原子核中的核子结合得越牢固,原子核越稳定D.氢原子的核外电子由离原子核较远的轨道跃迁到离原子核较近的轨道上时,氢原子的能量增大解析:选B.γ射线是电磁波,β射线不是电磁波,γ射线的穿透本领远比β射线强,选项A错误;放射性元素的原子核有半数发生衰变所需要的时间叫半衰期,选项B正确;比结合能越大表示原子核中的核子结合得越牢固,原子核越稳定,选项C错误;氢原子的核外电子由离原子核较远的轨道跃迁到离原子核较近的轨道上时,原子的电势能减小,电子的动能变大,氢原子的总能量减小,选项D错误;故选B.2.核能作为一种新能源在现代社会中已不可缺少,我国在完善核电安全基础上将加大核电站建设.核泄漏中的钚(Pu)是一种具有放射性的超铀元素,它可破坏细胞基因,提高罹患癌症的风险.已知钚的一种同位素23994Pu的半衰期为24100年,其衰变方程为23994Pu→X+42He+γ,下列有关说法正确的是( )A.X原子核中含有143个中子B.100个23994Pu经过24 100年后一定还剩余50个C.由于衰变时释放巨大能量,根据E=mc2,衰变过程总质量增加D.衰变发出的γ放射线是波长很长的光子,穿透能力较弱解析:选A.A项:根据电荷数守恒、质量数守恒知,X的电荷数为92,质量数为235,则中子数为143,故A正确;B项:半衰期对大量的原子核适用,对少量原子核不成立,故B错误;C项:由于衰变时释放巨大能量,根据E=mc2,衰变过程总质量减小,故C错误;D项:衰变发出的γ放射线是波长很短的光子,穿透能力很强,故D错误.3.(多选)下列的若干叙述中正确的是( )A.将核子束缚在原子核内的核力,是不同于万有引力和电磁力的另一种相互作用B.对于同种金属产生光电效应时逸出光电子的最大初动能E k与照射光的频率成线性关系C.一块纯净的放射性元素的矿石经过一个半衰期以后它的总质量仅剩下一半D.按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,原子的能量也减小了解析:选AB.核力是强相互作用,具有饱和性和短程性;故将核子束缚在原子核内的核力,是不同于万有引力和电磁力的另一种相互作用力且每个核子只跟邻近的核子发生核力的作用;故A正确;根据光电效应方程E k=hν-W0知,光电子的最大初动能与照射光的频率成线性关系,故B正确;一块纯净的放射性元素的矿石,经过一个半衰期以后,有半数发生衰变,不是总质量仅剩下一半,故C错误;氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,吸收光子,原子的能量增加,根据k e2r2=mv2r知,电子的动能减小,故D错误;故选AB.4.(多选)下列说法中正确的是( )A.氢原子由较高能级跃迁到较低能级时,电子的动能增加,原子的电势能减少B.微观粒子也具有波动性,粒子动量越大其对应的波长越长C.α射线是由原子核放射出的氦核,与β射线和γ射线相比它具有很强的电离作用D.电磁波的波长越短,其波动性越明显解析:选AC.氢原子由较高能级跃迁到较低能级时,电子的轨道半径减小,根据k e2r2=mv2r知,电子的动能增加,由于原子的能量减小,则原子的电势能减小,故A正确;依据德布罗意波长公式λ=hp,可知微观粒子的动量越大,其对应的波长就越短,故B 错误;α射线是由原子核放射出的氦核,与β射线和γ射线相比它具有很强的电离作用,故C 正确;光的波长越长,越容易衍射,其波动性越明显;波长越短,越不容易衍射,其粒子性越显著,故D 错误.所以AC 正确,BD 错误.5.国家大科学工程——中国散裂中子源(CSNS)于2017年8月28日首次打靶成功,获得中子束流,可以为诸多领域的研究和工业应用提供先进的研究平台.下列核反应中放出的粒子为中子的是( )A.147N 俘获一个α粒子,产生17 8O 并放出一个粒子B.2713Al 俘获一个α粒子,产生3015P 并放出一个粒子C.115B 俘获一个质子,产生84Be 并放出一个粒子D.63Li 俘获一个质子,产生32He 并放出一个粒子解析:选B.根据核反应过程中质量数守恒及电荷数守恒可知,147N +42He→17 8O+11H ,A 项错误;2713Al +42He→3015P +10n ,B 项正确;11 5B +11H→84Be +42He ,C 项错误;63Li+11H→32He +42He ,D 项错误.6.一对正负电子相遇后转化为光子的过程被称为湮灭.速度足够大且等值反向的一对正负电子发生湮灭时产生两个光子,每个光子的能量均为E .已知电子的质量为m ,光速为c ,普朗克常量为h .则( )A .两个光子可能同向运动B .两个光子的波长均为hc EC .两个光子的动量均为mcD .每个光子的能量E =mc 2解析:选 B.一对正负电子湮灭会产生两个同频率的光子,由于光子既有能量,又有动量,根据动量守恒定律可知,产生的两个光子的总动量与初动量是相等的,即它们的和为零,所以两个光子的运动方向相反,故A 错误;根据E =h ν,且c =λν,解得波长为λ=hc E ,故B 正确;每个光子的动量为p =λh =c E ,故C错误;设一对正负电子发生湮灭前,各自的动能为E k,发生湮灭后,根据能量守恒得:2E k+2mc2=2E,解得:E=E k+mc2,故D错误;故选B.7.某同学用如图(甲)所示的电路研究光电效应中电子发射的情况与光照强度、光的频率等物理量之间的关系.阴极K和阳极A是密封在真空玻璃中的两个电极,K在受到光照射时能够发射光电子.K、A之间的电压大小可以调节,电源极性也可以对调.当分别用a、b、c三束不同的光照射阴极K,得到的IU关系分别如图(乙)中a、b、c三条曲线所示.下列关于三束光的频率ν、三束光的强度E大小关系,正确的是( )A.νa>νb>νc,E a>E b>E cB.νa>νb>νc,E a=E c<E bC.νb>νa=νc,E a>E b>E cD.νa<νb<νc,E a<E b<E c解析:选C.由图可知,a的饱和电流最大,因此a光束照射时单位时间内产生的光电子数量大,光强大,而c光的强度最小,b光的强度介于其中,即有E a >E b>E c; 当光电流为零时,光电管两端加的电压为遏止电压,对应的光的频率为截止频率,根据eU=hν-W,入射光的频率越高,对应的遏止电压U越大,a 光、c光的遏止电压相等,所以a光、c光的频率相等,而b光的频率大,故C 正确,ABD错误.8.下列说法正确的是( )A.处于n=3激发态的一个氢原子回到基态时一定会辐射三种频率的光子B.α射线的穿透能力比γ射线强C.β衰变中的电子来自原子的内层电子D.放射性元素的半衰期与压力、温度无关解析:选D.处于n=3的一个氢原子回到基态时可能会辐射一种频率的光子,或两种不同频率的光子,处于n=3的“一群”氢原子回到基态时会辐射三种频率的光子,故A错误;α射线的穿透能力最弱,电离本领最强,故B错误;β衰变中的电子来自原子内部的中子转化为质子同时释放出一个电子.故C错误;放射性元素的半衰期与压力、温度无关,故D正确.所以D正确,ABC错误.9.某静止的原子核发生核反应且放出能量Q. 