新人教版七年级数学上册计算题
- 格式:doc
- 大小:1.34 MB
- 文档页数:34
七年级数学上册计算题(428道题)(1)()22--= (2)3112⎛⎫⎪⎝⎭-=(3)()91- = (4)()42-- =(5)()20031-= (6)()2332-+-=(7)()33131-⨯--= (8)()2233-÷- = (9))2()3(32-⨯-= (10)22)21(3-÷-=(11)()()3322222+-+-- (12)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭(13)()34255414-÷-⎪⎭⎫ ⎝⎛-÷ (14)()⎪⎭⎫ ⎝⎛-÷----721322246 (15)()()()33220132-⨯+-÷--- (16) []24)3(2611--⨯-- (17)])3(2[)]215.01(1[2--⨯⨯-- (18) (19)()()()33220132-⨯+-÷---(20)22)2(3---;(21)]2)33()4[()10(222⨯+--+-; (22)])2(2[31)5.01()1(24--⨯⨯---;(23)94)211(42415.0322⨯-----+-; (24)20022003)2()2(-+-; (25))2()3(]2)4[(3)2(223-÷--+-⨯--; (26)200420094)25.0(⨯-.(27)()0252423132.⨯--÷-⎛⎝ ⎫⎭⎪+⎡⎣⎢⎢⎤⎦⎥⎥ (28)()()----⨯-221410222(29)()()()-⨯÷-+-⎛⎝ ⎫⎭⎪⨯-÷-3120313312232325.. (30)()()()-⎛⎝ ⎫⎭⎪⨯-⨯-⨯-212052832.(31)(32)(56)(79)---(33)(3)(9)(8)(5)-⨯---⨯- (34)3515()26÷-+ (35)5231591736342--+- (36)()()22431)4(2-+-⨯--- (37)411)8()54()4()125.0(25⨯-⨯-⨯-⨯-⨯332222()(3)(3)33÷--+-(38)如果0)2(12=-++b a ,求20112010()-3ab a b a a ++-()的值 (39)已知|1|a +与|4|b -互为相反数,求ba 的值。
1当2已知,当3当4当5当当6若代数式7已知当8当9 C. D.如图所示的运算程序中,若开始输入的10B.C. D.按如图所示的程序计算:若开始输入的11 B.C.D.已知,则代数式的值是().12 B.C.D.已知,则式子的值为().13不能确定已知代数式的值是,则代数式的值是().14当时,代数式值为,那么当时,代数式的值是 ().1516化简17当18已知19已知代数式20化简21若22已知23如果24已知代数式25若代数式26整式化简求值:先化简,再求值:27已知整式化简求值:先化简,再求值:28已知三个有理数29已知30先化简,再求值31已知代数式32按照如图的运算顺序,输入33如图是一个数值转换机.若输入的34当35若36已知37已知多项式时,多项式的值是38已知.3940设41用整体思想解题:为了简化问题,我们往往把一个式子看成一个数42已知当43已知当44已知45先化简再求值:46设若代数式47若48已知49先化简再求值50若51已知52先化简,再求值:53先化简,在求值:5456当57化简求值:58化简:59请回答下列各题:60已知62已知63先化简,再求值:64先化简,再求值:65先化简,再求值:66回答下面问题;67先化简,再求值:68先化简,再求值:69化简再求值:70阅读框图并回答下列问题:.71先化简,再求值:72先化简,再求值.求73对于74先化简,再求值:75若76已知77已知78已知79奕铭在化简多项式80先化简,再求值81先化简,再求值:82先化简,再求值:83若84已知:85先化简再求值:86先化简,再求值:87已知88已知89已知90先化简,再求值:91已知92先化简,再求值:93若单项式94求多项式95设96已知97已知98求99若100若代数式1 23 4 5 67 8 9 10 11 1213 14 15 16 17 18 1920 21 22 23 24 25 26 2728 29 30 31 32 33 34 3536 37 38 39 40 41 4243 44 45 46 47 48 4950 51 52 53 54 55 5657 58 59 60 61 62 63 6465 66 67 68 69 70 7173 74 75 76 77 78 7981 82 83 84 85 8687 88 89 90 91 9293 94 9596 9798 99 100。
1.计算:(1) (-5)×2+20÷(-4) (2) -32-[-5+(10-0.6÷53)÷(-3)2]2.先化简,后求值:2(x 2y +xy )-3(x 2y -xy )-4x 2y ,其中x =1,y =-13.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是3,n 在有理数王国里既不是正数也不是负数,求)()()(201322012d c b a n cd m mb a ++++-++的值 4.计算:(1)-17-(-23)+(-13)-(+23) (2)12)1216143(⨯-- (3)220122013)2()41(4-÷⨯ (4)21(14---)2×35--÷(21-)3. 5.计算(1)(2a -1)+2(1-a ); (2)3 (3x +2)- 2(3+x ).6.先化简.再求值. -2(ab -a 2)-3ab -1+(6ab -2a 2),其中a =1,b =-1. 7.计算⑴. 15218()263⨯-+⑵. 2232)(---⑶. 431(1)(1)3(22)2-+-÷⨯-⑷. 744-+-x x8.先化简,再求值222225(3)(3)2a b ab ab a b ab --++,其中21=a ,3b =. 19.计算(1). 5)4()16(12--+-- (2). 2111941836⎛⎫⎛⎫--+÷-⎪ ⎪⎝⎭⎝⎭⑶(4).4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦20.计算(1).)32(4)8(2222-+--+-xy y x y x xy (2). 5ab 2-[a 2b +2(a 2b -3ab 2)]21.先化简求值:()()2221234,,12x y xy x y xy x y x y +---==-其中22.计算(1))16(2317-++- (2)18.0)25()5(124-+-⨯-÷-9221441254-⨯⎪⎭⎫ ⎝⎛-÷⨯--⑶x x x 24-+-⑷)104(3)72(5b a b a ---23.化简:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2)18.已知|a ﹣2|+(b ﹣3)2=0,求b a ﹣a b 的值.24.已知三角形第一边长为2a+b ,第二边比第一边长a ﹣b ,第三边比第二边短a ,求这个三角形的周长.25.先化简,再求值:(﹣x 2+5x+4)+(5x ﹣4+2x 2),其中x=﹣2. 26.计算(1)312 +(-12 )-(-13 )+223 (2)()()[]2421315.011--⨯⨯---(3)2222735xy y x xy y x --+(4)5(a 2b ﹣3ab 2)﹣2(a 2b ﹣7ab 2)⑸3-(-6+32)÷(-1+4) ⑹6-4×(-21)-〔(-2)3+(-9)÷(-31)〕 ⑺(2xy-5x )-2(xy-3x) ⑻a 3-3(1-a)+(1-a+a 2)-(1-a+a 2+a 3)27、(本小题5分)先化简,再求值。
