pcb应用设计宝典
- 格式:docx
- 大小:133.84 KB
- 文档页数:11
PCB新手初学必备50个经典应用电路实例分析PCB(Printed Circuit Board,印制电路板)是现代电子产品中不可或缺的核心部件之一,用于支持和连接电子元器件。
初学者在学习和掌握PCB设计时,了解一些经典的应用电路实例是很有帮助的。
下面将介绍50个经典的应用电路实例,并简单分析其工作原理。
1.电源滤波电路:用于去除电源输入中的噪声和干扰。
2.整流电路:将交流电信号转换为直流电信号,常见的电源电路。
3.电压调节电路:用于稳定输出电压,常见的稳压装置。
4.LED驱动电路:用于驱动LED显示器件的电路,常见于各种灯具。
5.小电力放大器电路:用于增加音频信号的功率,如小型扬声器。
6.音频滤波电路:用于调整音频信号的频率特性,如均衡器。
7.电源保护电路:用于保护电子设备免受过电压、过电流等情况的损害。
8.低通滤波器电路:用于通过低频信号,滤除高频信号。
9.高通滤波器电路:用于通过高频信号,滤除低频信号。
10.时钟电路:用于提供稳定的时钟信号,常见于数字系统。
11.振荡器电路:用于产生稳定的频率信号,如时钟振荡器。
12.多谐振荡电路:用于产生多频率的信号,常见于无线通信设备。
13.反相放大器电路:将输入信号进行反相放大。
14.非反相放大器电路:将输入信号进行非反相放大。
15.对数放大器电路:将输入信号进行对数放大,如用于音量控制。
16.线性电源电路:用于提供稳定的线性电源输出。
17.数字电源电路:用于提供稳定的数字电源输出。
18.温度控制电路:用于控制温度,如温度传感器和风扇控制电路。
19.温度补偿电路:用于对温度进行补偿,如精准控制设备。
20.模拟开关电路:用于模拟开关操作,如触摸传感器。
21.PWM控制电路:用于产生脉宽调制信号,如电机驱动器。
22.静电保护电路:用于保护电子器件不受静电干扰。
23.短路保护电路:用于保护电路免受短路损坏。
24.信号选择器电路:用于选择不同的输入信号,如多路音频选择器。
PCB工程师需要注意的地方出处网络,作者不详PCB工程师需要注意的地方较多的PCB工程师,他们经常画电脑主板,对Allegro等优秀的工具非常的熟练,但是,非常可惜的是,他们居然很少知道如何进行阻抗控制,如何使用工具进行信号完整性分析.如何使用IBIS模型我觉得真正的PCB高手应该还是信号完整性专家,而不仅仅停留在连连线,过过孔的基础上对布通一块板子容易,布好一块好难。
小资料对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个PCB工程师都不能回避的话题;单板层的排布一般原则:元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面;所有信号层尽可能与地平面相邻;尽量避免两信号层直接相邻;s主电源尽可能与其对应地相邻;兼顾层压结构对称。
对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ以上的(50MHZ以下的情况可参照,适当放宽),建议排布原则:元件面、焊接面为完整的地平面(屏蔽);无相邻平行布线层;所有信号层尽可能与地平面相邻;关键信号与地层相邻,不跨分割区。
注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层的排布,切忌生搬硬套,或抠住一点不放。
以下为单板层的排布的具体探讨:*四层板,优选方案1,可用方案3方案电源层数地层数信号层数 1 2 3 41 1 12 S G P S2 1 2 2 G S S P3 1 1 2 S P G S方案1 此方案四层PCB的主选层设置方案,在元件面下有一地平面,关键信号优选布TOP层;至于层厚设置,有以下建议:满足阻抗控制芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去藕效果;为了达到一定的屏蔽效果,有人试图把电源、地平面放在TOP、BOTTOM层,即采用方案2:此方案为了达到想要的屏蔽效果,至少存在以下缺陷:电源、地相距过远,电源平面阻抗较大电源、地平面由于元件焊盘等影响,极不完整由于参考面不完整,信号阻抗不连续实际上,由于大量采用表贴器件,对于器件越来越密的情况下,本方案的电源、地几乎无法作为完整的参考平面,预期的屏蔽效果很难实现;方案2使用范围有限。