其方程为B A X→D C Y+F E Z,并假设释放的能量全都转化为新核Y和Z的动能,测得其中Z的速度为v,以下结论正确的是( )A.Y原子核的速度大小为E C vB.Y原子核的动能是Z原子核的动能的D F 倍C.Y原子核和Z原子核的质量之和比X原子核的质量大Qc(c为光速)D.Y和Z的结合能之和一定大于X的结合能解析:选 D.静止的原子核发生核反应,反应前后系统动量守恒,可得Dv Y=Fv,所以Y原子核的速度大小为FDv,故A项错误.Y原子核的动能可写为12Dv2Y=1 2D⎝⎛⎭⎪⎫FDv2=F2v22D,Z原子核的动能可写为12Fv2,所以二者动能之比为FD,故B项错误.根据爱因斯坦质能方程ΔE=Δmc2,可得该核反应的质量亏损为Qc2,故C项错误.核反应中放出核能.说明生成新原子核的结合能更大,故选项D正确.10.(多选)下列说法正确的是( )A.根据玻尔理论,氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能增大,电势能减小B.放射性物质的温度升高,则半衰期减小C.用能量等于氘核结合能的光子照射静止氘核,不可能使氘核分解为一个质子和一个中子D.某放射性原子核经过2次α衰变和一次β衰变,核内质子数减少3个解析:选ACD.A项:氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,库仑力做正功,动能增大,电势能减小,故A正确;B项:半衰期是放射性元素的原子核有半数发生衰变时所需要的时间,由原子核本身决定,与原子的物理、化学状态无关,故B错误;C项:核子结合成原子核与原子核分解为核子是逆过程,质量的变化相等,能量变化也相等,故用能量等于氘核结合能的光子照射静止氘核,还要另给它们分离时所需要的足够的动能.所以不可能使氘核分解为一个质子和一个中子,故C正确;D项:根据质量数和电荷数守恒,某放射性原子核经过2次α衰变质子数减少4,一次β衰变质子数增加1,故核内质子数减少3个,D正确.。
2019年高考物理大一轮复习第12章原子结构原子核第1讲光电效应波粒二象性学案新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考物理大一轮复习第12章原子结构原子核第1讲光电效应波粒二象性学案新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考物理大一轮复习第12章原子结构原子核第1讲光电效应波粒二象性学案新人教版的全部内容。
第一讲光电效应波粒二象性考试内容要求高考命题统计命题规律卷Ⅰ卷Ⅱ卷Ⅲ光电效应Ⅰ高考对本部分内容考查形式比较固定,一般比较单一的考查某个知识点,且知识点相对比较单一,题型为选择题和填空题.由于本部分内容涉及点较多,且已经改为必考内容,今后的命题应该向着多个考点融合的方向发展.爱因斯坦光电效应方程ⅠT196分氢原子光谱Ⅰ氢原子的能级结构、能级公式Ⅰ原子核的组成、放射性、原子核的衰变、半衰期ⅠT156分放射性同位素Ⅰ核力、核反应方程Ⅰ结合能、质量亏损ⅠT176分裂变反应和聚变反应、裂变反应堆Ⅰ放射性的危害和防护Ⅰ一光电效应及其规律1.光电效应在光的照射下从金属中发射电子的现象叫做光电效应,发射出的电子叫光电子.2.光电效应的实验规律(1)任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应,低于这个频率的光不能产生光电效应.(2)光电子的最大初动能与入射光的强度无关,只随着入射光频率的增大而增大.(3)入射光照射到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9 s.(4)当入射光的频率大于极限频率时,光电流的大小与入射光的强度成正比.3.爱因斯坦光电效应方程(1)光子说:光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子组成的,这些能量子被称为光子,频率为ν的光的能量子为hν.(2)光电效应方程①表达式:hν=E k+W0或E k=hν-W0。
课时分层集训(三十三) 光电效应氢原子光谱(限时:40分钟)[基础对点练]光子说光电效应现象1.2016年8月16日01时40分,由我国研制的世界首颗量子科学试验卫星“墨子号”在酒泉卫星发射中心用长征二号丁运载火箭成功发射升空.它的成功发射和在轨运行,不仅将有助于我国广域量子通信网络的构建,服务于国家信息安全,它将开展对量子力学基本问题的空间尺度试验检验,加深人类对量子力学自身的理解,关于量子和量子化,下列说法错误的是( )A.玻尔在研究原子结构中引进了量子化的概念B.普朗克把能量子引入物理学,破除了“能量连续变化”的传统观念C.光子的概念是爱因斯坦提出的D.光电效应实验中的光电子,也就是光子D[由玻尔理论可知,在研究原子结构时,引进了量子化的概念,故A正确;普朗克在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念,提出量子化理论,故B正确;为解释光电效应现象,爱因斯坦提出了光子说,引入了光子的概念,故C正确;光电子就是在光电效应中产生的电子,本质是金属板的电子,故D错误.]2.用一束紫外线照射某金属时不能产生光电效应,可能使该金属发生光电效应的措施是( )A.改用频率更小的紫外线照射B.改用X射线照射C.改用强度更大的原紫外线照射D.延长原紫外线的照射时间选B 某种金属能否发生光电效应取决于入射光的频率,与入射光的强度和照射时间无关。
不能发生光电效应,说明入射光的频率小于金属的极限频率,所以要使金属发生光电效应,应增大入射光的频率,X射线的频率比紫外线频率高,所以本题答案为B。
3.(多选)如图1217为用光照射锌板产生光电效应的装置示意图.光电子的最大初动能用E k表示、入射光的强度用C表示、入射光的波长用λ表示、入射光的照射时间用t表示、入射光的频率用ν表示.则下列说法正确的是( )图1217A .E k 与C 无关B .E k 与λ成反比C .E k 与t 成正比D .E k 与ν成线性关系AD [由E k =h ν-W 0知,E k 与照射光的强度及照射时间无关,与ν成线性关系,A 、D 正确,C 错误;由E k =hc λ-W 0可知,E k 与λ不成反比,B 错误.] α粒子散射实验4.下列与α粒子散射实验结果一致的是( )【导学号:84370491】A .所有α粒子穿过金箔后偏转角度都很小B .大多数α粒子发生较大角度的偏转C .向各个方向运动的α粒子数目基本相等D .极少数α粒子发生大角度的偏转D [当α粒子穿过原子时,电子对α粒子影响很小,影响α粒子运动的主要是原子核,离原子核远的α粒子受到的库仑斥力很小,运动方向几乎不改变,只有当α粒子距离原子核很近时,才会受到很大的库仑斥力,而原子核很小,所以只有极少数的α粒子发生大角度的偏转,而绝大多数基本按直线方向前进,实验结果是:离原子核远的α粒子偏转角度小,离原子核近的α粒子偏转角度大,正对原子核的α粒子返回,故A 、B 、C 错误,D 正确.]5.