差分放大电路仿真分析
- 格式:doc
- 大小:467.50 KB
- 文档页数:11
题目:分析差分放大电路的差模电压增益、共模电压增益和共模抑制比绘制差分放大电路原理图如图所示,其中vs+和vs-为正弦源。
另存为chadong1.sch一、分析双端输入时的差模电压增益1.设置信号源的属性。
vs+,vs-为差分放大电路的信号源。
vs+的属性设置如下:Vs-的属性设置如:vs+的“AC”项设为10mv,vs-的“AC”项设为-10mv。
这样才能起到差模输入的作用。
2. 设置分析类型3. Analysis→Simulate,调用Pspice A/D对电路进行仿真计算。
4.测得恒流源给出的静态电流为1.849mA,晶体管Q1和Q2的发射极电流相等,都为0.9246mA。
(思考为什么是相等的)5. 在probe下,单击Trace→Add,在Trace Expression中输入要显示的变量。
若要观察单端输出时的差模电压增益,编辑表达式为:V(out1) / (V(Vs+:+)-V(Vs-:+));若要观察双端输出时的差模电压增益,编辑表达式为:(V(out1)-V(out2)) / (V(Vs+:+)-V(Vs-:+))。
得到结果如下:6. 用游标测量,双端输出时的差模电压增益为100.68,单端输出时的差模电压增益为50.34.是双端输出时的一半(为什么)。
两条曲线的上限截止频率点都是3.3843Mhz。
二、分析双端输入时的共模电压增益将原理图chadong1.sch打开,另存为chadong2.sch1.设置信号源的属性。
vs+的属性设置不变。
Vs-的“AC”属性设置为10mv,使其和信号源vs+一样,这样就相当于在两个输入端加上了相同的信号,起到共模输入的作用。
2. 设置分析类型3. Analysis Simulate,调用Pspice A/D对电路进行仿真计算。
4. 在probe下,单击Trace→Add,在Trace Expression中输入要显示的变量。
若要观察单端输出时的共模电压增益,编辑表达式为:V(out1) / V(Vs+:+);若要观察双端输出时的共模电压增益,编辑表达式为:(V(out1)-V(out2)) / V(Vs+:+)。
差分放大电路仿真一、实验目的1.掌握差动放大电路对放大器性能的影响。
2.学习差动放大器静态工作点、电压放大倍数、输入电阻、输出电阻的仿真方法。
3.学习掌握Multisim交流分析4.学会开关元件的使用二、实验原理图3.2-1是差动放大器的基本结构。
它由两个元件参数相同的基本共发射放大电路组成。
当开关K 拨向左边时,构成典型的差动放大器。
调零电位器RP用来调节VT1、VT2管的静态工作点,使得输入信号Ui=0时,双端输出电压Uo=0。
R E为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。
图3.2-1 差动放大器原理电路在设计时,选择VT1、VT2特性完全相同,相应的电阻也完全一致,调节电位器RP的位置置50%处,则当输入电压等于零时,UCQ1= UCQ2,即Uo=0。
双击图中万用表XMM1、XMM2、XMM3分别显示出UCQ1、、UCQ2、Uo电压,其显示结果如图3.2-2所示。
(a)UCQ1显示结果(b)Uo显示结果(c)UCQ2显示结果图3.2-2 UCQ1、、UCQ2、Uo显示结果三、虚礼实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表四、实验内容与步骤1. 差动放大器的静态工作点分析 典型差动放大器电路静态工作点EBEEE E R U U I -≈(认为UB1=UB2≈0),E C2C1I 21I I ==恒流源差动放大器电路静态工作点E1BEEE CC 212E3C3R U )U (U R R R I I -++≈≈,C3C1C1I 21I I == (1)按下图3.2-3输入电路图3.2-3(2)调节放大器零点把开关S1和S2闭合,S3打在最左端,启动仿真,调节滑动变阻器的阻值,使得万用表的数据为0(尽量接近0,如果不好调节,可以减小滑动变阻器的Increment 值)。