PCB线路板设计技巧总结5篇第一篇:PCB线路板设计技巧总结PCB线路板设计技巧总结~~~发表于:2009-01-26 13:23:53元件布局技巧:1.基本布局:(1)尽可能缩短高频元件之间的连线,设法减小其分布参数和相互之间的电磁干扰,易于相互干扰的元器件不能离得太近,输入和输出应尽量远离。
(2)当元件或导线之间可能有较高电位差时,应该加大其距离,以免放电击穿,引起短路。
(3)重15g以上的元件不能只靠导线焊盘来固定,应用支架或卡子固定。
(4)电位器、可变电容、可调电感线圈或微动开关等可调元件,应考虑整机的结构要求。
若是机外调节,其位置应考虑调节旋钮在机箱面板上的位置,若是机内调节,应考虑放在印刷板上能方便调节的地方。
(5)留出PCB板固定支架,定位螺孔和连接插座所用的位置。
2.按电路功能单元,对电路的全部器件布局:(1)通常按信号的流向逐个安排电路单元的位置,以便与主信号流通方向保持一致。
(2)以每个功能电路的核心元件为中心,围绕它布局。
元件应均匀,整齐,紧凑地排列在PCB上,尽量减少和缩短各单元之间的引线和连线。
(3)在高频下工作的电路,要考虑元件之间的分布参数,一般电路的元件应尽可能平行排列,这样不仅美观,还可以使装焊方便,易于批量生产。
(4)位于边上的元器件,应离PCB板边缘至少2mm。
PCB板的最佳形状是矩形(长宽为3:2或4:3),板面尺寸大于200mm*150mm时,应考虑PCB板所受的机械强度。
布线技巧:(1)输入、输出的导线应尽量避免相邻或平行,最好加线间地线,以免发生反馈。
高电平信号和低电平电路不要相互平行,特别是高阻抗、低电平信号电路,应尽可能靠近低电位。
PCB板两面的导线宜相互垂直,斜交或弯曲走线,应避免平行,以减小寄生耦合。
(2)在安装电源走线时,每1-3个TTL集成电路,2-6个CMOS 集成电路,都应在靠近集成块地方设旁路电容。
(3)PCB板导线的最小宽度主要由导线与绝缘基板间的粘附强度和流过其电流值决定。
我认为好的技巧(trick)应该具备两点特征第一是简短易记;第二是抓住重点,在网上看过很多人总结的技巧,发现都很繁琐,有的细致到电容和cpu之间的安全距离是多少,我想对于大部分人来说,这样的技巧可以称之为规范,而我们需要的技巧,应该是像80/20法则中所定义的那样,掌握了这样的技巧就能完成80%的的布局工作。
当然我总结出来的是我认为比较重要的,如果读者有兴趣参与讨论,可以在留言中留下你们总结的PCB布局技巧,大家一起讨论,留言原则参考上一段。
1,信号流向顺交叉少路径短原则o1)信号顺:通常按照信号的流程逐个安排各个功能电路单元的位置,以每个功能电路的核心元件为中心,围绕它进行布局。
o2)交叉少:移动器件时要注意网线的连接,要注意如果两个器件有多个网线的连接时要通过旋转来使网线的交叉最少。
另外模块与模块之间线的相互穿越最少。
o3)路径短:移动器件时要注意网线的连接,把有网线关系的器件放在一起,而且能大致达成互连最短2,抗干扰原则-隔离靠近法o隔离:数字器件和模拟器件隔离;射频器件与其他模块隔离;易受干扰的元器件与其他模块隔离;输入和输出隔离;板边隔离(例如重要信号线要远离板边)o靠近:高频元器件内部靠近(减少它们的分布参数和相互间的电磁干扰);去耦电容尽量靠近器件;ESD,EMI器件靠近3,电源单独考虑原则电源的处理对PCB设计来说,是至关重要的,所以要单独考虑电源:o1)同种电源模块要靠近,不同网络电源间要隔离o2)布局时要预留比较宽的电源的走线空间o3)主干电源路径要短o4)电源模块不能太集中,防止局部过热o5)供电模块要靠近模块电源入口处使供电路径最短4,均布原则放置器件时要考虑以后的焊接,不要太密集,元件分布要尽可能均匀,例如大的器件再流焊时热容量比较大,过于集中容易使局部温度低而造成虚焊。