从α粒子散射实验结果出发推出的结论有:①金原子内部大部分都是空的;②金原子是一个球体;③汤姆孙的原子模型不符合原子结构的实际情况;④原子核的半径约是10-15m ,其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ B [α粒子散射实验的结果表明,原子是由原子核和核外电子构成的,原子核体积很小,质量大,原子的质量主要集中在原子核上,原子核外有一个非常大的空间,核外电子围绕原子核做高速运动,则从α粒子散射实验结果出发推出的结论有金原子内部大部分都是空的,汤姆孙的原子模型不符合原子结构的实际情况,原子核的半径约是10-15m,不能说明金原子是球体,B正确.]6.(多选)卢瑟福和他的学生用α粒子轰击不同的金属,并同时进行观测,经过大量的实验,最终确定了原子的核式结构.如图1218为该实验的装置,其中荧光屏能随显微镜在图中的圆面内转动.当用α粒子轰击金箔时,在不同位置进行观测,如果观测的时间相同,则下列说法正确的是( )图1218A.在1处看到的闪光次数最多B.2处的闪光次数比4处多C.3和4处没有闪光D.4处有闪光但次数极少ABD[卢瑟福和他的学生做α粒子散射实验时,得到以下结论:绝大多数α粒子直接穿过金箔,少数发生偏转,极少数发生大角度的偏转,偏转的角度甚至大于90°,A、B、D正确.]光电效应规律及方程的应用7.(多选)(2018·长沙模拟)金属钙的逸出功为 4.3×10-19J,普朗克常量h=6.6×10-34 J·s,光速c=3.0×108 m/s,以下说法正确的是( )【导学号:84370492】A.用波长为400 nm的单色光照射金属钙,其表面有光电子逸出B.用波长为400 nm的单色光照射金属钙,不能产生光电效应现象C.若某波长的单色光能使金属钙产生光电效应现象,则增大光的强度将会使光电子的最大初动能增大D.若某波长的单色光能使金属钙产生光电效应现象,则减小光的强度将会使单位时间内发射的光电子数减少AD[波长为400 nm的单色光的光子能量为E=h cλ=4.95×10-19 J,大于钙的逸出功,可以产生光电效应现象.根据光电效应规律,光电子的最大初动能决定于入射光的频率而与其强度无关,但强度决定了单位时间内发射的光电子数的多少,正确选项为A、D.]8.(多选)如图1219所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线,普朗克常量h =6.63×10-34 J·s,由图可知( )图1219A .该金属的极限频率为4.30×1014HzB .该金属的极限频率为5.5×1014HzC .该图线的斜率表示普朗克常量D .该金属的逸出功为0.5 eVAC [由光电效应方程E km =h ν-W 0知图线与横轴交点为金属的极限频率,即ν0=4.30×1014Hz ,A 对,B 错;该图线的斜率为普朗克常量,C 对;金属的逸出功W =h ν0=6.63×10-34×4.30×1014/1.6×10-19eV≈1.8 eV,D 错.]9.如图12110甲所示,合上开关,用光子能量为2.5 eV 的一束光照射阴极K ,发现电流表读数不为零.调节滑动变阻器,发现当电压表读数小于0.60 V 时,电流表计数仍不为零,当电压表读数大于或等于0.60 V 时,电流表读数为零.把电路改为图乙,当电压表读数为2 V 时,则逸出功及电子到达阳极时的最大动能为( )甲 乙图12110A .1.5 eV 0.6 eVB .1.7 eV 1.9 eVC .1.9 eV 2.6 eVD .3.1 eV 4.5 eVC [光子能量h ν=2.5 eV 的光照射阴极,电流表读数不为零,则能发生光电效应,当电压表读数大于或等于0.6 V 时,电流表读数为零,则电子不能到达阳极,由动能定理eU =12mv 2m 知,最大初动能E km =eU =0.6 eV ,由光电效应方程h ν=E km +W 0知W 0=1.9 eV ,对图乙,当电压表读数为2 V 时,电子到达阳极的最大动能E km ′=E km +eU ′=0.6 eV +2 eV =2.6 eV.故C 正确.]某光电管的阴极是用金属钾制成的,它的逸出功为2.21 eV ,用波长为2.5×10-7 m 的紫外线照射阴极.已知真空中光速为3.0×108 m/s ,元电荷为1.6×10-19 C ,普朗克常量为6.63×10-34J·s,求得钾的极限频率和该光电管发射的光电子的最大初动能应分别是( )A .5.3×1014 Hz,2.2 JB .5.3×1014 Hz,4.4×10-19 J C .3.3×1033 Hz,2.2 JD .3.3×1033 Hz,4.4×10-19 JB [由W =h ν0得 极限频率ν0=W 0h =2.21×1.6×10-196.63×10-34Hz =5.3×1014Hz 由光电效应方程h ν=W 0+E km 得E km =h ν-W 0=h c λ-W 0 =⎝ ⎛⎭⎪⎫6.63×10-34×3.0×1082.5×10-7-2.21×1.6×10-19 J =4.4×10-19 J]10. 研究光电效应的电路如图12111所示.用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A 吸收,在电路中形成光电流.下列光电流I 与A 、K 之间的电压U AK 的关系图象中,正确的是( )图12111A B C DC [由于光的频率相同,所以对应的反向遏止电压相同,A 、B 错误;发生光电效应时,在同样的加速电压下,光强度越大,逸出的光电子数目越多,形成的光电流越大,C 正确,D 错误.]波粒二象性11.用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不可能同时有两个光子存在,如图12112所示是不同数量的光子照射到感光胶片上得到的照片.这些照片说明( )【导学号:84370493】图12112A.光只有粒子性没有波动性B.光只有波动性没有粒子性C.少量光子的运动显示波动性,大量光子的运动显示粒子性D.少量光子的运动显示粒子性,大量光子的运动显示波动性D[光具有波粒二象性,这些照片说明少量光子的运动显示粒子性,大量光子的运动显示波动性,故D正确.]12.(多选)实物粒子和光都具有波粒二象性.下列事实中突出体现波动性的是( ) A.电子束通过双缝实验装置后可以形成干涉图样B.β射线在云室中穿过会留下清晰的径迹C.人们利用电子显微镜观测物质的微观结构D.光电效应实验中,光电子的最大初动能与入射光的频率有关,与入射光的强度无关AC[电子束具有波动性,通过双缝实验装置后可以形成干涉图样,选项A正确.β射线在云室中高速运动时,径迹又细又直,表现出粒子性,选项B错误.电子显微镜是利用电子束衍射工作的,体现了波动性,选项C正确.光电效应实验,体现的是光的粒子性,选项D错误.]氢原子光谱、波尔理论13.下列关于原子光谱的说法不正确的是( )A.原子光谱是由物质的原子从高能级向低能级跃迁时辐射光子形成的B.不同的谱线分布对应不同的元素C.不同的谱线对应不同的发光频率D.利用光谱分析不可以准确确定元素的种类D[原子光谱即线状谱,是由物质的原子从高能级向低能级跃迁时辐射光子形成的;每种原子都有自己的特征谱线,可以利用它来鉴别物质或确定物质的组成部分.故D不正确,选D.]14.如图12113所示为氢原子的能级图,对于处在n=4能级的大量氢原子,下列说法正确的是( )图12113A .这群氢原子向低能级跃迁时一共可以辐射出4种不同频率的光子B .处在n =4能级的氢原子可以吸收任何一种光子而跃迁到高能级C .