(3)直流分析启动直流分析,将测量结果填入下表:2. 差模电压放大倍数和共模电压放大倍数 (1)测量差模电压放大倍数当差动放大器的发射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数Ad 由输出端方式决定,而与输入方式无关。
仿真实验三差分电路仿真实验一、实验目的(1)通过Multisim来仿真电路,测试差分放大电路的静态工作点、差模电压放大倍数、输入电阻和输出电阻;(2)加深对差分放大电路原理的理解;(3)通过仿真,体会差分放大电路对温漂的抑制作用;二、实验平台Multisim 10.0三、实验原理差放的外信号输入分差模和共模两种基本输入状态。
当外信号加到两输入端子之间,使两个输入信号V i1、V i2的大小相等、极性相反时,称为差模输入状态。
此时,外输入信号称为差模输入信号,以V id表示,且有:当外信号加到两输入端子与地之间,使V i1、V i2大小相等、极性相同时,称为共模输入状态,此时的外输入信号称为共模输入信号,以V ic表示,且:当输入信号使V i1、V i2的大小不对称时,输入信号可以看成是由差模信号Vid和共模信号V ic两部分组成,其中动态时分差模输入和共模输入两种状态。
(1)对差模输入信号的放大作用当差模信号V id输入(共模信号V ic=0)时,差放两输入端信号大小相等、极性相反,即V i1=-V i2=V id/2,因此差动对管电流增量的大小相等、极性相反,导致两输出端对地的电压增量,即差模输出电压V od1、V od2大小相等、极性相反,此时双端输出电压V o=V od1-V od2=2V od1=V od,可见,差放能有效地放大差模输入信号。
要注意的是:差放公共射极的动态电阻R e对差模信号不起(负反馈)作用。
(2)对共模输入信号的抑制作用当共模信号V ic输入(差模信号V id=0)时,差放两输入端信号大小相等、极性相同,即V i1=V i2=V ic,因此差动对管电流增量的大小相等、极性相同,导致两输出端对地的电压增量,即差模输出电压V oc1、V oc2大小相等、极性相同,此时双端输出电压V o=V oc1-V oc2=0,可见,差放对共模输入信号具有很强的抑制能力。
此外,在电路对称的条件下,差放具有很强的抑制零点漂移及抑制噪声与干扰的能力。
Multisim是一款电子电路仿真软件,可以模拟和分析电路的性能和行为。
以下是一个简单的三极管差分放大电路的Multisim仿真步骤:
1. 打开Multisim软件,创建一个新的电路图。
2. 从元件库中选择所需的元件,包括三极管、电阻、电容等。
3. 在电路图中放置元件,并按照差分放大电路的原理图连接线路。
4. 设置三极管的参数,例如类型、极性、放大倍数等。
5. 添加输入信号源,并将信号源的电压或电流设置为所需的幅度和频率。
6. 连接输出负载,例如虚拟示波器或其他测量仪器。
7. 运行仿真并观察输出信号的波形和幅度。
8. 根据需要调整元件参数或电路结构,以优化性能或改变放大倍数等。
需要注意的是,在使用Multisim进行电路仿真时,应确保元件库中包含了所有必要的元件类型和参数,以便准确地模拟实际情况。
此外,仿真结果可能与实际电路的性能存在差异,因此还需要在实际电路中进行测试和验证。
题目:分析差分放大电路的差模电压增益、共模电压增益和共模抑制比绘制差分放大电路原理图如图所示,其中vs+和vs-为正弦源。
另存为chadong1.sch一、分析双端输入时的差模电压增益1.设置信号源的属性。
vs+,vs-为差分放大电路的信号源。
vs+的属性设置如下:Vs-的属性设置如下:vs+的“AC”项设为10mv,vs-的“AC”项设为-10mv。
这样才能起到差模输入的作用。
2. 设置分析类型3. AnalysisÆSimulate,调用Pspice A/D对电路进行仿真计算。
4.测得恒流源给出的静态电流为1.849mA,晶体管Q1和Q2的发射极电流相等,都为0.9246mA。
(思考为什么是相等的)5. 在probe下,单击TraceÆAdd,在Trace Expression中输入要显示的变量。
若要观察单端输出时的差模电压增益,编辑表达式为:V(out1) / (V(Vs+:+)-V(Vs-:+));若要观察双端输出时的差模电压增益,编辑表达式为:(V(out1)-V(out2)) / (V(Vs+:+)-V(Vs-:+))。