七年级数学上册计算题(428道题)(1)()22--= (2)3112⎛⎫⎪⎝⎭-=(3)()91- = (4)()42-- =(5)()20031-= (6)()2332-+-=(7)()33131-⨯--= (8)()2233-÷- =(9))2()3(32-⨯-= (10)22)21(3-÷-=(11)()()3322222+-+-- (12)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭(13)()34255414-÷-⎪⎭⎫ ⎝⎛-÷ (14)()⎪⎭⎫ ⎝⎛-÷----721322246(15)()()()33220132-⨯+-÷--- (16) []24)3(2611--⨯--(17)])3(2[)]215.01(1[2--⨯⨯-- (18)(19)()()()33220132-⨯+-÷--- (20)22)2(3---;(21)]2)33()4[()10(222⨯+--+-; (22)])2(2[31)5.01()1(24--⨯⨯---; 332222()(3)(3)33÷--+-(23)94)211(42415.0322⨯-----+-; (24)20022003)2()2(-+-;(25))2()3(]2)4[(3)2(223-÷--+-⨯--; (26)200420094)25.0(⨯-.(27)()0252423132.⨯--÷-⎛⎝ ⎫⎭⎪+⎡⎣⎢⎢⎤⎦⎥⎥ (28)()()----⨯-221410222(29)()()()-⨯÷-+-⎛⎝ ⎫⎭⎪⨯-÷-3120313312232325.. (30)()()()-⎛⎝ ⎫⎭⎪⨯-⨯-⨯-212052832.(31) (32)(56)(79)---(33)(3)(9)(8)(5)-⨯---⨯- (34)3515()26÷-+(35)5231591736342--+- (36)()()22431)4(2-+-⨯---(37)411)8()54()4()125.0(25⨯-⨯-⨯-⨯-⨯33182(4)8-÷--(38)如果0)2(12=-++b a ,求20112010()-3ab a b a a ++-()的值(39)已知|1|a +与|4|b -互为相反数,求b a 的值。
人教版七年级数学上册期末常考题型过关练习:计算题专项(四)一.有理数混合运算1.计算(1)10﹣(﹣5)+(﹣8);(2)÷(﹣1)×(﹣2);(3)(+﹣)×12;(4)(﹣1)10×2+(﹣2)3÷4.2.计算(1)(﹣4)﹣(+13)+(﹣5)﹣(﹣9)+7;(2);(3);(4).3.计算:(1)6.14+(﹣2)﹣(﹣5.86)﹣(+)(2)24÷(﹣)﹣6×22(3)(﹣1)2020+[18×(﹣)+24×(﹣)]﹣36×(﹣+1)﹣02019(4)(﹣)2018×32021+(﹣2)3÷2.5×|﹣3﹣|4.计算:(1)(﹣2.4)﹣(+1.6)﹣(﹣7.6)﹣(﹣9.4);(2)﹣14﹣×|2﹣(﹣3)2|+(﹣+﹣)÷(﹣).5.计算:(1)﹣14+16÷(﹣2)3×(﹣3﹣1)(2)(﹣+)×(﹣36)(3)二.整式运算6.先化简,再求值:﹣xy,其中x=3,y=﹣.7.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B的值.8.化简求值3(a2﹣ab+2b2)﹣2(2a2﹣ab+b2),其中a=,b=﹣1.9.已知:A=2x2+3xy﹣5x+1,B=﹣x2+xy+2.(1)求A+2B.(2)若A+2B的值与x的值无关,求y的值.10.先化简,再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣5xy,其中x=﹣1,y=1.三.解一元一次方程11.解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1﹣=12.解方程:(1);(2)13.解方程(1)2(x﹣2)﹣3(4x﹣1)=5(1﹣x);(2)﹣1=x﹣.14.解下列方程:(1)3x﹣1=2﹣x;(2)1﹣2(x﹣1)=﹣3x;(3)﹣=1;(4)[2(x﹣)+]=5x.15.解方程:(1)2x﹣1=3(x﹣1);(2)﹣=2.四.一元一次方程应用16.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?17.如图,在数轴上点A表示数a,点C表示数c,且|a+10|+(c﹣20)2=0.我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB.(1)求AC的值;(2)若数轴上有一动点D满足CD+AD=36,直接写出D点表示的数;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A、C 的速度分别为每秒3个单位长度,每秒4个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值.②若点A向左运动,点C向右运动,2AB﹣m×BC的值不随时间t的变化而改变,请求出m的值.18.某商场从厂家购进了A、B两种品牌足球共100个,已知购买A品牌足球比购买B品牌足球少花2800元,其中A品牌足球每个进价是50元,B品牌足球每个进价是80元.(1)求购进A、B两种品牌足球各多少个?(2)在销售过程中,A品牌足球每个售价是80元,很快全部售出;B品牌足球每个按进价加价25%销售,售出一部分后,出现滞销,商场决定打九折出售剩余的B品牌足球,两种品牌足球全部售出后共获利2200元,有多少个B品牌足球打九折出售?19.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90 超过17吨但不超过30吨的部分b0.90 超过30吨的部分 6.00 0.90 (说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)20.如图:是某月份的月历表,请你认真观察月历表,回答以下问题:(1)如果圈出同一行的三个数,用a表示中间的数,则第一个数,第三个数怎样表示?(2)如果圈出同一列的三个数,用a表示中间的数,则第一个数,第三个数怎样表示?(3)如果圈出如图所示的任意9个数,这9个数的和可能是207吗?如果可能,请求出这9个数;如果不可能,请说明理由.参考答案1.解:(1)10﹣(﹣5)+(﹣8)=10+5﹣8=7;(2)÷(﹣1)×(﹣2)=×(﹣)×(﹣)=;(3)(+﹣)×12=×12+×12﹣×12=3+2﹣6=﹣1;(4)(﹣1)10×2+(﹣2)3÷4=1×2+(﹣8)÷4=2﹣2=0.2.解:(1)(﹣4)﹣(+13)+(﹣5)﹣(﹣9)+7 =﹣4﹣13﹣5+9+7=﹣22+16=﹣6;(2)=(6+3)+(﹣3.3+3.3)+(6+4)=10+0+10=20;(3)=﹣81×(﹣)××(﹣)=﹣1;(4)=﹣33﹣56+18=﹣71.3.解:(1)6.14+(﹣2)﹣(﹣5.86)﹣(+)=6.14+(﹣2)+5.86+(﹣)=9;(2)24÷(﹣)﹣6×22=24÷()﹣(6+)×22=24÷﹣132﹣21=24×6﹣132﹣21=144﹣132﹣21=﹣9;(3)(﹣1)2020+[18×(﹣)+24×(﹣)]﹣36×(﹣+1)﹣02019=1+[(18+24)×(﹣)]﹣(8﹣27+39)﹣0=1+42×(﹣)﹣20=1+(﹣24)﹣20=﹣43;(4)(﹣)2018×32021+(﹣2)3÷2.5×|﹣3﹣|=()2018×32021+(﹣8)÷×3=(×3)2018×33+(﹣8)××=1×27+(﹣12)=27+(﹣12)=15.4.