这群氢原子从n =4能级跃迁到n =1能级时向外辐射的光子的波长最长D .这群氢原子辐射的光子中如果只有两种能使某金属发生光电效应,则该金属的逸出功W 0应满足10.2 eV<W 0≤12.09 eVD [这群氢原子向低能级跃迁时能够辐射出6种不同频率的光子,A 错误;氢原子从低能级向高能级跃迁时吸收的能量等于两能级的能量差,B 错误;氢原子从n =4能级跃迁到n =1能级时向外辐射出的光子的频率最大,波长最短,C 错误;如果这群氢原子辐射出的光子中只有两种能使某金属发生光电效应,则这两种光子分别是由氢原子从n =4能级跃迁到n =1能级和氢原子从n =3能级跃迁到n =1能级时辐射出的,由光电效应发生的条件可知,该金属的逸出功应满足E 2-E 1<W 0≤E 3-E 1,即10.2 eV<W 0≤12.09 eV,D 正确.]15.(2018·保定模拟)可见光光子的能量在1.61eV ~3.10 eV 范围内.如图12114所示,氢原子从第4能级跃迁到低能级的过程中,根据氢原子能级图可判断( )图12114A .从第4能级跃迁到第3能级将释放出紫外线B .从第4能级跃迁到第3能级放出的光子,比从第4能级直接跃迁到第2能级放出的光子频率更高C .从第4能级跃迁到第3能级放出的光子,比从第4能级直接跃迁到第1能级放出的光子波长更长D .氢原子从第4能级跃迁到第3能级时,原子要吸收一定频率的光子,原子的能量增加C [从n =4能级跃迁到n =3能级时辐射的光子能量ΔE 43=-0.85 eV -(-1.51 eV)=0.66 eV ,不在可见光光子能量范围之内,属于红外线,故A 错误;从n =4能级跃迁到n =2能级时辐射的光子能量ΔE 42=-0.85 eV -(-3.40 eV)=2.55 eV >ΔE 43,光子的频率ν=ΔE h ,所以ν43<ν42,故B 错误;从n =4能级跃迁到n =1能级时辐射的光子能量ΔE 41=-0.85 eV -(-13.60 eV)=12.75 eV >ΔE 43,光子的波长λ=hcΔE,所以λ43>λ41,故C正确;从第4能级跃迁到第3能级时,原子要辐射一定频率的光子,原子的能量减少,故D错误.]氢原子跃迁时,由n=3的激发态跃迁到基态所释放的光子可以使某金属刚好发生光电效应,则下列说法正确的是( )A.氢原子由n=3的激发态跃迁到基态时,电子的动能减少B.氢原子由n=3的激发态跃迁到基态时,原子的能量增加C.增加由n=3的激发态跃迁到基态的氢原子的数量,从该金属表面逸出的光电子的最大初动能不变D.氢原子由n=2的激发态跃迁到基态所释放的光子照射该金属足够长时间,该金属也会发生光电效应C[氢原子由激发态跃迁到基态时,释放光子,原子的能量减少,电子的动能增加,A、B错;增加跃迁氢原子的数量,不能改变释放出的光子的频率,从该金属表面逸出的光电子的最大初动能不变,C对;从n=2的激发态跃迁到基态的氢原子,其释放的光子的频率较小,不能使该金属发生光电效应,D错.]。
专题十二近代物理初步第1讲光电效应原子结构一、单项选择题1.光照射到金属表面上能够发生光电效应,下列关于光电效应的叙述中,正确的是() A.金属的逸出功与入射光的频率成正比B.单位时间内逸出的光电子数与入射光的强度无关C.逸出的光电子的初动能与光强度有关D.单位时间内逸出的光电子数与入射光强度有关2.入射光线照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么以下说法中正确的是()A.从光照到金属表面上到发射出光电子之间的时间间隔将明显增加B.逸出的光电子的最大初动能减小C.单位时间内从金属表面逸出的光电子数目将减小D.有可能不发生光电效应3.根据卢瑟福的原子核式结构模型,下列说法正确的是()A.原子中的正电荷均匀分布在整个原子范围内B.原子中的质量均匀分布在整个原子范围内C.原子中的正电荷和质量都均匀分布在整个原子范围内D.原子中的正电荷和几乎全部质量都集中在很小的区域范围内4.关于光电效应,下列说法正确的是()A.极限频率越大的金属材料逸出功越大B.只要光照射的时间足够长,任何金属都能产生光电效应C.从金属表面出来的光电子的最大初动能越大,这种金属的逸出功越小D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多5.硅光电池是利用光电效应原理制成的器件,下列说法正确的是()A.硅光电池是把光能转变为电能的一种装置B.硅光电池中吸收了光子能量的电子都能逸出C.逸出的光电子的最大初动能与入射光的频率无关D.任意频率的光照射到硅光电池上都能产生光电效应二、双项选择题6.关于玻尔的原子模型,下列说法中正确的有()A.它彻底否定了经典的电磁理论B.它发展了卢瑟福的核式结构学说C.它完全抛弃了经典的电磁理论D.它引入了普朗克的量子观念7.氢原子的部分能级如图K12-1-1所示.已知可见光的光子能量在1.62 eV到3.11 eV之间.由此可推知,氢原子()图K12-1-1A .从高能级向n =1能级跃迁时发出的光的波长比可见光的短B .从高能级向n =2能级跃迁时发出的光均为可见光C .从高能级向n =3能级跃迁时发出的光的频率比可见光的高D .从n =3能级向n =2能级跃迁时发出的光为可见光8.已知氢原子的能级规律为E n =E 1n 2(其中E 1=-13.6 eV ,n =1、2、3…),现用光子能量介于10~12.9 eV 范围内的光去照射一群处于最稳定状态的氢原子,则下列说法中正确的是( )A .照射光中可能被吸收的光子能量有无数种B .照射光中可能被吸收的光子能量只有3种C .可能观测到氢原子发射不同波长的光有3种D .可能观测到氢原子发射不同波长的光有6种9.以下说法正确的是( )A .卢瑟福的α粒子散射实验得出了“原子核是由质子和中子组成”的结论B .氢原子从高能级跃迁到低能级要放出光子C .原子核放出β粒子后,转变成的新核所对应的元素是原来的同位素D .太阳辐射能量主要来自太阳内部的聚变反应10.下列关于光电效应的说法正确的是( )A .若某材料的逸出功是W 0,则它的极限频率ν0=W 0hB .光电子的初速度和照射光的频率成正比C .光电子的最大初动能和照射光的频率成正比D .光电子的最大初动能随照射光频率的增大而增大专题十二 近代物理初步第1讲 光电效应 原子结构1.D 2.C 3.D 4.A 5.A 6.BD7.AD 解析:从高能级向n =1能级跃迁时发出的光子能量最小为10.2 eV ,最大为13.6 eV ,可见其频率高于可见光,即波长比可见光短;从高能级向n =2能级跃迁时发出的光子能量最小为1.89 eV ,最大为3.4 eV ,可见发出的光并不都为可见光;从高能级向n =3能级跃迁时发出的光子能量最小为0.66 eV ,最大为1.51 eV ,频率低于可见光;从n =3能级向n =2能级跃迁发出的光子能量为1.89 eV ,属于可见光的区域.8.BD 解析:能被吸收的光子能量必须恰好等于n =1能级与其他能级之间的能量差或者大于13.6 eV ,所以可能被吸收的光子只有3种,氢原子可以跃迁到n =4能级,所以它可能发射6种不同波长的光.9.BD10.AD 解析:由光电效应方程E k =hν-W 0知,B 、C 错误,D 正确;若E k =0,得极限频率ν0=W 0h,故A 正确. 第2讲 原子核1.B 解析:α衰变即原子核放出氦核(42He),含有两个质子两个中子;β衰变的实质是中子变成质子同时放出电子,其核反应方程为10n →11H + 0-1e.综合两项衰变可知,新核比原来的核质子数共少1个,中子数共少了3个.2.D3.A 解析:①238 92U →234 90Th ,质量数少4,电荷数少2,说明①为α衰变.②234 90Th →234 91Pa ,质子数加1,说明②为β衰变,中子转化成质子.③234 91Pa →234 92U ,质子数加1,说明③为β衰变,中子转化成质子.4.D 解析:根据121/2tT ⎛⎫ ⎪⎝⎭=18得t T 1/2=3,因为t =11.4,所以T 1/2=11.43天=3.8天,选项D 正确.5.C 6.AC 7.BC 8.BC 9.BD10.AD 11.AC。