得到结果如下:6. 用游标测量,双端输出时的差模电压增益为100.68,单端输出时的差模电压增益为50.34.是双端输出时的一半(为什么)。
两条曲线的上限截止频率点都是3.3843Mhz。
二、分析双端输入时的共模电压增益将原理图chadong1.sch打开,另存为chadong2.sch1.设置信号源的属性。
vs+的属性设置不变。
Vs-的“AC”属性设置为10mv,使其和信号源vs+一样,这样就相当于在两个输入端加上了相同的信号,起到共模输入的作用。
2. 设置分析类型3. AnalysisÆSimulate,调用Pspice A/D对电路进行仿真计算。
4. 在probe下,单击TraceÆAdd,在Trace Expression中输入要显示的变量。
Lab 5 差分放大器电路仿真1.实验目的熟悉ADE环境设置。
掌握层次化设计方法。
了解仿真结果分析方法。
2.实验原理关于仿真部分的实验原理,在lab4中已有详述。
层次化(Hierarchy)设计:在较为复杂的电路中,因为电路元件个数相对庞大,所有电路单元不可能都以元件的形式出现在电路里。
为了简化电路形式,可采用特定的电路符号,每个符号代表一个电路单元,甚至在电路符号中再镶嵌符号,由此形成多层电路结构。
层次化设计简化了电路结构,便于电路设计与仿真,lab4所设计的ampTest测试平台就包含有Lab3所设计的放大电路Amplifier。
在lab11以后的版图设计中,层次化设计成为必然。
层次化设计的特点:①大量元件可以用一个符号代表②符号可以代表元件、单元电路模块③同一符号可以出现在不同层次④设计中不再需要特定的结构形式⑤方便了不同层次间的设计层次化方法(也可使用盲键)①选择要进入下层(或返回上层)的符号②进入下层:选择Design→Hierarchy→Descend Edit [E]③返回上层:选择Design→Hierarchy→Return [^e]④返回顶层:选择Design→Hierarchy→Return To Top3.实验内容运行仿真设置Analyses①在CIW窗口中,打开ampTest的Schematic Editing窗口,选择Tool→AnalogEnvironment,弹出ADE窗口。
②在ADE窗口中,选择Analyses→Choose,打开Choosing Analyses窗口。
③设置Analyses栏目中的ac:a.在Analysis里,选择acb.设置Sweep V ariable为Frequencyc.设置Sweep Rangs为Start-Stop,Start赋值为100,Stop赋值为150Md.设置Sweep Type为Logarithmic,选择Points Per Decade为20e.选择Enabledf.点击Apply④设置Analyses栏目中的tran:a.在Analysis里,选择tranb.设置Stop Time为3uc.设置Accuracy Defaults (errpreset)为Moderated.选择Enablede.点击Apply⑤设置Analyses栏目中的dc:a.在Analysis里,选择dcb.在DC Analysis里,选择Save DC Operating Pointc.选择Enabledd.点击Applye.点击OK设置Design V ariables图5.1 Edit Design V ariables窗口①在Simulation窗口(也即ADE窗口)中,点击Edit Variables图标,弹出Edit Design V ariables窗口如图5.1所示。
cmos五管差分放大器仿真波形CMOS五管差分放大器是一种常用的电路结构,广泛应用于模拟信号处理和放大器设计中。
本文将从原理、特点、优缺点以及仿真结果等几个方面对CMOS五管差分放大器进行详细介绍。
一、原理CMOS五管差分放大器主要由一个差分对、输出级和偏置电路组成。
差分对由两个输入管和两个负载管组成,它们通过上下偏置电流控制器提供偏置电流。
当差分输入信号Vid通过输入管传入时,差分对将产生差分电流Iid,而输出级则根据差分电流的变化来放大并产生输出信号。