解:(1)(﹣2.4)﹣(+1.6)﹣(﹣7.6)﹣(﹣9.4)=(﹣2.4)+(﹣1.6)+7.6+9.4=13;(2)﹣14﹣×|2﹣(﹣3)2|+(﹣+﹣)÷(﹣)=﹣1﹣×|2﹣9|+(﹣+﹣)×(﹣24)=﹣1﹣×7+8+(﹣18)+2=﹣1﹣1+8+(﹣18)+2=﹣10.5.解:(1)﹣14+16÷(﹣2)3×(﹣3﹣1)=﹣1+16÷(﹣8)×(﹣4)=﹣1+8=7;(2)(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=(﹣8)+9+(﹣2)=1+(﹣2)=﹣1;(3)=(﹣1)﹣(2﹣9)×(﹣2)=(﹣1)﹣(﹣7)×(﹣2)=(﹣1)﹣14=﹣15.6.解:原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.7.解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=5a﹣6a+7b﹣3b+4c+5c=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=2a2b﹣6a2b﹣ab2﹣2ab2=﹣4a2b﹣3ab2;(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=1,y=﹣2时原式=(﹣2)2+5×1×(﹣2)=4﹣10=﹣6;(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)=8x2y﹣10xy2﹣3x2y+4y2=5x2y﹣10xy2+4y2当x=﹣2,y=1时,原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12=5×4×1﹣(﹣20)×1+4=20+20+4=44.8.解:原式=3a2﹣3ab+6b2﹣4a2+2ab﹣2b2=﹣a2﹣ab+4b2,当a=,b=﹣1时,原式=﹣++4=4.9.解:(1)∵A=2x2+3xy﹣5x+1,B=﹣x2+xy+2,∴A+2B=(2x2+3xy﹣5x+1)+2(﹣x2+xy+2)=2x2+3xy﹣5x+1﹣2x2+2xy+4=5xy﹣5x+5;(2)∵A+2B的值与x的值无关,且A+2B=(5y﹣5)x+5,∴5y﹣5=0,解得:y=1,则y的值是1.10.解:原式=2x2y+2xy﹣3x2y+3xy﹣5xy=﹣x2y,当x=﹣1,y=1时,原式=﹣1.11.解:(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.12.解:(1)去分母得:3﹣(x﹣7)=12(x﹣10),去括号得:3﹣x+7=12x﹣120,移项合并得:13x=130,解得:x=10;(2)去分母得:4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣20x﹣2=6x+3﹣12,移项合并得:﹣18x=﹣3,解得:x=.13.解:(1)去括号得:2x﹣4﹣12x+3=5﹣5x,移项得:2x﹣12x+5x=5+4﹣3,合并得:﹣5x=6,解得:x=﹣1.2;(2)去分母得:3(2x+1)﹣12=12x﹣(10x+1),去括号得:6x+3﹣12=12x﹣10x﹣1,移项得:6x﹣12x+10x=﹣1﹣3+12,合并得:4x=8,解得:x=2.14.解:(1)移项得,3x+x=2+1,合并同类项得:4x=3,解得:x=;(2)去括号得:1﹣2x+2=﹣3x,移项得,﹣2x+3x=﹣2﹣1,合并同类项得:x=﹣3;(3)去分母得:4x+2﹣x+1=6,移项得,4x﹣x=6﹣1﹣2,合并同类项得:3x=3,解得:x=1;(4)去中括号得:3(x﹣)+1=5x,去小括号得:3x﹣+1=5x,移项得,3x﹣5x=﹣1+,合并同类项得:﹣2x=,解得:x=﹣.15.解:(1)∵2x﹣1=3(x﹣1),∴2x﹣1=3x﹣3,∴2x﹣3x=1﹣3,∴﹣x=﹣2,∴x=2.(2)∵﹣=2,∴2x+15﹣=2,∴3(2x+15)﹣(10x﹣1)=6,∴6x+45﹣10x+1=6,∴﹣4x+46=6,∴﹣4x=﹣40,∴x=10.16.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.17.解:(1)∵|a+10|+(c﹣20)2=0,∴a=﹣10,c=20,∴AC=20﹣(﹣10)=30;(2)当点D在点A的左侧,∵CD+AD=36,∴AD+AC+AD=36,∴AD=3,∴点D点表示的数为﹣10﹣3=﹣13;当点D在点A,C之间时,∵CD+AD=AC=30≠36,∴不存在点D,使CD+AD=36;当点D在点C的右侧时,∵CD+AD=36,∴AC+CD+CD=36,∴CD=6,∴点D点表示的数为20+3=23;综上所述,D点表示的数为﹣13或23;(3)①∵AB=BC,∴|(1+t)﹣(﹣10+3t)|=|(1+t)﹣(20﹣4t)|∴t=或,②∵2AB﹣m×BC=2×(11+4t)﹣m(19+3t)=(8﹣3m)t+22﹣19m,且2AB﹣m×BC的值不随时间t的变化而改变,∴8﹣3m=0,∴m=.18.解:(1)设购进A品牌足球x个,则购进B品牌足球(100﹣x)个,根据题意,得80(100﹣x)﹣50x=2800,解得x=40.100﹣x=60.答:购进A品牌足球40个,则购进B品牌足球60个;(2)设有y个B品牌足球打九折出售,根据题意,得(80﹣50)×40+80×(1+25%)(60﹣y)+[80(1+25%)×90%﹣80]y=2200.解得y=20.答:有20个B品牌足球打九折出售.19.解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.20.解:(1)同一行中的第一个数为:a﹣1.第三个数为:a+1;(2)同一列中的第一个数为:a﹣7.第三个数为:a+7.(3)设9个数中间的数为:x,则这九个数分别为:x+8,x+7,x+6,x﹣1,x,x+1,x﹣8,x﹣7,x﹣6,则这9个数的和为:(x+8)+(x+7)+(x+6)+(x﹣1)+(x+1)+x+(x﹣8)+(x﹣7)+(x﹣6)=9x.所以:当9个数的和为207时,即:9x=207解得:x=23.所以:此时的九个数分别是:15 16 1722 23 2429 30 31.。
七年级数学有理数计算题练习题(200题)有理数加法 1、(-9)+(-13) 2、(-12)+27 3、(-28)+(-34)4、67+(-92)5、 (-27.8)+43.96、(-23)+7+(-152)+65原则一:所有正数求和,所有负数求和,最后计算两个数的差,取绝对值较大的数的符号。