第1节 光电效应 氢原子光谱1.考纲变化:本章内容是模块3-5中的部分内容,考纲要求由原来的“选考内容”调至“必考内容”.2.考情总结:作为“选考内容”时,对原子和原子核的考查,以基础为主,难度不大,主要以选择题的形式出现.3.命题预测:调到“必考内容”以后,预计命题的热点不变,仍然集中在光电效应、氢原子能级结构、半衰期、核反应方程及核能的计算等方面,考查题型仍然是选择题.第1节 光电效应 氢原子光谱知识点1 光电效应 1.光电效应的实验规律(1)任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于这个极限频率则不能发生光电效应.(2)光电子的最大初动能与入射光的强度无关,其随入射光频率的增大而增大. (3)大于极限频率的光照射金属时,光电流强度(反映单位时间内发射出的光电子数的多少)与入射光强度成正比.2.光子说爱因斯坦提出:空间传播的光不是连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比,即:ε=h ν,其中h =6.63×10-34J·s.3.光电效应方程(1)表达式:h ν=E k +W 0或E k =h ν-W 0.(2)物理意义:金属中的电子吸收一个光子获得的能量是h ν,这些能量的一部分用来克服金属的逸出功W 0,剩下的表现为逸出后电子的最大初动能E k =12mv 2.知识点2 α粒子散射实验与核式结构模型 1.实验现象绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子甚至被撞了回来.如图1211所示.α粒子散射实验的分析图图12112.原子的核式结构模型在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.知识点3 氢原子光谱和玻尔理论 1.光谱(1)光谱:用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.(2)光谱分类:有些光谱是一条条的亮线,这样的光谱叫做线状谱. 有的光谱是连在一起的光带,这样的光谱叫做连续谱.(3)氢原子光谱的实验规律:巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数. 2.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即h ν=E m -E n (h 是普朗克常量,h =6.63×10-34J·s).(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.3.氢原子的能级、能级公式 (1)氢原子的能级图 能级图如图1212所示.图1212(2)氢原子的能级公式E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6_eV.(3)氢原子的半径公式r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m.1.正误判断(1)光子说中的光子,指的是光电子.(×)(2)只要光足够强,照射时间足够长,就一定能发生光电效应.(×)(3)原子核集中了原子全部的正电荷和质量.(×)(4)在玻尔模型中,原子的状态是不连续的.(√)(5)发射光谱可能是连续光谱,也可能是线状谱.(√)2.[对α粒子散射实验的考查]从α粒子散射实验结果出发推出的结论有:①金原子内部大部分都是空的;②金原子是一个球体;③汤姆孙的原子模型不符合原子结构的实际情况;④原子核的半径约是10-15m,其中正确的是( )【导学号:92492400】A.①②③B.①③④C.①②④D.①②③④B[α粒子散射实验的结果表明,原子是由原子核和核外电子构成的,原子核体积很小,质量大,原子的质量主要集中在原子核上,原子核外有一个非常大的空间,核外电子围绕原子核做高速运动,则从α粒子散射实验结果出发推出的结论有金原子内部大部分都是空的,汤姆孙的原子模型不符合原子结构的实际情况,原子核的半径约是10-15m,不能说明金原子是球体,B正确.]3.[对光电效应的考查](多选)如图1213为用光照射锌板产生光电效应的装置示意图.光电子的最大初动能用E k表示、入射光的强度用C表示、入射光的波长用λ表示、入射光的照射时间用t表示、入射光的频率用ν表示.则下列说法正确的是( )图1213A.E k与C无关B .E k 与λ成反比C .E k 与t 成正比D .E k 与ν成线性关系AD [由E k =h ν-W 0知,E k 与照射光的强度及照射时间无关,与ν成线性关系,A 、D 正确,C 错误;由E k =hcλ-W 0可知,E k 与λ不成反比,B 错误.]4.[对氢原子光谱的考查]如图1214所示,1、2、3、4为玻尔理论中氢原子最低的四个能级.用以下能量的光子照射基态的氢原子时,能使氢原子跃迁到激发态的是( )图1214A .1.51 eVB .3.4 eVC .10.2 eVD .10.3 eVC [入射光子的能量只有等于原子所处能级与某一较高能级的差值时,入射光的光子才能被吸收,原子才能被激发,选C.]1.(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子.光子是光电效应的因,光电子是果.(2)光电子的动能与光电子的最大初动能:光照射到金属表面时,电子吸收光子的全部能量,可能向各个方向运动,需克服原子核和其他原子的阻碍而损失一部分能量,剩余部分为光电子的初动能;只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能.(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关.(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量.(5)光的强度与饱和光电流:饱和光电流与入射光强度成正比的规律是对频率相同的光照射金属产生光电效应而言的,对于不同频率的光,由于每个光子的能量不同,饱和光电流与入射光强度之间没有简单的正比关系.2.