二、特点1. 差分放大器的输入阻抗高,输出阻抗低,能够有效减少信号源与放大电路之间的阻抗不匹配问题。
2. 采用CMOS工艺制造的放大器具有较低的功耗和较高的集成度,有利于集成电路的制造和系统集成。
3. 差分放大器具有较好的共模抑制比和噪声性能,能够减小共模噪声对差分信号的影响。
4. 由于使用了五管结构,差分放大器具有良好的线性度和较大的增益带宽积。
三、优缺点CMOS五管差分放大器的优点包括较低的功耗、较好的共模抑制比、良好的线性度和较大的增益带宽积等。
然而,它也存在一些缺点,如本征噪声较大、输入偏置电流较大、温度漂移性能一般等。
四、仿真结果通过对CMOS五管差分放大器进行仿真,我们可以得到一些实际的波形和参数。
在仿真中,我们可以观察到输入信号的传输、差分电流的大小、输出电压的变化等情况。
通过调整电路中的参数和结构,我们可以进一步优化差分放大器的性能。
综上所述,CMOS五管差分放大器是一种常用的放大器结构,具有较低的功耗、较好的共模抑制比和良好的线性度等特点。
在实际应用中,我们可以通过仿真来研究和优化其性能,以满足具体的设计要求。
在今后的电路设计中,CMOS五管差分放大器将继续发挥重要的作用。
基于Multisim的差分放大电路仿真分析差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。
但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解,因而一直是模拟电子技术中的难点。
Muhisim作为著名的电路设计与仿真软件,它不需要真实电路环境的介入,具有仿真速度快、精度高、准确、形象等优点。
因此,Multisim被许多高校引入到电子电路实验的辅助教学中,形成虚拟实验和虚拟实验室。
通过对实际电子电路的仿真分析,对于缩短设计周期、节省设计费用、提高设计质量具有重要意义。
1 Multisim8软件的特点Muhisim是加拿大IIT(Interactive Image Tech—nologies) 公司在EWB(Electronics Workbench)基础上推出的电子电路仿真设计软件,Muhisim现有版本为Muhisim2001,Muhisim7和较新版本Muhisim8。
它具有这样一些特点:(1)系统高度集成,界面直观,操作方便。
将电路原理图的创建、电路的仿真分析和分析结果的输出都集成在一起。
采用直观的图形界面创建电路:在计算机屏幕上模仿真实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。
操作方法简单易学。
(2)支持模拟电路、数字电路以及模拟/数字混合电路的设计仿真。
既可以分别对模拟电子系统和数字电子系统进行仿真,也可以对数字电路和模拟电路混合在一起的电子系统进行仿真分析。
(3)电路分析手段完备,除了可以用多种常用测试仪表(如示波器、数字万用表、波特图仪等)对电路进行测试以外,还提供多种电路分析方法,包括静态工作点分析、瞬态分析、傅里叶分析等。
(4)提供多种输入/输出接口,可以输入由PSpice 等其他电路仿真软件所创建的Spice网表文件,并自动形成相应的电路原理图,也可以把Muhisim环境下创建的电路原理图文件输出给Protel等常见的印刷电路软件PCB进行印刷电路设计。
差分—共集负反馈放大电路的理论计算与仿真分析杨一军;陈得宝;曲惠勤;张勇【摘要】构建了直接耦合方式下的差分-共集电压负反馈放大电路,在输入变化量采用直流差分形式的基础上,运行EWB仿真软件,结果表明:按定义所得开环和闭环互阻增益满足反馈中的基本关系式.在合理的近似下,计算了静态电流.根据多级放大器的增益和增益间转换关系,理论上计算了开环互阻增益.同时用微变等效电路方法,得到反馈放大器的互阻增益,两者也满足反馈中的基本关系.另外仿真与理论计算对应的互阻增益彼此间很接近,最大相对误差不超过1.02%,说明它们的一致性.【期刊名称】《合肥师范学院学报》【年(卷),期】2012(030)006【总页数】3页(P29-31)【关键词】负反馈;差分—运放放大电路;EWB【作者】杨一军;陈得宝;曲惠勤;张勇【作者单位】淮北师范大学物理与电子信息学院,安徽淮北235000;淮北师范大学物理与电子信息学院,安徽淮北235000;合肥师范学院学报编辑部,安徽合肥230061;淮北师范大学物理与电子信息学院,安徽淮北235000【正文语种】中文【中图分类】TN7211 引言差分-共集电压并联负反馈放大电路是一类优良的互阻放大器,其输入电阻低,输出电阻高,适用于高内阻信号源,大电阻负载场合。