7、|52+(-31)| = 8、(-52)+|―31| =9、 38+(-22)+(+62)+(-78)=10、(-8)+(-10)+2+(-1) 11、(-32)+0+(+41)+(-61)+(-21)12、(-8)+47+18+(-27) 13、(-5)+21+(-95)+29 14、(-8.25)+8.25+(-0.25)+(-5.75)+(-7.5) 15、 6+(-7)+(-9)+216、 72+65+(-105)+(-28) 17、(-23)+|-63|+|-37|+(-77)18、19+(-195)+47 18、(+18)+(-32)+(-16)+(+26)20、(-0.8)+(-1.2)+(-0.6)+(-2.4) 21、(-8)+(-321)+2+(-21)+1222、 553+(-532)+452+(-31) 23、(-6.37)+(-343)+6.37+2.75原则二:凑整,0.25+0.75=141+43=1 0.25+43=1 抵消:和为零有理数减法7-9 = ―7―9 = 0-(-9) = (-25)-(-13) =8.2―(―6.3) (-321)-541(-12.5)-(-7.5)= = =(-26)―(-12)―12―18 ―1―(-21)―(+23) (-41)―(-85)―81=-44 =-2 =41(-20)-(+5)-(-5)-(-12) (-23)―(-59)―(-3.5) |-32|―(-12)―72―(-5) =-8 =39.5 =-23(+103)―(-74)―(-52)―710 (-516)―3―(-3.2)―7 (+71)―(-72)―73=―7011 =-10 =0(-0.5)-(-31)+6.75-51(+6.1)―(-4.3)―(-2.1)―5.1=4 =7.4(-32)―(-143)―(-132)―(+1.75) (-332)―(-243)―(-132)―(-1.75)=1 =2.5-843-597+461-392 -443+61+(-32)―25 =-13127 =-7430.5+(-41)-(-2.75)+21(+4.3)-(-4)+(-2.3)-(+4)=3.5 =2原则三:结果的形式要与题目中数的形式保持一致。
人教版数学七年级上册期末计算题100例附解析(3)1.计算:(1)(+12)+(-21);(2)(−12)−(−13) .2.解方程:2x−13=x+22+1.3.先化简,再求值:2(12b −1)−3(−13a 2+b −2) ,其中a=-1,b=1. 4.化简(1)3(53x 2−4x +3)−5(x 2−3x +2)(2)-2x 2−[−3x 2−2(52x −32)+5x]5.解方程: x 0.7 ﹣ 1.7−2x 0.3=1. 6.计算:[﹣22﹣( 79−1112+16 )×36]÷5.7.计算:(1)−40−(−19)+(−24)(2)(-5)×(-8)-(-28)÷4(3)(12+56−712)×12(4)−22−(−2)2−23×(−1)2011(5)−32÷94+|−4|×0.52+229×(−112)28.计算:(1)把37.37°化为度、分、秒;(2)把13°37′48″化为度.9.619 ÷(-1 12 )× 1924 ;10.已知方程 (a −4)x |a|−3+2=0 是关于x 的一元一次方程,求a 的值.11.计算:(﹣1)2﹣(π﹣3)0+2﹣2 .12.若多项式4x n+2﹣5x 2﹣n +6是关于x 的三次多项式,求代数式n 2﹣2n+3的值.13.计算:7+( −15 )-4-(-0.2)14.已知:|a|=5,|b-1|=8,且a-b<0,求a+b 的值。
15.计算: (1) (12)2−(−3)0(1)(12)−2−(−3)0 ;(2)8a 3−3a 5÷a 2(3)4ab (2a 2b 2−ab +3) ;(4)(x +y)2−(x −y)(x +y)16.解方程: x+12+3−2x 3=117.计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3)513+(−423)+(−613) ;(4)23+(-72)+(-22)+57+(-16);(5)356+(−315)+(−256)+415+(−2) ;(6)2.25+(-4 14 )+(-2.5)+2 12 +3.4+(-175 ) (7)5611+(−3.125)+(−747)+(−3411)+818+(−367)+(−2211)+63718.先化简,再求值: 3a 2b −[−2a 2b −6(ab −23a 2b)+4ab]−3ab ,其中 a =3 , b =−13 . 19.已知有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C .其位置如图所示,化简 |a |+2|b +c|−3|a −c|−4|a +b| .20.解一元一次方程: 3x−24 ﹣ 5x+26 =1﹣x .21.去括号,并合并相同的项:﹣(y+x )﹣(5x ﹣2y )22.如果关于x 的多项式5x 2﹣(2y n+1﹣mx 2)﹣3(x 2+1)的值与x 的取值无关,且该多项式的次数是三次.求m ,n 的值.23.解方程: 4x−13−2x+16=1 .24.先去括号,再合并同类项:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2)25.12(x−3)+1=x−13(x−2)26.计算:(x﹣2)2﹣(x+3)(x﹣3)27.100÷(﹣2)2﹣(﹣2)÷(﹣2)28.计算下列各题:(1)(1﹣16+ 34)×(﹣48)(2)﹣14﹣(1﹣0.5)× 13×[2﹣(﹣3)2].29.计算:(1)20-17-(-7)(2)3×(−2)−(−28)÷7(3)(19-16-118)×36(4)−23+3×(−1)2010−(−2)2 30.解方程:(1)①2(x-2)=3(4x-1)+9(2)② x−20.2−x+30.5=231.计算:(1)2a3b(−3ab2)2;(2)[(−14)÷2−3+(−23)]×(−1)201632.已知|m|=4,|n|=6,且|m+n|=m+n,求m−n的值.33.计算(1)20070+2﹣2﹣(12)2+2009(2)(﹣2ab)(3a2﹣2ab﹣b2)(3)(2x2)3﹣6x3(x3+2x2﹣x)(4)(2a+3b)2﹣(2a﹣b)(2a+b)(5)(2x﹣5)(2x+5)﹣(2x+1)(2x﹣3)(6)(x3+3)2−(x3−3)2(7)(x+1)(x+3)﹣(x﹣2)2(8)(a+b+3)(a+b ﹣3)(9)(9x 2y ﹣6xy 2+3xy )÷( 3xy )(10)化简求值:(3a ﹣1)2﹣3(2﹣5a+3a 2),其中 a =−13 . 34.已知 |x −8y|+2(4y −1)2+3|8z −3x|=0 ,求x +y +z 的值. 35.计算(1)−34+(−8)−5−(−23)(2)−5×(−115)+13×(−115)−3×(−115)(3)−22+√273−6+(−2)×√9(4)−22×(−12)+8÷(−2)2+(−1)201836.用简便方法计算:﹣1.25+2.25+7.75+(﹣8.75)37.-|-26|+|+28|-(+15)38.计算:(1)|−2|+(π+3)0−(12)−3(2)a 5⋅(−2a)3+a 6⋅(−3a)2(3)(4a 2−6ab +2a)÷2a(4)20182−2017×2019 (用乘法公式)39.解方程(1)3(3x +5)=2(2x −1)(2)x−23−0.5=5x 640.计算:(1)18x 3yz· (−13y 2z)3 ÷ 16 x 2y 2z;(2)(a 3+2)2 - (a 3−2)2 .41.计算:(1)(−56)×(47−38+114) ;(2)(−18)÷94+(−2)3×(−12)−(−32) .42.计算题:(1)23+17+(-7)+(-16)(2)(-5 14 )+(-3.5)(3)(+ 23 )+(- 34 )(4)23 +(- 15 )+(-1)+ 13 .43.计算题(1)8﹣(﹣3)+2+(﹣6)(2)﹣22×3﹣(﹣3)2÷344.解一元一次方程:(1)7x ﹣5=3x ﹣1(2)y−14−2=2y−3645.计算:(1)12−(−9)+|−7|−4(2)(−12)×(43−34+56)(3)(−2)2×5−23÷4 ;(4)8x +2y +(−5x −y)46. 先化简,再求值:(1)4a +3a 2-3-3a 3-(-a +4a 3),其中a =-2;(2)2x 2y -2xy 2-[(-3x 2y 2+3x 2y)+(3x 2y 2-3xy 2)],其中x =-1,y =2.47.