光电效应的研究思路 (1)两条线索:(2)两条对应关系:入射光强度大→光子数目多→发射光电子多→光电流大; 光子频率高→光子能量大→光电子的最大初动能大. [题组通关]1.(多选)在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是( )A .增大入射光的强度,光电流增大B .减小入射光的强度,光电效应现象不会消失C .改用频率小于ν的光照射,一定不发生光电效应D .改用频率大于ν的光照射,光电子的最大初动能变大ABD [增大入射光强度,单位时间内照射到单位面积的光电子数增加,则光电流将增大,故选项A 正确;光电效应是否发生取决于照射光的频率,而与照射强度无关,故选项B 正确;用频率为ν的光照射光电管阴极,发生光电效应,用频率较小的光照射时,若光的频率仍大于极限频率,则仍会发生光电效应,选项C 错误;根据h ν-W 逸=12mv 2可知,增加照射光频率,光电子的最大初动能也增大,故选项D 正确.]2.(多选)在探究光电效应现象时,某小组的同学分别用波长为λ、2λ的单色光照射某金属,逸出的光电子最大速度之比为2∶1,普朗克常量用h 表示,光在真空中的速度用c 表示.则( )【导学号:92492401】A .光电子的最大初动能之比为2∶1B .该金属的截止频率为c3λC .该金属的截止频率为cλD .用波长为52λ的单色光照射该金属时能发生光电效应BD [由于两种单色光照射下,逸出的光电子的最大速度之比为2∶1,由E k =12mv 2可知,光电子的最大初动能之比为4∶1,A 错误;又由h ν=W +E k 知,h c λ=W +12mv 21,h c 2λ=W +12mv 22,又v 1=2v 2,解得W =hc 3λ,则该金属的截止频率为c3λ,B 正确,C 错误;光的波长小于或等于3λ时才能发生光电效应,D 正确.]两点提醒1.能否发生光电效应取决于入射光的频率而不是入射光的强度.2.光电子的最大初动能随入射光子频率的增大而增大,但二者不是正比关系.(1)爱因斯坦光电效应方程E k =h ν-W 0.(2)光电子的最大初动能E k 可以利用光电管用实验的方法测得,即E k =eU c ,其中U c 是遏止电压.(3)光电效应方程中的W 0为逸出功,它与极限频率νc 的关系是W 0=h νc . 2.四类图象●考向1 光电效应方程的应用1.(2017·抚州模拟)人们发现光电效应具有瞬时性和对各种金属都存在极限频率的规律.请问谁提出了何种学说很好地解释了上述规律?已知锌的逸出功为3.34 eV ,用某单色紫外线照射锌板时,逸出光电子的最大速度为106m/s ,求该紫外线的波长λ.(电子质量M e =9.11×10-31kg ,普朗克常量h =6.63×10-34J·s,1 eV=1.60×10-19J)【解析】 爱因斯坦提出的光子说很好地解释了光电效应现象. 由爱因斯坦光电效应方程:E k =h ν-W 0 ①光速、波长、频率之间关系:c =λν ② 联立①②得紫外线的波长为 λ=hcW 0+12mv 2m=6.63×10-34×3×1083.34×1.6×10-19+12×9.11×10-31×1012m≈2.009×10-7m【答案】 爱因斯坦的光子说很好地解释了光电效应 2.009×10-7m ●考向2 与光电效应有关的图象问题2.(多选)(2017·武威模拟)如图1215是某金属在光的照射下产生的光电子的最大初动能E k 与入射光频率ν的关系图象.由图象可知( )图1215A .该金属的逸出功等于EB .该金属的逸出功等于h ν0C .入射光的频率为2ν0时,产生的光电子的最大初动能为ED .入射光的频率为ν02时,产生的光电子的最大初动能为E 2ABC [由爱因斯坦的光电效应方程:E k =h ν-W 0,对应图线可得,该金属的逸出功W 0=E =h ν0,A 、B 均正确;若入射光的频率为2ν0,则产生的光电子的最大初动能E k =2h ν0-W 0=h ν0=E ,故C 正确;入射光的频率为ν02时,该金属不发生光电效应,D 错误.]3.研究光电效应规律的实验装置如图1216所示,用频率为ν的光照射光电管阴极K 时,有光电子产生.由于光电管K 、A 间加的是反向电压,光电子从阴极K 发射后将向阳极A 做减速运动.光电流i 由图中电流计G 测出,反向电压U 由电压表V 测出.当电流计的示数恰好为零时,电压表的示数称为反向截止电压U C ,在下列表示光电效应实验规律的图象中,错误的是()图1216反向电压U 和频率ν一定时,光电流i 与光强I 的关系 A 截止电压U C与频率ν的关系 B光强I 和频率ν一定时,光电流i 与反向电压U 的关系C光强I 和频率ν一定时,光电流i 与产生光电子的时间t 的关系 DB [由光电效应规律可知,光电流的强度与光强成正比,光射到金属上时,光电子的发射是瞬时的,不需要时间积累,故A 、D 图象正确;从金属中打出的光电子,在反向电压作用下做减速运动,随着反向电压的增大,到达阳极的光电子数减少,故C 图象正确;由光电效应方程可知:h ν=h ν0+E km ,而eU C =E km ,所以有h ν=h ν0+eU C ,由此可知,B 图象错误.]光电效应问题中的五个决定关系1.逸出功W 0一定时,入射光的频率决定着能否产生光电效应以及光电子的最大初动能. 2.入射光的频率一定时,入射光的强度决定着单位时间内发射出来的光电子数. 3.爱因斯坦光电效应方程:E k =h ν-W 0. 4.最大初动能与遏止电压的关系:E k =eU c . 5.逸出功与极限频率、极限波长的关系:W 0=h νc =hcλc.1.(1)自发跃迁:高能级→低能级,释放能量,发出光子. 光子的频率ν=ΔE h =E 高-E 低h.(2)受激跃迁:低能级→高能级,吸收能量.①光照(吸收光子):光子的能量必须恰等于能级差h ν=ΔE .②碰撞、加热等:只要入射粒子能量大于或等于能级差即可,E 外≥ΔE . ③大于电离能的光子被吸收,将原子电离. 2.电离 电离态与电离能 电离态:n =∞,E =0基态→电离态:E 吸=0-(-13.6 eV)=13.6 eV 电离能.n =2→电离态:E 吸=0-E 2=3.4 eV如吸收能量足够大,克服电离能后,获得自由的电子还携带动能. 3.谱线条数的确定方法(1)一个氢原子跃迁发出可能的光谱线条数最多为(n -1). (2)一群氢原子跃迁发出可能的光谱线条数的两种求解方法. ①用数学中的组合知识求解:N =C2n =n n -2.②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加.[题组通关]1.(多选)氢原子光谱在可见光部分只有四条谱线,它们分别是从n 为3、4、5、6的能级直接向n =2能级跃迁时产生的.四条谱线中,一条红色、一条蓝色、两条紫色,则下列说法正确的是( )A .红色光谱是氢原子从n =3能级向n =2能级跃迁时产生的B .蓝色光谱是氢原子从n =6能级或n =5能级直接向n =2能级跃迁时产生的C .若氢原子从n =6能级直接向n =1能级跃迁,则能够产生红外线D .