上面所述的原则不是顺序进行的,而是相互交叉进行的,所以要不断优化,才能得到一个良好的布局。
PROTEL技术大全在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。
PCB布线有单面布线、双面布线及多层布线。
布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。
必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。
一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。
并试着重新再布线,以改进总体效果。
对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。
1 电源、地线的处理既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。
所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。
对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述:众所周知的是在电源、地线之间加上去耦电容。
尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。
PCB设计一、 过孔:板厚和过孔比最好应大于3:1。
二、 焊盘尺寸:非过孔最小焊盘尺寸:D-d=1.0mm过孔最小焊盘尺寸:D-d=0.5mm过孔:D/d=1.5~2其中:D为焊盘直径,d为孔直径。
三、 测试方面的考虑:测试点可以考虑用方形来取代一般的圆形,以增加接触的可靠性,如果精度不是问题,也可以考虑用六或八边形的测试点,以便与辨认区别。
四、 布线:1、输入端与输出端的边线应避免相邻平行,以免产生反射干扰,必要时应加地线隔离,两相邻层的布线需互相垂直,平行容易产生寄生耦合。
2、众所周知的去噪方法是在电源、地线之间加上去耦电容,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线宽>电源线宽>信号线宽,通常信号线宽为0.2~0.3mm,最精细宽度可达0.05~0.07mm,电源线为1.2~2.5mm。
3、大面积导体中连接引脚的处理:在大面积的接地电中,兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离,俗称热焊盘。
4、对于高频信号线最好用地线屏蔽。
多层板走线要求相邻两层印制板的线条应尽量相互垂直,或走斜线、曲线;大面积的电源层和大面积的地线层要相邻,实际上在电源和地之间形成了一个电容,能够起到滤波作用。
五、 焊盘设计控制(SMT):1、焊盘长度:焊盘可靠性主要取决与长度而不是宽度,一般长取0.5mm。
2、焊盘宽度:对于0805以上的阻容元件,或引脚脚间距在1.27mm以上的SO、SOJ等IC芯片,焊盘宽度一般是在元器件引脚宽度的基础上加一个数值,数值的范围在0.1~0.25mm之间;而对于0.65mm(包括0.65mm)脚间距以下的IC芯片,焊盘宽度应等于引脚的宽度;对于细间距的QFP,有的时候焊盘宽度相对于引脚来说还要适当减小。
3、过孔的处理:过孔与焊盘边缘之间的距离大于1mm。
六、 PCB生产工艺对设计的要求:1、单面板实验表明,当铜箔厚度为50um,导线宽度为1~1.5mm,通过2A电流时,温升很小。
在电路设计过程中,应用工程师往往会忽视印刷电路板(PCB)的布局。
通常遇到的问题是,电路的原理图是正确的,但并不起作用,或仅以低性能运行。
在本文中,我将向您介绍如何正确地布设运算放大器的电路板以确保其功能、性能和稳健性。
最近,我与一名实习生在利用增益为2V/V、负荷为10kΩ、电源电压为+/-15V的非反相配置OPA191运算放大器进行设计。