解下列方程(1)3x-4=x(2)x−12=1−x−1448. 计算:(1)1.3-(-2.7);(2)(-13)-(-17);(3)(-1.8)-(+4.5);(4)6.38-(-2.62);(5)(−14)−(−13) ;(6)(−6.25)−(−314) .49.解方程(1)2(2x −1)=1−(3−x)(2)x 0.3−2x−10.7=150.计算:(1)( 16 - 34 + 512 )× 12(2)(−81)÷214×49÷(−16)51.先化简再求值:(1)(4a 2﹣3a )﹣(1﹣4a+4a 2),其中a=﹣2(2)﹣2(mn ﹣3m 2)﹣[m 2﹣5(mn ﹣m 2)+2mn],其中m=1,n=﹣2. 52.计算:(1)(-8)+10+(-3)+2(2)(14−56+38)×24(3)12×(−23)−(−54)÷(−14)(4)−12+[(−4)2−(1−3)2×(−12)3]53.先化简,再求值: 3(x 2−2xy)−[3x 2−2y +2(xy +y)] ,其中 x =−12,y =−3 .54.(-0.19)+(-3.11)55.计算题:(1)−2−(−12)−(+23)(2)(−2)2×7−(−3)×(−6)−|−5|56. 计算:(1)28°32′46″+15°36′48″;(2)(30°-23′40″).57.化简:-3(x 2-xy)+2(3x 2+2xy)58.计算:﹣14﹣[2﹣(﹣3)2]÷(12)3 .59.1+(-2)+3+(-4)+ …+2017+(-2018)60.解方程 2x+56−3x−28=161.计算:(1)(−79−56+518)×(−18)(2)-22+3x(-1)4-(-4)×5(3)(+1317)+(−3.5)+(−6)+(+2.5)+(+6)+(+417)62.解下列方程或方程组:(1)4x −3(20−x)=6x −7(9−x)(2)x+12=x −x−26(3){2x +y =5x −y =1(4){2x−15+3y−24=212x −15y =663.解方程 (1)5x −3=22 ;(2)3x −2=5x −4(3)5(3x −1)=2(4x +2)−8 ;(4)2x−13=1+4x 5−164.计算:(1)﹣22+|﹣5|(2)( 29 ﹣ 14 + 118 )÷(﹣ 136 )65.若a ,b 互为相反数, c ,d 互为倒数,|x|=2,求cd+a+b-x 的值.66.-20+(-14)-(-18)-1367.合并同类项:(1)5m +2n −m −3n(2)3a 2−1−2a −5+3a −a 268.先化简,再求值 3(x 2y −xy 2)−2(−32xy 2−2+x 2y)−3 ,其中 x =−12,y =−2 。
人教版七年级上册数学整式的加减 计算题专项训练一.化简(1)(5a-3b )-3(a 2-2b ) (2)8a+2b+(5a-b )(3)()()()y x y x y x 3242332+--+-- (4)()[]1253---a a a(5)()()43537422+-----x x x x(6))(2)(2b a b a a +-++(7)3a -[-2b +(4a -3b)] (8))32(2[)3(1yz x x xy +-+--(9)4xy ﹣3x 2﹣3xy+2x 2 (10)﹣3(2x 2﹣xy )﹣(x 2+xy ﹣6)(11)3(2x 2﹣y 2)﹣2(3y 2﹣2x 2) (12)2(x 2y+xy 2)﹣(2x 2y+xy 2)二.化简求值(1)先化简,再求值:2(a 2b+3ab )-(2ab-a 2b ),其中a=-2,b=1.(2)求()()xy y x y x 745352222+++-的值,其中.2,1=-=y x(3)先化简,再求值:已知A=4x2y-5xy2,B=3x2y-4xy2,当x=-2,y=1时,求2A-B的值.(5)已知:A=2x2+3xy-5x+1,B=-x2+xy+2.1、求A+2B.2、若A+2B的值与x的值无关,求y的值.(6)求5(3a2b﹣ab2)﹣(ab2+3a2b)的值,其中a=,b=.(7)求(﹣x2+5x+4)+(5x﹣4+2x2)的值,其中x=﹣2.(8)一个整式A与x2﹣x﹣1的和是﹣3x2﹣6x+21、求整式A;2、当x=2时,求整式A的值.(9)若代数式 2x+3y 的值为﹣5,求代数式 4x+6y+3 的值(10). 已知M=3a2﹣2ab+1,N=2a2+ab﹣2,求M﹣N的值。
(11). 已知 A=3x2﹣5x+1,B=﹣2x+3x2﹣5,求当x=时,A﹣B 的值.(12)大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.(13). 先化简再求值:﹣2(3a2﹣ab+2)﹣(5ab﹣6a2)+4,其中a=2,b=﹣1.(14). 已知A=2x2﹣3x﹣1,B=3x2+mx+2,且3A﹣2B的值与x无关,求m的值.(15).先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2017.(16).如果关于x的多项式5x2﹣(2y n+1﹣mx2)﹣3(x2+1)的值与x的取值无关,且该多项式的次数是三次.求m,n的值.(17).某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A ﹣2B”的正确答案.。
人教版七年级上册数学方程计算题一、一元一次方程。
1. 解方程:2x + 3 = 7- 解析:- 首先进行移项,把常数项3移到等号右边,得到2x=7 - 3。
- 计算等号右边7-3 = 4,方程变为2x = 4。
- 然后两边同时除以2,解得x = 2。
2. 解方程:3x-5 = 4x + 1- 解析:- 移项,将含有x的项移到等号一边,常数项移到另一边。
把4x移到左边,变为3x-4x = 1 + 5。
- 计算左边3x-4x=-x,右边1 + 5 = 6,方程变为-x = 6。
- 两边同时乘以 - 1,解得x=-6。
3. 解方程:(1)/(2)x+3=(3)/(2)x - 1- 解析:- 移项,把(1)/(2)x移到右边,-1移到左边,得到3 + 1=(3)/(2)x-(1)/(2)x。
- 左边3 + 1 = 4,右边(3)/(2)x-(1)/(2)x=x,所以x = 4。
4. 解方程:5(x - 3)+2(3 - x)=12- 解析:- 先去括号,5x-15 + 6 - 2x = 12。
- 合并同类项,得到5x-2x-15 + 6 = 12,即3x-9 = 12。
- 移项得3x = 12+9。
- 计算得3x = 21,解得x = 7。
5. 解方程:2 - (2x+1)/(3)=(1 + x)/(2)- 解析:- 去分母,方程两边同时乘以6,得到12-2(2x + 1)=3(1 + x)。
- 去括号得12-4x-2 = 3 + 3x。
- 移项得-4x-3x = 3+2 - 12。
- 合并同类项得-7x=-7,解得x = 1。
6. 解方程:(0.1x - 0.2)/(0.02)-(x + 1)/(0.5)=3- 解析:- 先将方程中的分数分子分母同时乘以适当的数化为整数,对于(0.1x - 0.2)/(0.02),分子分母同乘100得5x-10,对于(x + 1)/(0.5),分子分母同乘10得2x + 2。
人教版七年级数学上册《整式的加减》计算题训练附答案解析第二章整式的加减第一节整式的加减法(高效训练1--20)1、计算下列各式2、化简:1、计算下列各式2、化简:3、先化简再求值:其中,4、先化简,再求值.,其中与互为相反数1、合并同类项2、化简:先化简,后求值:,其中.3、有这样一道题:计算的值,其中。