若氢原子从n =6能级直接向n =3能级跃迁时辐射的光子不能使某金属发生光电效应,则氢原子从n =6能级直接向n =2能级跃迁时辐射的光子将可能使该金属发生光电效应AD [从n 为3、4、5、6的能级直接向n =2能级跃迁时,从n =3跃迁到n =2能级辐射的光子频率最小,波长最大,可知为红色光谱,A 正确;蓝光光子频率大于红光光子频率,小于紫光光子频率,可知是从n =4跃迁到n =2能级辐射的光子,B 错误;氢原子从n =6能级直接向n =1能级跃迁,辐射的光子频率大于从n =6跃迁到n =2能级时辐射的紫光光子频率,即产生紫外线,C 错误;从n =6跃迁到n =2能级辐射的光子频率大于从n =6跃迁到n =3能级辐射的光子频率,由氢原子从n =6能级直接向n =3能级跃迁时辐射的光子不能使某金属发生光电效应,但从n =6跃迁到n =2能级跃迁时辐射的光子可能使该金属发生光电效应,D 正确.]2.如图1217所示,氢原子从n >2的某一能级跃迁到n =2的能级,辐射出能量为2.55 eV 的光子,问:(1)最少要给基态的氢原子提供多少电子伏特的能量,才能使它辐射上述能量的光子? (2)请在图中画出获得该能量后的氢原子可能的辐射跃迁图.图1217【解析】 (1)氢原子从n >2的某一能级跃迁到n =2的能级,辐射光子的频率应满足:h ν=E n -E 2=2.55 eV则E n =h ν+E 2=-0.85 eV 又有:E n =E 1n2, 所以:n =E 1E n =-13.6 eV-0.85 eV=4基态氢原子要跃迁到n =4的能级,应该提供的能量为 ΔE =E 4-E 1=-0.85 eV -(-13.6)eV =12.75 eV. (2)辐射跃迁图如图所示:【答案】 (1)12.75 eV (2)见解析1.一个区别:一个氢原子和一群氢原子能级跃迁的可能性. 2.两点提醒:(1)原子能级之间跃迁时吸收或放出的光子能量一定等于两能级之间的差值.(2)要使氢原子发生电离,原子吸收的能量可以是大于原子该能级值的任意值.11。
光电效应波粒二象性考点1 光电效应现象和光电效应方程的应用1.对光电效应的四点提醒(1)能否发生光电效应,不取决于光的强度而取决于光的频率。
(2)光电效应中的“光”不是特指可见光,也包括不可见光。
(3)逸出功的大小由金属本身决定,与入射光无关。
(4)光电子不是光子,而是电子。
2.两条对应关系(1)光强大→光子数目多→发射光电子多→光电流大;(2)光子频率高→光子能量大→光电子的最大初动能大。
3.定量分析时应抓住三个关系式(1)爱因斯坦光电效应方程:E k=hν-W0。
(2)最大初动能与遏止电压的关系:E k=eU c。
(3)逸出功与极限频率的关系:W0=hν0。
4.区分光电效应中的四组概念(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子。
(2)光电子的动能与光电子的最大初动能。
(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关。
(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量。
1.[光电效应现象](多选)如图所示,用导线把验电器与锌板相连接,当用紫外线照射锌板时,发生的现象是( )A .有光子从锌板逸出B .有电子从锌板逸出C .验电器指针张开一个角度D .锌板带负电2.[光电效应规律]关于光电效应的规律,下列说法中正确的是( ) A .只有入射光的波长大于该金属的极限波长,光电效应才能产生 B .光电子的最大初动能跟入射光强度成正比 C .发生光电效应的反应时间一般都大于10-7sD .发生光电效应时,单位时间内从金属内逸出的光电子数目与入射光强度成正比 3.[光电管](多选)图为一真空光电管的应用电路,其金属材料的极限频率为4.5×1014 Hz ,则以下判断中正确的是()A .发生光电效应时,电路中光电流的饱和值取决于入射光的频率B .发生光电效应时,电路中光电流的饱和值取决于入射光的强度C 用λ=0.5 μm 的光照射光电管时,电路中有光电流产生D .光照射时间越长,电路中的电流越大考点2 光电效应的四类图象分析1.[E k -ν图象]爱因斯坦因提出了光量子概念并成功地解释光电效应的规律而获得1921年诺贝尔物理学奖。
配餐作业光电效应原子结构氢原子光谱A组·基础巩固题1.关于光电效应,下列表述正确的是()A.光照时间越长,光电流越大B.入射光频率大于极限频率时就能产生光电子C.入射光足够强,就可以有光电流D.不同的金属逸出功都是一样的解析光电流的大小与入射光的强度有关,与光照射的时间长短无关,故A项错误;发生光电效应的条件是入射光频率大于极限频率,故B项正确;能否发生光电效应与入射光的强度无关,入射光足够强,不一定能产生光电流,故C项错误;不同的金属逸出功是不同的,故D项错误。
答案 B2.卢瑟福利用α粒子轰击金箔的实验研究原子结构,正确反映实验结果的示意图是图中的()A.B.C. D.解析本题考查学生对α粒子散射实验现象的定性认识。
由教材中讲述的实验现象可知,只有D项符合题意。
答案 D3.关于物质的波粒二象性,下列说法不正确的是()A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道C.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的D.实物的运动有特定的轨道,所以实物不具有波粒二象性解析光具有波粒二象性是微观世界具有的特殊规律,大量光子运动的规律表现出光的波动性,而单个光子的运动表现出光的粒子性。
光的波长越长,波动性越明显,光的频率越高,粒子性越明显。
而宏观物体的德布罗意波的波长太小,实际很难观察到波动性,不是不具有波粒二象性,D项错误。
答案D4.(多选)用极微弱的可见光做双缝干涉实验,随着时间的增加,在照相底片上先后出现如图甲、乙、丙所示的图像,则()A.图像甲表明光具有粒子性B.图像乙表明光具有波动性C.用紫外线观察不到类似的图像D.实验表明光是一种概率波解析图像甲曝光时间短,通过光子数很少,呈现粒子性。
图像乙曝光时间长,通过了大量光子,呈现波动性,故A、B项正确;同时也表明光波是一种概率波,故D项也正确;紫外线本质和可见光本质相同,也可以发生上述现象,故C项错误。
答案ABD5.用波长为2.0×10-7m的紫外线照射钨的表面,释放出来的光电子中最大的动能是4.7×10-19J。
由此可知,钨的极限频率是(普朗克常量h=6.63×10-34J·s,光速c=3.0×108m/s,结果取两位有效数字)()A.5.5×1014Hz B.7.9×1014HzC.9.8×1014Hz D.1.2×1015Hz解析本题考查光电效应方程,意在考查考生对光电效应方程E k=hν-W逸的理解,并能应用光电效应方程求解极限频率。
由光电效应方程E k=hν-W逸,而W逸=hν0,ν=cλ,所以钨的极限频率ν0=cλ-E kh=7.9×1014Hz,B项正确。
答案 B6.(多选)在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上。
假设现在只让一个光子通过单缝,那么该光子()A.一定落在中央亮纹处B.可能落在其他亮纹处C.不可能落在暗纹处D.落在中央亮纹处的可能性最大解析根据概率波的概念,对于一个光子通过单缝落在何处是不可确定的。