直接耦合方式下差分电路的突出优点是抑制共模信号。
近年来差分-共射、差分-运放负反馈放大电路屡见报道,引起人们的关注[1,2],然而差分-共集电路结构尚未见到。
本文设计了直接耦合方式下的差分-共集电压并联负反馈放大电路,以直流差分信号作为输入变化量,以单端输入、输出方式在EWB环境下对电路仿真,按定义得到开、闭环互阻增益,其满足反馈放大器中的基本关系式。
理论计算的开环采用先求电压增益,再转换为互阻增益的方法;闭环则采用微变等效电路。
结果表明,仿真与理论计算一致。
图1 差分-共集电压并联负反馈放大电路2 仿真2.1 电路由差分放大器和共集放大器级联组合而成的直接耦合多级放大电路如图1所示。
差分放大电路仿真分析
差分放大电路是集成运算放大器的主要单元电路之一,它具有很强的抑制零点漂移的能力。
作为集成运算放大器的输入级,差分放大电路几乎完全决定着集成运算放大器的差模输入特性、共模抑制特性、输入失调特性和噪声特性。
差分放大电路经由两个参数完全相同的晶体管组成,电路结构对称。
电路具有两个输入端和两个输出端,因此差分放大电路具有四种形式:单端输入单端输出、单端输入双端输出、双端输入单端输出以及双端输入双端输出。
实验内容:
一、理想差分放大电路
1、绘制电路图
启动Capture CIS程序,新建工程,利用Capture CIS绘图软件,绘制如下的电路原理图。
双击正弦电压源VS+的图标,在弹出的窗口中设置AC为10mV,DC为0V,VOFF为0,V AMPL为10m,VFREQ1kHz。
VS-的设置除AC为-10mV外,其余均与VS+同。
2、直流工作点分析
选择Spice | New Simulation Profile功能选项或单击按钮,打开New Simulation对话框,在Name文本框中输入Bias,单击Create按钮,弹出Simulation Settings-Bias对话框,设置如下:
保存设置,启动PSpice A/D仿真程序,调出PSpice A/D窗口,可以在PSpice A/D窗口中选择View | OutPut Filse功能菜单选项,查看输出文件。
在Capture CIS窗口中,单击I 、V按钮,此时电路图中显示电路的静态工作电压与电流值,如下图:
3、双端输入是的基本特性
上面的电路是双端输入的形式,可以利用上面的电路来分析双端输入时的电路特性。
将分析类型设为交流扫描分析AC Sweep。
选择PSpice | New Simulation
Profile功能选项或单击
按钮,打开New Simulation对话框,在Name文本框中输入AC,单击Create按钮,弹出Simulation Settings-AC对话框,设置如下:
启动PSpice A/D仿真程序,显示空的PSpice A/D窗口,选择Trace | Add Trace 命令,在Add Trace窗口中设置如下图,即观察单端输出时的电压增益:V(OUT1)/ (V(VS+:+)-V(Vs-:+))。
再次弹出Add Trace窗口,设置仿真输出变量为双端电压增益,表达式为:(V(OUT1)-V(OUT2))/(V(VS+:+)-V(Vs-:+)),结果如下图。
利用光标工具Cusor测得单端输出时的差模电压增益正好是双端输出时的一半。
由于差分放大电路的两边完全对称,所以两个输出端输出的是幅度相同,相位相差180度的信号。
图中可以测得两条曲线的上行截止频率相同。
对于双端输入的共模特性分析如下:
对电路图中信号源VS-的AC属性改为10mV,其它与信号源VS+一样,这样就相当于在两个输入端上加了相同的信号。
分析类型仍然为交流扫描分析。
启动PSpice A/D仿真程序,显示空的PSpice A/D窗口,选择Trace | Add Trace命令,在Add Trace窗口中设置如下图,即观察单端输出时的电压增益:V(OUT1)/ V(VS+:+)。