图1所示为该设计的原理图。
图1:采用非反相配置的OPA191]OPA191原理图我让实习生为该设计布设电路板,同时为他做了PCB布设方面的一般指导(例如:尽可能缩短电路板的走线路径,尽量将组件保持紧密排布,以减小电路板所占空间),然后让他自行设计。
设计过程到底有多难?其实就是几个电阻器和电容器罢了,不是吗?图2所示为他首次尝试设计的布局。
红线为电路板顶层的路径,而蓝线为底层的路径。
图2:首次布局尝试方案看到他的首次布局尝试,我意识到了电路板布局并不像我想象的那样直观;我至少应该为他做一些更详细的指导。
他在设计时完全遵从了我的建议:缩短了走线路径,并将各部件紧密地排布在一起。
但其实这种布局还有很大的改善空间,以便减小电路板寄生阻抗并优化其性能。
接下来就是对布局的改进。
我们所做的首项改进是将电阻R1和R2移至OPA191的倒相引脚(引脚2)旁;这样有助于减小倒相引脚的杂散电容。
运算放大器的倒相引脚是一个高阻抗节点,因此灵敏度较高。
较长的走线路径可以作为电线,让高频噪声耦合进信号链。
倒相引脚上的PCB电容会引发稳定性问题。
因此,倒相引脚上的接点应该越小越好。
将R1和R2移至引脚2旁,可以让负荷电阻器R3旋转180度,从而使去耦电容器C1更贴近OPA191的正电源引脚(引脚7)。
让去耦电容器尽可能贴近电源引脚,这一点极其重要。
如果去耦电容器与电源引脚之间的走线路径较长,会增大电源引脚的电感,从而降低性能。
我们所做的另一项改进在于第二个去耦电容器C2。
不应将VCC与C2的导孔连接放在电容器和电源引脚之间,而应布设在供电电压必须通过电容器进入器件电源引脚的位置。
大家都知道理做PCB板就是把设计好的原理图变成一块实实在在的PCB电路板,请别小看这一过程,有很多原理上行得通的东西在工程中却难以实现,或是别人能实现的东西另一些人却实现不了,因此说做一块PCB板不难,但要做好一块PCB板却不是一件容易的事情。
微电子领域的两大难点在于高频信号和微弱信号的处理,在这方面PCB制作水平就显得尤其重要,同样的原理设计,同样的元器件,不同的人制作出来的PCB就具有不同的结果,那么如何才能做出一块好的PCB板呢?根据我们以往的经验,想就以下几方面谈谈自己的看法:一:要明确设计目标接受到一个设计任务,首先要明确其设计目标,是普通的PCB板、高频PCB板、小信号处理PCB板还是既有高频率又有小信号处理的PCB板,如果是普通的PCB板,只要做到布局布线合理整齐,机械尺寸准确无误即可,如有中负载线和长线,就要采用一定的手段进行处理,减轻负载,长线要加强驱动,重点是防止长线反射。
当板上有超过40MHz的信号线时,就要对这些信号线进行特殊的考虑,比如线间串扰等问题。
如果频率更高一些,对布线的长度就有更严格的限制,根据分布参数的网络理论,高速电路与其连线间的相互作用是决定性因素,在系统设计时不能忽略。
随着门传输速度的提高,在信号线上的反对将会相应增加,相邻信号线间的串扰将成正比地增加,通常高速电路的功耗和热耗散也都很大,在做高速PCB 时应引起足够的重视。
当板上有毫伏级甚至微伏级的微弱信号时,对这些信号线就需要特别的关照,小信号由于太微弱,非常容易受到其它强信号的干扰,屏蔽措施常常是必要的,否则将大大降低信噪比。
以致于有用信号被噪声淹没,不能有效地提取出来。
对板子的调测也要在设计阶段加以考虑,测试点的物理位置,测试点的隔离等因素不可忽略,因为有些小信号和高频信号是不能直接把探头加上去进行测量的。
此外还要考虑其他一些相关因素,如板子层数,采用元器件的封装外形,板子的机械强度等。
在做PCB 板子前,要做出对该设计的设计目标心中有数。
二。
了解所用元器件的功能对布局布线的要求我们知道,有些特殊元器件在布局布线时有特殊的要求,比如LOTI和APH所用的模拟信号放大器,模拟信号放大器对电源要求要平稳、纹波小。
模拟小信号部分要尽量远离功率器件。
在OTI板上,小信号放大部分还专门加有屏蔽罩,把杂散的电磁干扰给屏蔽掉。