当然也可落在其他亮纹处,还可能落在暗纹处,故B项正确;因落在中央亮条纹的光强占从单缝射入的整个光强的95%以上,故让一个光子通过单缝,落在中央亮条纹的可能性最大,故D 项正确。
答案BD7.现有a、b、c三束单色光,其波长关系为λa∶λb∶λc=1∶2∶3。
当用a 光束照射某种金属板时能发生光电效应,飞出的光电子最大动能为E k ,若改用b 光束照射该金属板,飞出的光电子最大动能为13E k ,当改用c 光束照射该金属板时( ) A .能发生光电效应,飞出的光电子最大动能为16E k B .能发生光电效应,飞出的光电子最大动能为19E k C .能发生光电效应,飞出的光电子最大动能为112E k D .由于c 光束光子能量较小,该金属板不会发生光电效应解析 对a 、b 、c 三束光由光电效应方程有hc λa-W =E k ,hc 2λa -W =13E k ,由以上两式可得hc λa=43E k ,W =13E k 。
当改用c 光速照射该金属板时hc 3λa -W =49E k -13E k =19E k ,故B 项正确。
答案 B8.(2017·北京)2017年年初,我国研制的“大连光源”——极紫外自由电子激光装置,发出了波长在100 nm(1 nm =10-9 m)附近连续可调的世界上个最强的极紫外激光脉冲,大连光源因其光子的能量大、密度高,可在能源利用、光刻技术、雾霾治理等领域的研究中发挥重要作用。
一个处于极紫外波段的光子所具有的能量可以电离一个分子,但又不会把分子打碎。
据此判断,能够电离一个分子的能量约为(取普朗克常量h =6.6×10-34 J·s ,真空光速c =3×108 m/s)A .10-21 JB .10-18 JC .10-15 JD .10-12 J解析 一个处于极紫外波段的光子的能量为E =h c λ=2×10-18J ,由题意可知,光子的能量应比电离一个分子的能量稍大,因此数量级必须相同,故B 项正确。
答案 B9.如图甲所示是研究光电效应的电路图。
某同学利用该装置在不同实验条件下得到了三条光电流I 与A 、K 两极之间的电压U AK 的关系曲线(甲光、乙光、丙光),如图乙所示。
则下列说法正确的是( )A .甲光照射光电管发出光电子的初动能一定小于丙光照射光电管发出光电子的初动能B .单位时间内甲光照射光电管发出光电子比乙光的少C .用强度相同的甲、丙光照射该光电管,则单位时间内逸出的光电子数相等D .对于不同种金属,若照射光频率不变,则逸出光电子的最大初动能与金属的逸出功为线性关系解析 当光照射到K 极时,如果入射光的频率足够大(大于K 极金属的极限频率),就会从K 极发出光电子。
当反向电压增加到某一值时,电流表A 中电流就会变为零,此时12m e v 2c =eU c ,式中v c 表示光电子的最大初速度,e 为电子的电荷量,U c 为遏止电压,根据爱因斯坦光电效应方程可知丙光的最大初动能较大,故丙光的频率较大,但丙光照射光电管发出光电子的初动能不一定比甲光照射光电管发出光电子的初动能大,故A 项错误;对于甲、乙两束频率相同的光来说,入射光越强,单位时间内发射的光电子数越多,故B 项错误;对甲、丙两束不同频率的光来说,光强相同是单位时间内照射到光电管单位面积上的光子的总能量相等,由于丙光的光子频率较高,每个光子的能量较大,所以单位时间内照射到光电管单位面积上的光子数就较少,所以单位时间内发出的光电子数就较少,故C项错误;对于不同金属,若照射光频率不变,根据爱因斯坦光电效应方程E k=hν-W,知E k与金属的逸出功为线性关系,故D项正确。
答案D【解题技巧】根据遏止电压的大小比较电子的最大初动能,结合光电效应方程比较入射光的频率。
根据饱和光电流的大小比较光的强度。
B组·能力提升题10.如图所示,N为钨板,M为金属网,它们分别和电池两极相连,各电池的极性和电动势在图中标出。
钨的逸出功为4.5 eV。
现分别用能量不同的光子照射钨板(各光子的能量在图上标出)。
那么,下列图中有光电子到达金属网的是()A.①②③B.②③④C.②③D.③④解析由光电效应方程知,若有光电效应发生,入射光的频率必须大于金属的极限频率,①不能,②③④发生光电效应;②所加电压为正向电压,只要有光电子逸出,电子就能到达M金属网,②可以;③④所加电压为反向电压,由爱因斯坦的光电效应方程知,入射光的能量为8 eV时,逸出的光电子的最大初动能为3.5 eV,反向电压必须小于3.5 eV才有光电子到达M金属网,故③可以,④不能。
由上分析知C项对。
答案C11.(多选)如图所示是氢原子的能级图,大量处于n=5激发态的氢原子向低能级跃迁时,一共可以辐射出10种不同频率的光子。
其中莱曼系是指氢原子由高能级向n=1能级跃迁时释放的光子,则()A.10种光子中波长最短的是n=5激发态跃迁到基态时产生的B.10种光子中有4种属于莱曼系C.使n=5能级的氢原子电离至少需要0.85 eV的能量D.从n=2能级跃迁到基态释放光子的能量等于n=3能级跃迁到n=2能级释放光子的能量解析n=5激发态跃迁到基态时产生光子的能量最大,根据E=hc λ知,波长最短,故A 项正确;莱曼系是指氢原子由高能级向n =1能级跃迁时释放的光子,10种光子中4种属于莱曼系,所以B 项正确;n =5能级的氢原子具有的能量为-0.54 eV ,故要使其发生电离能量变为0,至少需要的能量为0.54 eV ,故C 项错误;从n =2能级跃迁到基态释放的光子能量为13.6 eV -3.4 eV =10.2 eV ,从n =3能级跃迁到n =2能级释放的光子能量为3.4 eV -1.51 eV =1.89 eV<10.2 eV ,显然两者不相等,故D 项错误。
答案 AB12.μ子与氢原子核(质子)构成的原子称为μ氢原子,它在原子核物理的研究中有重要作用。
如图为μ氢原子的能级示意图,假定光子能量为E 的一束光照射容器中大量处于n =2能级的μ氢原子,μ氢原子吸收光子后,发出频率为ν1、ν2、ν3、ν4、ν5和ν6的光子,且频率依次增大,则E 等于( )A .h (ν3-ν1)B .h (ν3+ν1)C .hν3D .hν4解析 μ氢原子吸收光子后,能发出六种频率的光,说明μ氢原子是从n =4能级向低能级跃迁,则吸收的光子的能量为ΔE =E 4-E 2,E 4-E 2恰好对应着频率为ν3的光子,故光子的能量为hν3。
答案 C13.(多选)如图所示,这是一个研究光电效应的电路图,下列叙述正确的是( )A .只调换电源的极性,移动滑片P ,当电流表示数为零时,电压表示数为遏止电压U c 的数值B .保持光照条件不变,滑片P 向右滑动的过程中,电流表示数可能一直增大C .不改变光束颜色和电路,增大入射光束强度,电流表示数会增大D .阴极K 需要预热,光束照射后需要一定的时间才会有光电流 解析 当只调换电源的极性时,电子从K 到A 减速运动,到A 恰好速度为零时对应电压为遏止电压,所以A 项正确;当其他条件不变,P 向右滑动,加在光电管两端的电压增加,光电子运动更快,由I =q t 得电流表读数变大,当达到饱和光电流后,电流表示数不再增加,B 项错误;只增大入射光束强度时,单位时间内光电子数变多,电流表示数变大,C 项正确;因为光电效应的发生是瞬间的,阴极K 不需要预热,所以D 项错误。