某同学把抄成了,但计算结果也是正确的,试说明理由,并求出这个结1、计算下列各式2、计算下列各式3、已知a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是,求a,b,c的值;求:、1、计算下列各式计算:计算:化简:化简并求值:;其中,;2、计算下列各式3、先化简,再求值.已知,求的值.1、计算下列各式2、计算下列各式3、已知:,求的值;若的值与x无关,求y的值.1、计算下列各式若,,求:当时,的值.已知,,求代数式的值.2、在关于x,y的多项式中,无论x,y取任何数,多项式的值都不变,求a,b的值.3、已知,求的值1、计算下列各式(2)2、合并下列多项式中的同类项.3、先化简,再求值:,其中,1、计算下列各式2、化简:3、化简求值:已知,求代数式的值1、计算下列各式2、已知代数式,马小虎同学在做整式加减运算时,误将“”看成“”了,计算的结果是.请你帮马小虎同学求出正确的结果;是最大的负整数,将x代入问的结果求值3、已知,,且,求C1、计算下列各式2、计算下列各式化简:先化简,再求值:,其中,3、已知:已知,.求B;当时,求的1、计算下列各式2、化简下列各式:.3、老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了如图所示的一个二次三项式,形式如图:求所捂的二次三项式;若,求所捂二次三项式的值1、计算下列各式2、化简下列各式先化简,再求值.,其中,.已知,,求代数式的值3、已知,.求;若,求的值;试将用A与B的式子表示出来.1、计算下列各式2、求值:,其中,3、先化简,再求值:,其中.,其中,.1、计算下列各式2、已知,,按要求完成下列各小题.若的结果中不存在含x的一次项,求a的值;当时,求的结果.3、已知,求的值.1、先化简,再求值:,其中.,其中,2、先化简,再求值:,其中,.有一道题是一个多项式减去“”,小强误当成了加法计算,得到的结果是“”,请求出正确的计算结果.3、已知,.若化简是常数的结果中没有常数项,求m的值;当时,求的值.1、计算下列各式,其中.,其中,.2、若代数式中不含xy项,求:的值.3、已知多项式与多项式A的和为,且式子的计算结果中不含关于x的一次项,求多项式A.求m的值1、计算下列各式2、已知,.求;若,求的值.3、化简或求值化简:;化简求值:,其中,.1、计算下列各式2、已知,求的值3、如果代数式的值与字母x取值无关,试求代数式的值.4、若,求的值高效训练20 第周星期1、计算下列各式先化简,再求值:,其中,.已知整式,整式M与整式N之差是,求出整式N.2、有这样一道题:计算的值,其中,甲同学把“”错抄成了“”但他计算的结果也是正确的,请你通过计算说明原因.3、已知:,求的值;当x的取任意数值,的值是一个定值时,求的值4、如果关于x的多项式的值与x的取值无关,且该多项式的次数是三次.求m,n的值.参考答案与解析高效训练11.原式原式原式原式原式原式2.解:原式;原式.高效训练21.原式;原式.2.原式原式3.解:4.解:原式,,,原式高效训练31.原式.原式原式原式2.原式;原式;原式,原式.3..当时,原式.因为化简的结果中不含x,所以原式的值与x值无关.高效训练41.(1).(2).(3).2.(1);(2).3.由题意可知:,,当,,时,原式高效训练51.原式;原式;原式;原式.原式.2.原式原式.3.=10高效训练61.解:原式;原式;原式原式2.原式;原式3.原式;原式要使原式的值与x无关,则,解得:.高效训练71.原式;原式;,,,当时,原式;,,原式.2.解:,无论x,y取任何数,多项式的值都不变,,,解得:,3.解:,,原式高效训练81.(1);(2);;(4).2.原式;原式;原式;原式.3.原式原式高效训练91.原式;原式;原式;原式;原式;原式.2.原式;原式;原式;原式.3.原式原式高效训练101.原式;原式;原式;原式;原式;原式.2.根据题意知,则;是最大的负整数,,则原式.3.,,,高效训练111.原式;原式;原式;原式.2.原式;原式,原式.3.(1)B;(2),原式.高效训练121.原式原式原式.2.(1)原式(2)原式(3)原式.3.根据题意得:;当时,原式.高效训练131.原式;原式;原式;原式2.原式,当,时,原式;原式,当,时,原式.3.(1)(2)原式;.高效训练141.(1).(2)(3).(4).2.原式,当,时,原式3.(1),当时,原式.(2),当,时,原式.高效训练151.原式;原式;原式;原式.2.,,,由结果中不含x的一次项,得到,解得:;,,,3.原式,当,时,原式.高效训练161.原式,原式;原式,当,时,原式.2.原式,当,时,原式;原式则正确的计算结果.3.(1),由结果不含常数项,得到,解得:;(2)原式,当时,原式.高效训练171.原式当时,原式.原式当,时,原式.2.原式,由结果不含xy项,得到,解得:,则原式.3.根据题意得:;,结果不含关于x的一次项,,即高效训练181.原式;原式;原式;原式.2.(2)解得,,.3.(1);(2);(3).高效训练191.原式;原式2.原式当时,原式3.,根据题意知且,解得:、,4.,,,,当,时,原式.高效训练201.(1),当,时,原式;整式.2.原式,此题的结果与x的取值无关.3...当x的取任意数值,的值是一个定值,即的值是一个定值,.4.由题意得,,,解得,,.。
七年级数学上册计算题(428道题)(1)()22--= (2)3112⎛⎫⎪⎝⎭-=(3)()91- = (4)()42-- =(5)()20031-= (6)()2332-+-=(7)()33131-⨯--= (8)()2233-÷- =(9))2()3(32-⨯-= (10)22)21(3-÷-=(11)()()3322222+-+-- (12)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭(13)()34255414-÷-⎪⎭⎫ ⎝⎛-÷ (14)()⎪⎭⎫ ⎝⎛-÷----721322246(15)()()()33220132-⨯+-÷--- (16) []24)3(2611--⨯--(17)])3(2[)]215.01(1[2--⨯⨯-- (18)(19)()()()33220132-⨯+-÷--- (20)22)2(3---;(21)]2)33()4[()10(222⨯+--+-; (22)])2(2[31)5.01()1(24--⨯⨯---;332222()(3)(3)33÷--+-(23)94)211(42415.0322⨯-----+-; (24)20022003)2()2(-+-;(25))2()3(]2)4[(3)2(223-÷--+-⨯--; (26)200420094)25.0(⨯-.(27)()0252423132.⨯--÷-⎛⎝ ⎫⎭⎪+⎡⎣⎢⎢⎤⎦⎥⎥ (28)()()----⨯-221410222(29)()()()-⨯÷-+-⎛⎝ ⎫⎭⎪⨯-÷-3120313312232325.. (30)()()()-⎛⎝ ⎫⎭⎪⨯-⨯-⨯-212052832.(31) (32)(56)(79)---(33)(3)(9)(8)(5)-⨯---⨯- (34)3515()26÷-+(35)5231591736342--+- (36)()()22431)4(2-+-⨯---(37)411)8()54()4()125.0(25⨯-⨯-⨯-⨯-⨯33182(4)8-÷--(38)如果0)2(12=-++b a ,求20112010()-3ab a b a a ++-()的值(39)已知|1|a +与|4|b -互为相反数,求b a 的值。