NTOI板上用的GLINK芯片采用的是ECL工艺,功耗大发热厉害,对散热问题必须在布局时就必须进行特殊考虑,若采用自然散热,就要把GLINK芯片放在空气流通比较顺畅的地方,而且散出来的热量还不能对其它芯片构成大的影响。
如果板子上装有喇叭或其他大功率的器件,有可能对电源造成严重的污染这一点也应引起足够的重视.三. 元器件布局的考虑元器件的布局首先要考虑的一个因素就是电性能,把连线关系密切的元器件尽量放在一起,尤其对一些高速线,布局时就要使它尽可能地短,功率信号和小信号器件要分开。
在满足电路性能的前提下,还要考虑元器件摆放整齐、美观,便于测试,板子的机械尺寸,插座的位置等也需认真考虑。
高速系统中的接地和互连线上的传输延迟时间也是在系统设计时首先要考虑的因素。
信号线上的传输时间对总的系统速度影响很大,特别是对高速的ECL电路,虽然集成电路块本身速度很高,但由于在底板上用普通的互连线(每30cm线长约有2ns的延迟量)带来延迟时间的增加,可使系统速度大为降低.象移位寄存器,同步计数器这种同步工作部件最好放在同一块插件板上,因为到不同插件板上的时钟信号的传输延迟时间不相等,可能使移位寄存器产主错误,若不能放在一块板上,则在同步是关键的地方,从公共时钟源连到各插件板的时钟线的长度必须相等。
标签:怎样做一块好的PCB 板bunny 编辑于2007-12-7下午10:22掌声 (122 )板砖 ( 7)制作电路板时,怎么样敷铜才好PCB Layout 中的走线策略快速回复用户名:: 如尽幸标题: 回复主题:怎样做一块好的PCB板* 评论:*第1楼 回复主题:怎样做一块好的PCB 板 发布时间:2007-12-7 下午10:21作者:bunny等级:天人合一积分:6402分- 发送消息- 查看用户的所有发言回复引用四,对布线的考虑随着OTNI和星形光纤网的设计完成,以后会有更多的100MHz以上的具有高速信号线的板子需要设计,这里将介绍高速线的一些基本概念。
1.传输线印制电路板上的任何一条“长”的信号通路都可以视为一种传输线。
如果该线的传输延迟时间比信号上升时间短得多,那么信号上升期间所产主的反射都将被淹没。
不再呈现过冲、反冲和振铃,对现时大多数的MOS电路来说,由于上升时间对线传输延迟时间之比大得多,所以走线可长以米计而无信号失真。
而对于速度较快的逻辑电路,特别是超高速ECL集成电路来说,由于边沿速度的增快,若无其它措施,走线的长度必须大大缩短,以保持信号的完整性。
有两种方法能使高速电路在相对长的线上工作而无严重的波形失真,TTL对快速下降边沿采用肖特基二极管箝位方法,使过冲量被箝制在比地电位低一个二极管压降的电平上,这就减少了后面的反冲幅度,较慢的上升边缘允许有过冲,但它被在电平“H”状态下电路的相对高的输出阻抗(50~80Ω)所衰减。
此外,由于电平“H”状态的抗扰度较大,使反冲问题并不十分突出,对HCT系列的器件,若采用肖特基二极管箝位和串联电阻端接方法相结合,其改善的效果将会更加明显。
当沿信号线有扇出时,在较高的位速率和较快的边沿速率下,上述介绍的TTL整形方法显得有些不足。
因为线中存在着反射波,它们在高位速率下将趋于合成,从而引起信号严重失真和抗干扰能力降低。
因此,为了解决反射问题,在ECL系统中通常使用另外一种方法:线阻抗匹配法。
用这种方法能使反射受到控制,信号的完整性得到保证。
严格他说,对于有较慢边沿速度的常规TTL和CMOS器件来说,传输线并不是十分需要的.对有较快边沿速度的高速ECL器件,传输线也不总是需要的。
但是当使用传输线时,它们具有能预测连线时延和通过阻抗匹配来控制反射和振荡的优点。
1决定是否采用传输线的基本因素有以下五个。
它们是:(1)系统信号的沿速率,(2)连线距离,(3)容性负载(扇出的多少),(4)电阻性负载(线的端接方式);(5)允许的反冲和过冲百分比(交流抗扰度的降低程度)。
2.传输线的几种类型(1)同轴电缆和双绞线:它们经常用在系统与系统之间的连接。
同轴电缆的特性阻抗通常有50Ω和75Ω,双绞线通常为110Ω。
(2)印制板上的微带线微带线是一根带状导(信号线).与地平面之间用一种电介质隔离开。
如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。