再次弹出Add Trace窗口,设置仿真输出变量为双端电压增益,表达式为:(V(OUT1)-V(OUT2))/V(VS+:+),结果如下图。
双端输出的共模电压增益为零。
在中低频段单端输出时的共模电压增益也很小。
随着频率的增加,共模电压增益会急剧增加,增加到一定程度后不会再有剧烈的增减,但无论如何这个小于1。
4、单端输入时的基本特性
在差分放大电路中如果输入信号是通过在两个输入端加上大小相等、相位相反的信号,则称为双端输入,如果输入信号是从一端接入,而另一端输入信号为零,则称为单端输入。
修改电路图,双击电源VS-,将其AC、VOFF、V AMPL及FREQ属性均该为零。
选择PSpice | Markers | V oltage Level 功能选项或单击按钮分别在OUT1
和OUT2各放置一个电压探针,再选择PSpice | Markers | V oltage Differential功能选项,观察两个节点之间的电压差,将正端放置在OUT1,负端放置在OUT2,结果如下图:
分析类型选择交流扫描分析AC Sweep。
分析设置与前面的双端输入时分析差模电压增益时一样。
启动PSpice A/D仿真程序,输出曲线如下图:
图中可以看到三条曲线,使用工具Cusor 测得输出端OUT1和OUT2的输出电压均为503.286mV,双端输出电压正好是单端输出电压的两倍。
观察各种输出方式中各输出端输出的瞬态波形和相位关系。
选择PSpice | New Simulation Profile功能选项或单击按钮,打开New Simulation对话框,
在Name文本框中输入Tran,单击Create按钮,弹出Simulation Settings-Tran对话框,设置如下:
防止探针同上,启动PSpice A/D仿真程序,输出曲线如下图:
图中可以看出输出端OUT1和OUT2的输出也是幅度大小形同、相位相反的正弦波,而且在直流输出时具有直流偏移,这个直流偏移是由两个晶体管Q1和Q2的的静态电压偏置电压引起的。
而在双端输出时,直流偏移为零,这是由于两端(OUT1、OUT2)的直流偏移相反,互相抵消的缘故。
通过上述分析可知,无论是单端输入方式还是双端输入方式,只要输出方式一致,放大倍数就相等,而且单端输出时的放大倍数是双端输出时的一半。
二、非理想对称的差分放大电路
在实际的差分放大电路中往往很难实现电路的完全对称,由于配对晶体管参数失配和集电极负载电阻Rc的失配而使差分放大电路的性能变差,主要表现为:当输入加差模信号时输出会产生共模分量,当输入加共模信号分量时输出会产生差模分量。
如果下一级也是差分放大电路,这种差模输入—共模输出的转换将对整个放大电路的性能产生不利影响。
修改前面的电路,将R1的大小改为5k,将集电极电阻Rc2调整为2.5k。
选中晶体管Q2,选择Edit | PSpice Model 功能菜单,修改元件的Bf为200,Ise为20F,Rb为20,并保存。
先输入差模信号,即修改RS2的AC为-10mV,其余项与RS1相同。
在OUT1与OUT2端分别放置一个电压探针,进行交流小信号分析。
启动PSpice A/D仿真程序,输出曲线如下图:
使用贯标工具Cursor可测得在中低频正向输出端电压和反相端电压,两者相位相反。
差模输入—共模输出这种输出模式对多级差分放大电路对的影响不大。
下面讨论共模输入—差模输出的电路特性。
修改输入信号源VS+和VS-的AC项都为1V,进行交流小信号分析设置。
设置与前面理想差分放大电路中的双端输入的分析相同。
输出的共模信号在经过下一级差分放大电路时经过强烈的抑制作用使其迅速衰减,而输出的差模信号时下一级差分放大电路的输入信号,会被放大传送到输出端,这点影响很大。
通过分析表明,对于非理想对称的差分放大电路,在差模输入—共模输出和共模输入—差模输出两种情况下,共模输入—差模输出由于共模输入产生的差模信号本身就是干扰信号,这个差模信号经过下一级会被放大,对真正的差模信号会形成干扰,因而干扰十分严重;而差模输入产生的共模信号比差模信号小很多,而且经过下一级差分放大电路的共模抑制作用,它的影响将非常小。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。