(40)2234.0)2.1()211(922÷---⨯ (41)12111110|11101211|-+-(42)5]36)65121197(45[÷⨯+-- (43) )41()35(12575)125(72-⋅-+⨯--⨯ (44))32()87()12787431(-+-÷-- (45)4131211-+-(46)()1-⎪⎭⎫ ⎝⎛-÷2131 (47) 22128(2)2⎛⎫-⨯-+÷- ⎪⎝⎭(48)1564358-÷⨯ (49))4955.5(1416.34955.61416.3-⨯+⨯(50)100()()222---÷3)2(32-+⎪⎭⎫ ⎝⎛-÷ (51)113(5)77(7)12()3322-⨯+⨯--÷-(52)2012201313(2)(0.5)(6)714-⨯-+-⨯ (53)322012111()()(1)(2)(1)2216⎡⎤--÷--⨯-÷-⎢⎥⎣⎦(54)222121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭(55))12()4332125(-⨯-+(56)(20)(3)(5)(7)-++---+ (57)3712()()14263-+----(58)1( 6.5)(2)()(5)3-⨯-÷-÷-(59)若7a =,3b =,求a + b 的值. (60)已知│a +1│与│b -2│互为相反数,求a -b 的值.(61) (-12)÷4×(-6)÷2; ;(62) (62)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭(63)111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(64) ; (64)222121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭206137+-+-;(67)532)2(1---+-+;(68)(-5)×(-7)-5×(-6) (69)()25.05832-÷⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-(70)()⎪⎭⎫⎝⎛----+⎪⎭⎫ ⎝⎛-⋅-21221232.(71)222121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭(72))12()4332125(-⨯-+(73)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭(74)111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(75)222121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭;(76)(-5)×(-8)×0×(-10)×(-15);(77)(-3)×(-4)×(-5)+(-5)×(-7)(78)(-0.1)×(-1)×(-100)-0.•01×(1000). (79)214×(-134)×(-23)×(-87);(80)-12+ 13-14-15)×(-20);(81)(-313)×(-0.12)×(-214)×3313; (82)(79- 56 + 34- 718)×(-36).(83)-56×(12-225-0.6)(84)(+12)×|-23|×214×(-513);(85)(-118)×3(-23)×(-113)(86) )8(12)11(9-⨯-+⨯-(87)(-213)×(-37)= (88)0×(-13.52)= (89)(-1)×a =(90)(-3.25)×(+213)= (91)(-185.8)×(-3645)×0×(-25)=(92))25()7()4(-⨯-⨯-(93) )34(8)53(-⨯⨯- (94))1514348(43--⨯ (95) (96))8(45)201(-⨯⨯-(97)(-37)×0.125×(-213)×(-8);97)53)8()92()4()52(8⨯-+-⨯---⨯ (98)(-0.25)×0.5×(-427)×4; (99)(-4)×(-18.36)×2.5; (100)(-29)×(-18)+(-511)×(-3)×215;(101)(-47.65)×2611+(-37.15)×(-2611)+10.5×(-7511). (102)[(-2)×(-4)+(-5)]×[-3-(-2)×(-3)].(103))533()6.0(34521321----+- (104) )31()21()54()32(21+--+---+(105)1(2)235+-+-- (106)27()1333-+---- (107)(-23)+7+(-152)+65 (108)|52+(-31)| (109)(-52)+|―31|(112)38+(-22)+(+62)+(-78) (113)(-8)+(-10)+2+(-1)(114)(-32)+0+(+41)+(-61)+(-21) (115)(-8)+47+18+(-27) (116)(-5)+21+(-95)+29 (117)(-8.25)+8.25+(-0.25)+(-5.75)+(-7.5)(118) 6+(-7)+(9)+2 (119) 72+65+(-105)+(-28)(120)(-23)+|-63|+|-37|+(-77) (121)19+(-195)+47(122)(+18)+(-32)+(-16)+(+26) (122)(-321)-541(123)(-0.8)+(-1.2)+(-0.6)+(-2.4) (124)(-8)+(-321)+2+(-21)+12(125)553+(-532)+452+(-31) (126)(-6.37)+(-343)+6.37+2.75(127)(-12.5)-(-7.5) (128)(-26)―(-12)―12―18(129)―1―(-21)―(+23) (130)(-20)-(+5)-(-5)-(-12)(131)(-23)―(-59)―(-3.5) (132)|-32|―(-12)―72―(-5)(133)(-41)―(-85)―81 (134)(+103)―(-74)―(-52)―710(135)(-516)―3―(-3.2)―7 (136)(+71)―(-72)―73(137)(+6.1)―(-4.3)―(-2.1)―5.1 (138)(-32)―(-143)―(-132)―(+1.75)(139)(-332)―(-2)43―(-132)―(-1.75) (140) -843-597+461-392(141) -443+61+(-32)―25 (142) 0.5+(-41)-(-2.75)+21(143)(+4.3)-(-4)+(-2.3)-(+4) (144)(-0.5)-(-341)+6.75-521(145)(-9)×32 (146)(-132)×(-0.26) (147)(-2)×31×(-0.5) (148)31×(-5)+31×(-13) (149)(-4)×(-10)×0.5×(-3) (150)(-83)×34×(-1.8) (151)(-0.25)×(-74)×4×(-7) (152)(-73)×(-54)×(-127) (153)(-8)×4×(-21)×(-0.75)(154)4×(-96)×(-0.25)×481 (155)(74-181+143)×56(156)(65―43―97)×36 (157)(-36)×(94+65-127) (158)(-43)×(8-34-0.4) (159)(-66)×〔12221-(-31)+(-115)〕 (160)25×43-(-25)×21+25×41 (161)(187+43-65+97)×72(162)31×(2143-72)×(-58)×(-165) (163)18÷(-3) (164)(-24)÷6 (165)(-57)÷(-3) (166)(-53)÷52 (167)(-42)÷(-6)(168)(+215)÷(-73) (169)(-139)÷9 (170)0.25÷(-81)(171)-36÷(-131)÷(-32) (172)(-1)÷(-4)÷74 (173)3÷(-76)×(-97) (174)0÷[(-341)×(-7)] (175)-3÷(31-41)(176)(-2476)÷(-6) (177) 2÷(5-18)×181 (178)131÷(-3)×(-31)(179) -87×(-143)÷(-83) (180)(43-87)÷(-65) (181)(29-83+43)÷(-43) (182) -3.5 ×(61-0.5)×73÷21 (183) -172÷(-165)×183×(-7)(184)56×(-31-21)÷45 (185)75÷(-252)-75×125-35÷4(186)0.8×112+4.8×(-72)-2.2÷73+0.8×119 (187)2÷(-73)×74÷(-571)(188)(-1275420361-+-)×(-15×4) (189)()⨯⨯-73187(-2.4) (190)[1521-(141÷152+321]÷(-181) (191)51×(-5)÷(-51)×5(192) -(31-211+143-72)÷(-421) (193) -13×32-0.34×72+31×(-13)-75×0.34(194) 8-(-25)÷(-5) (195)(-13)×(-134)×131×(-671)(196)(-487)-(-521)+(-441)-381 (197)(-16-50+352)÷(-2) (198)(-0.5)-(-341)+6.75-521 (199)178-87.21+43212+532119-12.79(200)(-6)×(-4)+(-32)÷(-8)-3 (201)-72-(-21)+|-121|(202)(-9)×(-4)+ (-60)÷12 (203) [(-149)-175+218]÷(-421)(204)-|-3|÷10-(-15)×31 (205)-153×(327-165)÷221(206)(231-321+11817)÷(-161)×(-7) (207)-43×(8-231-0.04)(208)-2×23 ( 209)-22-()31- (210)43-34(211)31--2×()31- (212)()23-÷()24- (213)2-×()22-(214)232-+()34- (215) ()32-×()42-×()52- (216)2-×23-()232⨯-(217)()22-2-+()32-+32 (218)22--3)3(-×()31--()31-(219)()[]221--+()221- (220)0-()23-÷3×()32- (221)22-×()221-÷()38.0- (222)-23×()231--()32-÷()221-(223)()243-×(-32+1) ×0 (224)6+22×()51- (225)-10+8÷()22--4×3 (226)-51-()()[]55.24.0-⨯-(227)()251--(1-0.5)×31 (228)()32-×()232-×()323-(229)4×()23-+6 (230)()1321-×83×()122-×()731- (231) -27+2×()23-+(-6)÷()231- (232)()42-÷(-8)-()321-×(-22)(233)()()[]222345----×(11587÷)×()47- (234)()22--2[()221--3×43]÷51 (235)()26-÷9÷()296÷- (236)36×()23121-(237)-{()⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛-⨯+--)2(2114.0333} (238)-41+(1-0.5)×31×[2×()23-](239)-4×()[]3671÷-+()[]()33235-÷-- (240)-33-()[]1283--÷+()23-×()32-÷25.01 (241)(-5.3)-(+4.8)+(-3.2)-(-2.5); (242)⎪⎭⎫ ⎝⎛-+-⨯⎪⎭⎫ ⎝⎛-3132843(243)-10+8÷(-2)2-3×(-4)-15; (244)-14-(1-0.5)×13×[2-(-3)2].(245)5244361832411÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-+- (246)36727199⨯-(247)x x x 10415-+ (248)222p p p ---(249))3()7(5n n n n a a a a -+---- (250)x y yx xy y x 222223-+-(251)222252214.041ab b a ab b a +-- (252)]}68()(6[2{3)-+++----b a c b c a c a(256)152-= (257)2)5(5=--x ; (258) 463-=-x(259)⎪⎩⎪⎨⎧=+=-57502y x x y (260) 359236x y x y -=⎧⎨-+=-⎩(261) ()()()()31445135x y y x -=-⎧⎪⎨-=+⎪⎩(262)3262317x y x y -=⎧⎨+=⎩ (263) 1323334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩ (264)83206570u v u v ++=⎧⎨++=⎩(265)x x 4923+≥- (266))1(5)32(2+<+x x (267)0)7(319≤+-x(268)31222+≥+x x (269)223125+<-+x x (270)5223-<+x x (271)234->-x (272))1(281)2(3--≥-+y y (273)14321<--<-x(274)2(1)41413x x x x +-<⎧⎪+⎨>-⎪⎩ (275)95)31(27≤-≤-x (276)532(1)314(2)2x x x -≥⎧⎪⎨-<⎪⎩(277)144mn mn -; (278)2237(43)2x x x x ⎡⎤----⎣⎦; (279)(2)()xy y y yx ---+ ; (280))522(2)624(22-----a a a a 其中 1-=a .(280))3123()21(22122b a b a a ----- 其中 32,2=-=b a . (281)已知 1232+-=a a A ,2352+-=a a B ,求B A 32-.(282) )22(--a a ; (283))32(3)5(y x y x --+-;(284))(2)(2b a b a a +-++; (285))32(2[)3(1yz x x xy +-+--(286)22222323xy xy y x y x -++-; (287))32(3)23(4)(5b a b a b a -+--+;(288))377()5(322222a b ab b ab a a ---+--(289)2),45()54(3223-=--++-x x x x x 其中(290)43,32),12121()3232(==+----y x xy x y xy 其中(291)求单式327y x 、322y x -、323y x -、322y x 的和。