微带线的特性阻抗Z0为:式中:【Er为印制板介质材料的相对介电常数6为介电质层的厚度W为线的宽度t 为线的厚度单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关。
(3)印制板中的带状线带状线是一条置于两层导电平面之间的电介质中间的铜带线。
如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的,带状线的特性阻抗乙为:式中:b 是两块地线板间的距离W 为线的宽度t 为线的厚度同样,单位长度带状线的传输延迟时间与线的宽度或间距是无关的;仅取决于所用介质的相对介电常数。
(上)有关RS485电路可靠性设计的经典资料![下载]电子设计1000例掌声 ( 46)板砖 (0 )电子系统设计:Silicon Labs Timing 产品核心技术介绍回复 引用3.端接传输线在一条线的接收端用一个与线特性阻抗相等的电阻端接,则称该传输线为并联端接线。
它主要是为了获得最好的电性能,包括驱动分布负载而采用的。
有时为了节省电源消耗,对端接的电阻上再串接一个104电容形成交流端接电路,它能有效地降低直流损耗。
在驱动器和传输线之间串接一个电阻,而线的终端不再接端接电阻,这种端接方法称之为串联端接。
较长线上的过冲和振铃可用串联阻尼或串联端接技术来控制.串联阻尼是利用一个与驱动门输出端串联的小电阻(一般为10~75Ω)来实现的.这种阻尼方法适合与特性阻抗来受控制的线相联用(如底板布线,无地平面的电路板和大多数绕接线等。
串联端接时串联电阻的值与电路(驱动门)输出阻抗之和等于传输线的特性阻抗.串联联端接线存在着只能在终端使用集总负载和传输延迟时间较长的缺点.但是,这可以通过使用多余串联端接传输线的方法加以克服。
4.非端接传输线如果线延迟时间比信号上升时间短得多,可以在不用串联端接或并联端接的情况下使用传输线,如果一根非端接线的双程延迟(信号在传输线上往返一次的时间)比脉冲信号的上升时间短,那么由于非端接所引起的反冲大约是逻辑摆幅的15%。
最大开路线长度近似为:Lmax <tr/2tpd式中:tr 为上升时间tpd 为单位线长的传输延迟时间5.几种端接方式的比较并联端接线和串联端接线都各有优点,究竟用哪一种,还是两种都用,这要看设计者的爱好和系统的要求而定。
并联端接线的主要优点是系统速度快和信号在线上传输完整无失真。
长线上的负载既不会影响驱动长线的驱动门的传输延迟时间,又不会影响它的信号边沿速度,但将使信号沿该长线的传输延迟时间增大。
在驱动大扇出时,负载可经分支短线沿线分布,而不象串联端接中那样必须把负载集总在线的终端。
串联端接方法使电路有驱动几条平行负载线的能力,串联端接线由于容性负载所引起的延迟时间增量约比相应并联端接线的大一倍,而短线则因容性负载使边沿速度放慢和驱动门延迟时间增大,但是,串联端接线的串扰比并联端接线的要小,其主要原因是沿串联端接线传送的信号幅度仅仅是二分之一的逻辑摆幅,因而开关电流也只有并联端接的开关电流的一半,信号能量小串扰也就小。
护能力全攻略 电源完整性设计详解 开关电源原理与设计-张占松(pdf 完整版)共556页掌声 (29 板砖 ( 0))作者:bunny等级: 天人合一积分: 6402分- 发送消息- 查看用户的所有发言 回复 引用五.PCB 板的布线技术做PCB 时是选用双面板还是多层板,要看最高工作频率和电路系统的复杂程度以及对组装密度的要求来决定。
在时钟频率超过200MHZ 时最好选用多层板。
如果工作频率超过350MHz ,最好选用以聚四氟乙烯作为介质层的印制电路板,因为它的高频衰耗要小些,寄生电容要小些,传输速度要快些,还由于Z0较大而省功耗,对印制电路板的走线有如下原则要求 (1)所有平行信号线之间要尽量留有较大的间隔,以减少串扰。
如果有两条相距较近的信号线,最好在两线之间走一条接地线,这样可以起到屏蔽作用。
(2) 设计信号传输线时要避免急拐弯,以防传输线特性阻抗的突变而产生反射,要尽量设计成具有一定尺寸的均匀的圆弧线。